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Information flow policies are confidentiality policies that control information leakage

through program execution. A common way to enforce secure information flow is through

information flow type systems. Although type systems are compositional and usually enjoy

decidable type checking or inference, their extensibility is very poor: type systems need to be

redefined and proved sound for each new variation of security policy and programming

language for which secure information flow verification is desired.

In contrast, program logics offer a general mechanism for enforcing a variety of safety

policies, and for this reason are favoured in Proof Carrying Code, which is a promising

security architecture for mobile code. However, the encoding of information flow policies in

program logics is not straightforward because they refer to a relation between two program

executions.

The purpose of this paper is to investigate logical formulations of secure information flow

based on the idea of self-composition, which reduces the problem of secure information flow

of a program P to a safety property for a program P̂ derived from P by composing P with

a renaming of itself. Self-composition enables the use of standard techniques for information

flow policy verification, such as program logics and model checking, that are suitable in

Proof Carrying Code infrastructures.

We illustrate the applicability of self-composition in several settings, including different

security policies such as non-interference and controlled forms of declassification, and

programming languages including an imperative language with parallel composition, a

non-deterministic language and, finally, a language with shared mutable data structures.

1. Introduction

There is an increasing need to guarantee the confidentiality of data in programming

applications. In many cases, confidentiality is achieved through access control mechanisms

that regulate access to sensitive data. However, these mechanisms do not guarantee that

legitimately accessed data will not flow from authorised to unauthorised users. In order
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to achieve stronger confidentiality guarantees that account for the flow of information

during program execution, an alternative is to use information flow policies, such as non-

interference, which is a baseline information flow policy that guarantees the absence of

information leakage. Informally, non-interference considers a partitioning of the program

state into public and secret parts, and requires that no information is leaked from the

secret part of the state by observing the execution of the program. In its simplest instance,

non-interference assumes that one can only observe the final value of the public state, and

that (non)termination is not observable. Hence, a program P is non-interfering if any two

terminating executions of P starting from states that coincide on their public part yields

final states that coincide on their public part – see below for a more formal definition.

Non-interference and information flow policies have their roots in Cohen (1977; 1978),

Denning and Denning (1977) and Goguen and Meseguer (1982), and recently they have

attracted substantial interest within language-based security studies – see Sabelfeld and

Myers (2003) for a survey. Other forms of information flow policies that are less strict

and more appropriate than non-interference for use in practice include declassification

policies – see Sabelfeld and Sands (2005) for a survey.

The current paper is concerned with the static enforcement of information flow policies

in general. The currently prevailing method for enforcing such policies is through

information flow type systems (Sabelfeld and Myers 2003). Clearly, type systems are

attractive because they support automated, compositional verification. However, type

systems are inherently not extensible: every modification of the information flow policy

or every new feature added to the programming language, requires a non-trivial extension

of the type system and its soundness proof.

On the other hand, logical verification methods are flexible and can be used to support

several policies without the need to prove soundness repeatedly. It is precisely because of

this ability of logic to support various policies that Proof Carrying Code (Necula 1997;

Necula 1998) relies on logical verification to validate mobile code on the consumer

side. Typically, the consumer infrastructure consists of a verification condition generator,

which operates on programs annotated with safety annotations, and a certificate checker,

which verifies that the certificates validate the safety policy (from the soundness of

the verification method, the certificate only has to show the validity proof obligations

generated by the verification condition generator). On the other hand, certificate generation

may be automated by certifying analysers, which use type systems or static analyses to

generate the safety annotations, and automatically generate a proof of the correctness of

the program with respect to these annotations. In such cases, the certifying compiler relies

crucially on the ability of the logic to express safety policies.

In order to extend the scope of Proof Carrying Code to expressive information flow

policies, it is therefore important to understand how such policies can be encoded into

traditional program logics. The encoding is not immediate because information flow

properties are not safety properties (as proved in, for example, Mclean (1994)), but rather

properties of two or more execution traces.

The first encoding of information flow policies in Hoare logic is due to Andrews

and Reitman (Andrews and Reitman 1980; Denning and Denning 1977). However, their

encoding requires us to extend the set of axioms of Hoare logic in order to account for
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security properties. Therefore, such an encoding is impractical for our purposes since we

aim to capture information flow policies without changing the verification logic every time

the security property needs to be adapted. More recently, Darvas et al. (2005) showed how

dynamic logic may be used to verify non-interference and some declassification policies of

(sequential) Java programs. As in Andrews and Reitman’s encoding, non-interference of

a program P is captured by a formula over P – in this case a formula in dynamic logic.

However, this encoding relies on dynamic logic, rather than on more traditional Hoare

logics, and its completeness has not been established.

In view of the difficulty of encoding an information flow policy for a program P as a

property of the same program, several authors have taken a slightly different perspective

on the problem, and reduced non-interference of a program P to a property about single

program executions (universally quantified over all possible program inputs) of another

program P̂ constructed from P . This approach is taken, for example, in Pottier (2002)

for non-interference in the pi-calculus, where the non-interference of two processes P1

and P2 is reduced to a property of a single process P that captures the behaviours of

P1 and P2 while keeping track of their shared sub-processes. The process P is written

in an extension of the pi-calculus and allows for a simple proof of non-interference using

standard subject reduction techniques. We are not clear whether this kind of technique

extends easily to declassification policies.

In the conference version of the current paper (Barthe et al. 2004), we used the term

‘self-composition’ for the reduction of information flow policies to a safety property: an

information flow policy of a program P reduces to a property about single program

executions (universally quantified over all possible program inputs) of the program P ;P ′,

where P ′ is a renaming of P .

The reduction was further generalised in Terauchi and Aiken (2005) to the class of

2-safety properties and in Clarkson and Schneider (2008) to a wider class of properties.

Thanks to self-composition, general-purpose logics such as Hoare-like logics or temporal

logics, which provide a standard means for specifying and verifying safety properties of

programs, can also be used to verify a wide range of information flow policies, and these

policies can be handled in Proof Carrying Code infrastructures.

The objective of the current paper is to build on self-composition to provide char-

acterisations of information flow policies in programming and temporal logics. Our

characterisations apply to many languages and different notions of security including

some forms of declassification.

In order to provide some intuition, we will first consider a simple deterministic

imperative language featuring sequential composition and equipped with an evaluation

relation 〈P , µ〉 ⇓ ν, where P is a program and µ, ν are memories, viz. maps from the

program variables of P to values. Furthermore, we assume that every program variable

in P is classified as either public or private and let �x be the set of all public variables in

P , and �y be the set of all its private variables. Termination-insensitive non-interference

for P may be exressed by

[〈P , µ1〉 ⇓ ν1 ∧ 〈P , µ2〉 ⇓ ν2 ∧ µ1 =L µ2] ⇒ ν1 =L ν2
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for all memories µ, µ′, ν, ν ′, where =L is the point-wise extension of equality on values to

the public parts of memories.

Let [�x′,�y′/�x,�y] be a renaming of the program variables �x,�y of P with fresh variables
�x′, �y′, and let P ′ be the same as program P but with its variables renamed with fresh

names, that is, P [�x′,�y′/�x,�y]. Then, using � to denote the disjoint union of two memories,

we have 〈P , µ〉 ⇓ ν ∧ 〈P ′, µ′〉 ⇓ ν ′ if and only if 〈P ;P ′, µ�µ′〉 ⇓ ν � ν ′. Hence we can recast

non-interference as

〈P ;P ′, µ � µ′〉 ⇓ ν � ν ′ ∧ µ =�x µ
′ ◦ [�x/�x′])

⇒ ν =�x ν
′ ◦ [�x/�x′])

for all memories µ, µ′, ν, ν ′, where ◦ represents function composition and =�x is the point-

wise extension of equality on values to the restriction of memories to �x. This new

formulation reduces non-interference for program P to a property of every single execution

of the program P ;P ′. Hence, we can use programming logics, which are sound and

(relatively) complete with respect to the operational semantics to provide an alternative

characterisation of non-interference. If we use Hoare triples, non-interference can be

characterised by

{�x = �x′}P ;P ′{�x = �x′}.
We will now instantiate our characterisation to the program x:=y; x:=0. Taking x 
→ x′

and y 
→ y′ as the renaming function, the program is non-interferent if and only if

{x = x′} x := y; x := 0; x′ := y′; x′ := 0 {x = x′},

which is easy to show using the rules of Hoare logic. By replacing the =-relation by other

(partial) equivalence relation, we obtain characterisations of information flow policies

that include some forms of declassification. More generally, this kind of characterisation

provides us with a way to use existing verification tools to prove, or disprove, information

flow policies for a program.

Furthermore, the characterisation may be extended in several directions. First, it

can be extended to any programming language that features an appropriate notion

of ‘independent composition’ operator and is equipped with an appropriate logic. We

will illustrate this point by considering a programming language with shared mutable

data structures, and using separation logic (Reynolds 2000; Ishtiaq and O’Hearn 2001) to

provide a characterisation of non-interference (see Section 8). Second, it can be extended to

arbitrary relations between inputs and between outputs, as in, for example, Giacobazzi and

Mastroeni (2004a). This more general form of non-interference is useful for providing a

characterisation of some controlled forms of declassification, such as delimited information

release, which is a form of declassification introduced by Sabelfeld and Myers (2004).

The contributions made by this paper

In this paper we conduct a detailed study of several logical frameworks for characterising

non-interference, for both sequential and concurrent non-deterministic programming

languages. Our work extends and systematises previous characterisations or criteria for

secure information flow policies based on general purpose logics, and allows us to conclude
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that such logics can be used in an appropriate fashion to provide a criterion for, or even

to characterise, non-interference and other more general properties that can be defined as

a relation between two executions of a program. A minor contribution of our work is to

provide methods for establishing non-interference for languages for which no information

flow type system is known – see, in particular, Section 8. The current paper is based

on another paper by the authors, which was presented at the IEEE 17th Computer

Security Foundations Workshop in June 2004 (Barthe et al. 2004). The conference paper

is superceded by the present paper in several ways:

— In the new Section 7, we provide a new characterisation of termination-sensitive secure

information flow using a weakest precondition calculus.

— We revise our formal framework, correcting some mistakes introduced in Barthe

et al. (2004). In particular, we revise and formalise the assumptions on the framework

of self-composition in the Preliminaries section as well as Fact 1.

— We discuss LTL logic characterisation in Section 9 in greater detail and provide an

example program with its characterisation for termination-sensitive and termination-

insensitive non-interference.

— We present complete proofs for the main theorems in the paper. We also provide proofs

for programs in examples, which can be proved secure with respect to information

flow.

— We update the review of related work to take account of the many contributions that

have appeared since the publication of Barthe et al. (2004).

2. Preliminaries

Let Lang be the set of programs specifiable in a given programming language, with a

distinguished program
√
∈ Lang indicating successful termination, and let S , S ′, S1, and

so on, range over Lang. Let Var be the set of variables that may appear in programs, and

let x, x′, x1, y, z, and so on, range over Var. We set var(S) to be the set of variable names

appearing in the text of S , and for y /∈ var(S), we define S[y/x] to be the same program

as S where all (free) occurrences of variable x are replaced by variable y.

We assume a set M of all memories, and let µ, µ′, and so on, range over M. In order to

define security policies and properties on the programming languages under consideration,

we assume two functions: var : M→ Var and an abstraction function v : (M×Var) ⇀V,

with V a set of values. The function var(µ) returns the set of all variables whose values

are stored in µ, and we expect that if x ∈ var(µ), then v(µ, x) is defined. The value of

v(µ, x), depending on the language, may either represent just the value of the variable

in memory µ, that is µ(x), or it may be the value represented by a data structure in the

heap. (Note that we will not use the function v for expression-evaluation semantics.) For

example, if x is a pointer that contains an address in the heap that points to a linked

list structure, then v(µ, x) returns the values in the list, abstracting from addresses used as

links for the list (see Section 8 for a formal definition).

Our characterisations rely on the ability to update memories locally and to separate

a memory into two disjoint pieces of memory. Both operations are specified as follows.

First, if µ ∈ M, x ∈ Var and d ∈ V, then µ[x �⇒ d] ∈ M is some memory such that for all
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y ∈ Var v(µ[x �⇒ d], y) = if x = y then d else v(µ, y). Note that µ[x �⇒ d] is one possible

variation of µ, though there might be more than one, such that v(µ[x �⇒ d], x) = d. Thus,

if x is a pointer and d is a list, µ[x �⇒ d] is a modification of possibly many positions in

the heap of µ and the assignment of the appropriate location (that is, pointer value) to

variable x. Second, if µ1, µ2 ∈ M are two memories satisfying var(µ1) ∩ var(µ2) = �, we

define µ1⊕µ2 ∈ M such that:

— if x ∈ var(µ1), then v(µ1⊕µ2, x) = v(µ1, x);

— if x ∈ var(µ2), then v(µ1⊕µ2, x) = v(µ2, x);

— otherwise v(µ1⊕µ2, x) is undefined.

Notice that ⊕ is commutative. We also require that

v(µ1[x �⇒ d]⊕µ2, y) = v(µ2, y)

for all x ∈ var(µ1), y ∈ var(µ2) and d ∈ V.

Example 1. Consider a language that only manipulates integers, that is, V = �. Then

M is the set of all functions µ : Var → � with var(µ) = dom(µ), v(µ, x) = µ(x), ⊕ is the

disjoint union of functions and µ[x �⇒ d](y) = if x = y then d else µ(y).

The operational semantics of the programming language is given by the transition system

(Conf ,�) where Conf ⊆ Lang ×M is the set of configurations and � ⊆ Conf × Conf is

the transition relation. We write c � c′ for (c, c′) ∈� and c �� if there is no c′ ∈ Conf

such that c� c′. (We assume standard expression evaluation semantics, and also assume

configurations consistency, that is, if (S, µ) ∈ Conf , then var(S) ⊆ var(µ)). We also use �∗

to denote the reflexive and transitive closure of �.

Finally, we assume that (
√
, µ) indicates successful termination of the program with

memory µ, and hence that for all µ ∈ M, we have (
√
, µ) ��. On the other hand, we say

that a configuration (S, µ) does not terminate, denoted by (S, µ)⊥, if the execution of S

on memory µ does not terminate (either because of an infinite execution or an abnormal

stop, such as a deadlock), that is, ¬∃µ′ : (S, µ)�∗ (
√
, µ′).

Example 2. The non-deterministic language Par is defined by

S :: = x := e | if b0 → S0 � . . . � bn → Sn fi

| S1 ; S2 | while b do S od | S1 || S2

where e is an arithmetic expression and b, b0, . . . , bn are boolean expressions.

The transition relation of Par is defined by the following rules, where memories are the

functions of Example 1 and µ(e), the evaluation of a (boolean or arithmetic) expression e

in memory µ, is defined recursively in the usual manner:

(x := e, µ)� (
√
, µ[x �⇒ µ(e)])

(S1, µ)� (S ′1, µ
′)

(S1 ; S2, µ)� (S ′1 ; S2, µ
′)

(S1, µ)� (
√
, µ′)

(S1 ; S2, µ)� (S2, µ
′)

(Sj , µ)� (S ′j , µ
′) µ(bj) holds

(if b0 → S0 � . . . � bn → Sn fi, µ)� (S ′j , µ
′)

0 � j � n
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(S, µ)� (S ′, µ′) µ(b) holds
(while b do S od, µ)� (S ′ ; while b do S od, µ′)

¬µ(b) holds
(while b do S od, µ)� (

√
, µ)

(S1, µ)� (S ′1, µ
′)

(S1 || S2, µ)� (S ′1 || S2, µ
′)

(S2, µ)� (S ′2, µ
′)

(S1 || S2, µ)� (S1 || S ′2, µ′)

(
√
|| S2, µ)� (S2, µ) (S1 ||

√
, µ)� (S1, µ)

We now state three basic assumptions, which define the scope of application of our

self-composition technique. They impose some very general restrictions, which can be

viewed as ‘health conditions’. Assumptions 1 and 3 are apparently obvious and satisfied

by most of the languages. Nonetheless, we need to make them explicit to set the ground

of our general framework. Assumption 2 rules out some behaviour where memories are

objects more complex than functions. Depending on the definition of the abstraction

function v, it may rule out some programs.

Assumption 1. Transitions preserve the set of variables of a program. Moreover, if the

part of the memory that is affected by the program is separated from the rest, transitions

do not affect the values of variables other than those appearing in the program.

Formally, for all S , S ′, µ1, µ2, and µ′, if var(S) = var(µ1) and (S, µ1⊕µ2)� (S ′, µ′), then

var(S) ⊇ var(S ′)

and

∃µ′1 : µ′ = µ′1⊕µ2 ∧ var(µ′1) = var(S).

In addition, if (S, µ1⊕µ2) � (S ′, µ′1⊕µ2), then for all µ3 such that µ1⊕µ3 is defined, we

have

(S, µ1⊕µ3)� (S ′, µ′1⊕µ3).

Note that this assumption does not prevent object creation: a new object may be

created, but it can only be (directly or indirectly) referred to through some variable in the

text of the program.

Assumption 2. Apart from its syntax, the semantics of a program depends only on the

abstract value of its own variables.

Formally, we assume that for all configurations (S, µ1) and (S, µ2) such that

∀x ∈ var(S) : v(µ1, x) = v(µ2, x)

we have for all (S ′, µ′1),

(S, µ1)�
∗ (S ′, µ′1) ⇒ ∃(S ′, µ′2) : (S, µ2)�

∗ (S ′, µ′2)
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and

∀x ∈ var(S) : v(µ′1, x) = v(µ′2, x).

Assumption 2 imposes some restrictions on memory manipulation. For example, if x

is a pointer to a list and v(µ, x) is considered to be the list represented by this pointer

(rather than its actual address value), the address value cannot affect the control flow of

a program. That is, for pointer variables x and y, program if (x=y) → S � (x�=y) → S ′ fi

does not satisfy Assumption 2.

Assumption 3. The operational semantics of the language Lang is independent of variable

names. Formally, if y /∈ var(S) and (S, µ)�∗ (S ′, µ′), then

(S[y/x], µ[y �⇒ v(µ, x)])�∗ (S ′[y/x], µ′[x �⇒ d][y �⇒ v(µ′, x)])

for some d.

This assumption allows us to change variable names without altering the program

behaviour.

The following facts follow from the above assumptions.

Fact 1 (Consequences of the assumptions).

(1) If var(S) = var(µ1) and (S, µ1⊕µ2)�∗ (S ′, µ′), there exists µ′1 such that µ′ = µ′1⊕µ2.

(2) If var(S) = var(µ1) and

(S, µ1⊕µ2)�
∗ (S ′, µ′1⊕µ2),

then

(S, µ1⊕µ3)�
∗ (S ′, µ′1⊕µ3)

for any µ3 such that var(µ1) ∩ var(µ3) = �.

(3) If var(S) = var(µ1) and (S, µ1⊕µ2)⊥, then (S, µ1⊕µ3)⊥ for any µ3.

(4) If ∀x ∈ var(S) : v(µ1, x) = v(µ2, x) and (S, µ1)⊥, then (S, µ2)⊥.

(5) If y /∈ var(S) and (S, µ)⊥, then (S[y/x], µ[y �⇒ v(µ, x)])⊥.

Items (1) and (2) follow from Assumption 1, and item (3) is a consequence of item (2).

Items (4) and (5) are consequences of Assumptions 2 and 3, respectively. It is not difficult

to verify that Par satisfies the three assumptions above and has the properties given in

Fact 1.

3. A generalisation of non-interference

Let φ : Var ⇀ Var be a partial injective function, which is intended to relate the variables

of two programs. Let dom(φ) = {x1, . . . , xn}† and let I ⊆ Vn ×Vn be a binary relation

† We assume variables can always be arranged in a particular order, which we use to arrange the set of

variables in tuples.
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on tuples of values, which is intended to determine the indistinguishability criterion. We

say that memory µ is (φ,I)-indistinguishable from µ′, denoted by µ ∼I
φ µ

′, if

〈(v(µ, x1),.., v(µ, xn)), (v(µ′, φ(x1)),.., v(µ′, φ(xn)))〉 ∈ I,

that is, if the values of variables in memory µ and the values of corresponding (according

to φ) variables in memory µ′ are related by relation I.

Example 3. Let L ⊆ Var be the set of low (or public) variables of a program. Let

idL : Var → Var be the identity function on L and be undefined otherwise. Then ∼=
idL

is the usual indistinguishability relation used to characterise non-interference. It relates

memories whose public variables agree in their values, meaning that these memories

cannot be distinguished one from each other.

However, our definition of indistinguishability is more flexible. Let H = {p} where p is

a pointer to a list, and let avrg be the function that computes the average of a list, that is,

avrg([d1, . . . , dN]) =
d1 + · · ·+ dN

N
.

Let idH : Var → Var be the identity function on H and be undefined otherwise, and let

A be the relation including pairs of list of values 〈[d1 . . . , dN], [d′1 . . . , d
′
N]〉 such that

avrg([d1, . . . , dN]) = avrg([d′1, . . . , d
′
N]).

Then ∼A
idH

cannot distinguish between memories µ and µ′ that agree on the average value

of the list to which p points, that is, that satisfy avrg(v(µ, p)) = avrg(v(µ′, p)).

At this point, function φ may be seen as redundant since it can always be encoded in

I. For instance, ∼=
idL

is equivalently defined by ∼=L

id , where id is the identity function and

=L is the set

{〈(d1, .., dm, em+1, .., en), (d1, .., dm, e
′
m+1, .., e

′
n)〉 | di, ej , e′j ∈ V},

provided L = {x1, .., xm}. The need for φ will become evident in Section 4 when security

is defined using composition and variable renaming.

The next proposition follows from the definition of ∼. It claims that the relation ∼I
φ

∼φ between memories depends only on the values of the variables included in the domain

of φ.

Proposition 1. For all µ1, µ2, µ
′′
1, µ

′′
2, I, and φ : var(µ1) → var(µ2), we have µ1 ∼I

φ µ2 if

and only if µ1⊕µ′′1 ∼I
φ µ2⊕µ′′2.

We now turn to the definitions of generalised non-interference; unless otherwise

specified, from now on we fix programs S1 and S2, functions φ,φ′ : var(S1) → var(S2),

and indistinguishability criteria I and I′, which define the relations ∼I
φ and ∼I′

φ′ .

Definition 1.

(1) S1
∼≈φ,I
φ′,I′ S2 if for all µ1, µ2, µ

′
1 ∈ M,(

µ1∼I
φ µ2 ∧ (S1, µ1)�

∗ (
√
, µ′1)

)
⇒ ∃µ′2∈M : (S2, µ2)�

∗ (
√
, µ′2) ∧ µ′1∼I′

φ′ µ
′
2.
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(2) S1 ≈φ,I
φ′,I′ S2 if for all µ1, µ2, µ

′
1 ∈ M,(

µ1∼I
φ µ2 ∧ (S1, µ1)�

∗ (
√
, µ′1)

)
⇒(

(S2, µ2)⊥ ∨ ∃µ′2∈M : (S2, µ2)�
∗ (
√
, µ′2) ∧ µ′1∼I′

φ′ µ
′
2

)
.

(3) Let I,I′ ⊆ Vn ×Vn with n = # var(S).

(a) S is termination-sensitive (TS) (I,I′)-secure if and only if S ∼≈id ,I
id ,I′ S .

(b) S is termination-insensitive (TI) (I,I′)-secure if and only if S ≈id ,I
id ,I′ S .

Informally, S1
∼≈φ,I
φ′,I′ S2 holds (in words, ‘S1 is termination sensitive and non-interfering

with S2’) if for any two input indistinguishable memories, a successful execution of S1

from one of these memories implies the existence of a successful execution of S2 from

the other memory, with both executions ending in output indistinguishable memories.

S1 ≈φ,I
φ′,I′ S2 (in words, ‘S1 is termination insensitive and non-interfering with program S2’)

is a weaker concept in the sense that S2 might diverge. Finally, a program is (TS or TI)

(I,I′)-secure if it is (TS or TI) non-interfering with itself.

Traditional non-interference is characterised in our setting by (=L,=L)-security, with =L

as defined above. It is not difficult to check that our definitions agree with those already

appearing in the literature (see, for example, Goguen and Meseguer (1982), Volpano

et al. (1996), Smith and Volpano (1998) and Joshi and Leino (2000)).

However, our definitions are more flexible than the usual formulations of non-

interference. Indeed, the latter usually require that executions from indistinguishable

memories end with indistinguishable memories with identical criteria of indistinguishabil-

ity. In contrast, we allow indistinguishability for initial memories (input indistinguishabil-

ity) to differ from indistinguishability for final memories (output indistinguishability). More

precisely, Definition 1 identifies input indistinguishability with (φ,I)-indistinguishability

and output indistinguishability with (φ′,I′)-indistinguishability.

4. Information flow using composition and renaming

Let � be an operation in Lang such that, for all S1, S2, µ1, µ2, µ
′
1, µ

′
2, with var(S1)∩var(S2) =

�, var(S1) = var(µ1), var(S2) = var(µ2). Then

(a) (S1, µ1⊕µ2)�∗ (
√
, µ′1⊕µ2) if and only if (S1 � S2, µ1⊕µ2)�∗ (S2, µ

′
1⊕µ2); and

(b) (S1, µ1⊕µ)�∗ (
√
, µ′1⊕µ) and (S2, µ

′⊕µ2)�∗ (
√
, µ′⊕µ′2), for some µ and µ′, if and only

if (S1 � S2, µ1⊕µ2)�∗ (
√
, µ′1⊕µ′2).

It is not difficult to check that sequential composition and parallel composition in the

language Par satisfy the conditions of �.

The operation � is the first of two foundations on which our result is built. Notice that

non-interference, as given by Definition 1, considers the executions of programs S1 and

S2 separately. By composing S1 � S2, properties (a) and (b) above allow us to put these

executions one after the other. Therefore, we can give another characterisation of security.
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Definition 2. Let S1, S2 be two programs such that var(S1) ∩ var(S2) = �. We define

S1
�≈
φ,I
φ′,I′ S2 (and S1

�∼
φ,I
φ′,I′ S2 for the TI case) if for all µ1, µ2, µ

′
1, var(µ1) = var(µ′1) = var(S1)

and var(µ2) = var(S2), we have(
µ1⊕µ2 ∼I

φ µ1⊕µ2 ∧ (S1 � S2, µ1⊕µ2)�
∗ (S2, µ

′
1⊕µ2)

)
⇒

(
∃µ′2 : var(µ′2) = var(S2) : (S2, µ

′
1⊕µ2)�

∗ (
√
, µ′1⊕µ′2) ∧ µ′1⊕µ′2 ∼I′

φ′ µ
′
1⊕µ′2

)
(
∨ (S2, µ

′
1⊕µ2)⊥ for the TI case

)
.

Note that this definition has the same shape as Definition 1. However, while

S1
∼≈φ,I
φ′,I′ S2

considers executions of two different programs (S1 and S2),

S1
�≈
φ,I
φ′,I′ S2

considers the execution of only one program (S1 � S2): the first part of the execution (that

is, until S2 is about to start) in the antecedent of the implication, and the continuation of

the execution until the end in the consequent.

The next theorem states that Definitions 1 and 2 are equivalent. That is, the non-

interference of two programs can be viewed as the non-interference of a single program

(namely, the composition of those two programs).

Theorem 1. Let S1 and S2 be such that var(S1)∩var(S2) = �, and let φ : var(S1) → var(S2).

Then:

(a) S1
∼≈φ,I
φ′,I′ S2 if and only if S1

�≈
φ,I
φ′,I′ S2; and

(b) S1 ≈φ,I
φ′,I′ S2 if and only if S1

�∼
φ,I
φ′,I′ S2.

Proof.

(a) Termination-sensitive case:

By Proposition 1 and the commutativity of ⊕, we conclude that µ1∼I
φ µ2 if and only if

µ1⊕µ2 ∼I
φ µ1⊕µ2.

By Fact 1 (2), we have (S1, µ1)�∗ (
√
, µ′1) if and only if

(S1, µ1⊕µ2)�
∗ (
√
, µ′1⊕µ2),

and by the definition of �, we have

(S1, µ1⊕µ2)�
∗ (
√
, µ′1⊕µ2)

if and only if

(S1 � S2, µ1⊕µ2)�
∗ (S2, µ

′
1⊕µ2).

Using similar arguments, we can conclude that

∃µ′2 : (S2, µ2)�∗ (
√
, µ′2) ∧ µ′1∼I′

φ′ µ
′
2

iff ∃µ′2 : (S2, µ
′
1⊕µ2)�∗ (

√
, µ′1⊕µ′2) ∧ µ′1⊕µ′2 ∼I′

φ′ µ
′
1⊕µ′2,

(1)

from which (a) follows.
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(b) Termination-insensitive case:

It follows by (1) and Fact 1 (3) that(
∃µ′2 : (S2, µ2)�∗ (

√
, µ′2) ∧ µ′1∼I′

φ′ µ
′
2

)
∨ (S2, µ

′
1)⊥

iff
(
∃µ′2 : (S2, µ

′
1⊕µ2)�∗ (

√
, µ′1⊕µ′2) ∧ µ′1⊕µ′2 ∼I′

φ′ µ
′
1⊕µ′2

)
∨ (S2, µ

′
1⊕µ2)⊥

The result then follows from the hypothesis equivalence shown in case (a).

Programs sharing variable names are not handled by Definition 2 (or Theorem 1).

Through variable renaming, which is the second of our foundations, conflicting variables

can be renamed to fresh names and hence the definition can be adapted to a more general

setting. For this we need to ensure that the behaviour of the renamed program is the

same (which is guaranteed by Assumption 3), and that non-interference is preserved by

renaming. This is stated in Theorem 2 below.

Before presenting Theorem 2, we prove an auxiliary lemma, which is a weak version of

the theorem in which only one variable is renamed. This lemma is used in the induction

step of the proof of Theorem 2.

Lemma 1. Let y /∈ (S2), and let [y/x] : var(S2) → V be defined by

[y/x](z) = if z �= x then z else y.

Then:

(a) S1
∼≈φ,I
φ′,I′ S2 if and only if S1

∼≈[y/x]φ,I
[y/x]φ′ ,I′ S2[y/x]

(b) S1 ≈φ,I
φ′,I′ S2 if and only if S1 ≈[y/x]φ,I

[y/x]φ′ ,I′ S2[y/x],

where S2[y/x] is program S2 with variable x renamed to y, and [y/x]φ is a shorthand for

[y/x] ◦ φ.

Proof.

(a) We consider the if and only if cases separately:

(⇒) Let µ1 ∼I
[y/x]φ µ2 and (S1, µ1)�∗ (

√
, µ′1). Note that

∀z ∈ dom(φ) : v(µ2, [y/x]φ(z)) = v(µ2[x �⇒ v(µ2, y)], φ(z)),

so µ1 ∼I
φ µ2[x �⇒ v(µ2, y)]. As a consequence, since S1

∼≈φ,I
φ′,I′ S2, there is µ′2 ∈ M

such that

(S2, µ2[x �⇒ v(µ2, y)])�
∗ (
√
, µ′2) and µ′1 ∼I′

φ′ µ
′
2. (2)

By Assumption 3, there is some d such that

(S2[y/x], µ2[x �⇒ v(µ2, y)][y �⇒ v(µ2[x �⇒ v(µ2, y)], x)])�∗

(
√
, µ′2[x �⇒ d][y �⇒ v(µ′2, x)]).

Note that since x /∈ var(S2[y/x]), we have

v(µ2[x �⇒ v(µ2, y)][y �⇒ v(µ2[x �⇒ v(µ2, y)], x)], w) = v(µ2, w) (3)

for all w ∈ var(S2[y/x]). Hence, by Assumption 2,

(S2[y/x], µ2)�∗ (
√
, µ′′2)
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for some µ′′2 such that

∀w ∈ var(S2[y/x]) : v(µ′2[x �⇒ d][y �⇒ v(µ′2, x)], w) = v(µ′′2 , w).

Note also that

∀z ∈ dom(φ′) : v(µ′2, φ
′(z)) = v(µ′′2 , [y/x]φ

′(z)).

In particular, y /∈ dom(φ′) and for z such that φ′(z) = x,

v(µ′′2 , [y/x]φ
′(z)) = v(µ′′2 , y)

= v(µ′2[x �⇒ d][y �⇒ v(µ′2, x)], y)

= v(µ′2, x).

As a consequence, and since µ′1 ∼I′

φ′ µ
′
2, we finally have µ′1 ∼I′

[y/x]φ′ µ
′′
2.

(⇐) It is clear that x/∈ var(S2[y/x]) and, for all z ∈ dom(φ), we have (recall dom(φ) =

dom([y/x]φ))

φ(z) = if (([y/x]φ)(z)=y) then x else φ(z)

(and similarly for φ′). Using the previous case, where we take S2[y/x], [y/x]φ

and [y/x]φ′ instead of S2, φ and φ′, respectively, we have

S1
∼≈[y/x]φ,I

[y/x]φ′ ,I S2[y/x]

implies

S1
∼≈φ,I
φ′,I′ S2[y/x][x/y].

Hence,

S1
∼≈φ,I
φ′,I′ S2.

(b) (⇒) For the case of TI non-interference, we take over (2) from the proof of part (a),

but for this part suppose instead that (S2, µ2[x �⇒ v(µ2, y)])⊥. By Fact 1 (5),

(S2[y/x], µ2[x �⇒ v(µ2, y)][y �⇒ v(µ2[x �⇒ v(µ2, y)], x)])⊥.

Taking into account equation (3) above, by Fact 1 (4), (S2[y/x], µ2)⊥, which,

together with the previous case, proves (⇒).

(⇐) We use the same reasoning for this as in (⇐) for (a).

Theorem 2. Let ξ : var(S2) → V be a bijective function on a set of variables V . Then:

(a) S1
∼≈φ,I
φ′,I′ S2 if and only if S1

∼≈ξ◦φ,I
ξ◦φ′ ,I′ S2[ξ]

(b) S1 ≈φ,I
φ′,I′ S2 if and only if S1 ≈ξ◦φ,I

ξ◦φ′ ,I′ S2[ξ],

where S2[ξ] is program S2 whose variables have been renamed according to function ξ.

Proof. We use induction on the number of variables x such that ξ(x) �= x.

— Case n = 0:

This sorresponds to the identity and is trivial.
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— Case n � 1:

We proceed by induction using Lemma 1.

We will only give the proof for part (a) since the proof of part (b) follows along similar

lines. Let x ∈ var(S2) and ξ be such that ξ(x) = x. Let y be a fresh variable not in

the image of ξ. Note that the number of variables z such that [y/x]ξ(z) = z is exactly

one more than those such that ξ(z) = z. Now we have

S1
∼≈[y/x]ξ◦φ,I

[y/x]ξ◦φ′ ,I′ S2[[y/x]ξ] iff S1
∼≈[y/x](ξ◦φ),I

[y/x](ξ◦φ′),I′ S2[ξ][y/x] (by calculations)

iff S1
∼≈ξ◦φ,I
ξ◦φ′ ,I′ S2[ξ] (by Lemma 1)

iff S1
∼≈φ,I
φ′,I′ S2 (by the induction hypothesis)

Putting Theorems 1 and 2 together, we have the following corollary.

Corollary 1. Let ξ : var(S) → Var and define var(S)′ = {ξ(x) | x ∈ var(S)} so that

var(S) ∩ var(S)′ = � and x 
→ ξ(x) is a bijection from var S to var(S)′. The following

statements are equivalent:

(1) S is TS (respectively, TI) (I,I′)-secure.

(2) S ∼≈ξ,I
ξ,I′ S[ξ] (respectively, S ≈ξ,I

ξ,I′ S[ξ]).

(3) S �≈
ξ,I
ξ,I′ S[ξ] (respectively, S �∼

ξ,I
ξ,I′ S[ξ]).

Corollary 1 allows us to check whether a program S is secure by analysing single

executions of the program S � S[ξ]. But this is what verification logics are used for. We

will characterise (I,I′)-security in some of these logics.

5. Deterministic programs

Simpler definitions for non-interference can be obtained if the program S under consid-

eration is deterministic. We say that a program S is deterministic if for every memory µ

and configurations c, c′1 and c′2, if (S, µ)�∗ c, c� c′1 and c� c′2, then c′1 = c′2. From here,

it should not be difficult to verify that if S is deterministic, then, for all µ, either (S, µ)⊥
or there is a unique memory µ′ such that (S, µ)�∗ (

√
, µ′).

Assuming determinism, the definition of security is simpler than Definition 2 since

we do not need to reference intermediate points in the program but instead consider

only complete executions. This allows us to check security by simply analysing the I/O

behaviour of the self-composed program S; S[ξ]. This intuition is captured in the following

theorem.

Theorem 3. Let S be a deterministic program and ξ : var(S) → Var and var(S)′ be as in

Corollary 1.
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(1) S is TS (I1,I2)-secure if and only if

∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ ∃µ′1 : (S, µ1⊕µ2)�
∗ (
√
, µ′1⊕µ2)

⇒ ∃µ′′1 , µ′′2 : var(µ′′1) = var(S) ∧ var(µ′′2) = var(S)′ :

(S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′′1⊕µ′′2) ∧ µ′′1⊕µ′′2 ∼I2

ξ µ′′1⊕µ′′2 .

(2) S is TI (I1,I2)-secure if and only if

∀µ1, µ2, µ
′
1, µ

′
2 : var(µ1) = var(µ′1) = var(S) ∧ var(µ2) = var(µ′2) = var(S)′ :(

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′1⊕µ′2)

)
⇒ µ′1⊕µ′2 ∼I2

ξ µ′1⊕µ′2.

The proof of Theorem 3 is given in Appendix A.

This theorem can be extended to programs that are deterministic only for the observed

value of the variables (and not necessarily in its internal representation). We say that a

program S is observationally deterministic if for all programs S ′, S ′1 and S ′2 and memories

µ, µ1, µ2, µ
′
1 and µ′2 with v(µ1, x) = v(µ2, x) for all x ∈ Var, if (S, µ) �∗ (S ′, µ1), (S, µ) �∗

(S ′, µ2), (S ′, µ1) � (S ′1, µ
′
1) and (S ′, µ2) � (S ′2, µ

′
2), then S ′1 = S ′2 and v(µ′1, x) = v(µ′2, x) for

all x ∈ Var. Note, in particular, that if (S, µ)� (S1, µ1) and (S, µ)� (S2, µ2), then S ′1 = S ′2
and v(µ′1, x) = v(µ′2, x) for all x ∈ Var. Moreover, it can be proved that either (S, µ)⊥ or

for all µ1, µ2 ∈ {µ′ | (S, µ)�∗ (
√
, µ′)}, we have v(µ1, x) = v(µ2, x) for every x ∈ Var.

The proof of the next theorem closely follows the proof of Theorem 3 (see Appendix A

for the proof).

Theorem 4. Let S be an observationally deterministic program and let ξ : var(S) → Var

and var(S)′ be as in Corollary 1. Then equivalences (1) and (2) in Theorem 3 hold.

The following example shows that the alternative definition given by Theorem 3 for

deterministic programs does not extend to non-deterministic programs in general.

Example 4. Recall the non-deterministic language Par. The non-deterministic program

if x = 1 → x := 2 � x = 1 → x := 1 fi,

where x is public, is TI and TS (=L,=L)-secure according to Definition 2. However, it

does not satisfy the conditions of Theorem 3 since starting from indistinguishable states

with x = 1, the self-composed program will not always terminate in states where x has

the same value.

Theorem 3 can be further enhanced for languages featuring simple functional memories

like the one defined in Example 1, and will be central in the next two sections. Note that

Theorem 3 requires that memory should be separable by the operation ⊕ (µ is separable

by ⊕ if there are µ1 and µ2 such that µ = µ1⊕µ2). Functions can always be separated

(this is not the case with more complex memories like those in Section 8). Consequently,

we have the following corollary.
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Corollary 2. Let S � S[ξ] be a deterministic program with memory as defined in Example 1.

Let ξ : var(S) → Var and var(S)′ be as in Corollary 1. Then:

(1) S is TS (I1,I2)-secure if and only if

∀µ :
(
µ ∼I1

ξ µ ∧ ∃µ′. (S, µ)�∗ (
√
, µ′)

)
⇒

(
∃µ′′. (S � S[ξ], µ)�∗ (

√
, µ′′) ∧ µ′′ ∼I2

ξ µ′′
)
.

(2) S is TI (I1,I2)-secure if and only if

∀µ, µ′ :
(
µ ∼I1

ξ µ ∧ (S � S[ξ], µ)�∗ (
√
, µ′)

)
⇒ µ′ ∼I2

ξ µ′.

6. Hoare logic

In this section we use the results of self composition to characterise (I1,I2)-security in

Hoare logic.

Let While be the subset of Par that does not contain parallel composition and limits

the if construction to be binary and deterministic:

if b then S1 else S2 fi = if b→ S1 � ¬b→ S2 fi.

Memories are the functions of Example 1.

Let P and Q be first-order predicates and S be a While program. The meaning of a

Hoare triple (Hoare 1969) {P } S {Q} is that whenever S starts to execute in a state in

which P holds, if it terminates, it does so in a state satisfying Q. An assertion {P } S {Q}
holds if it is provable with the following rules:

{P [e/x]} x := e {P }

P ′ ⇒ P {P } S {Q} Q⇒ Q′

{P ′} S {Q′}

{P ∧ b} S1 {Q} {P ∧ ¬b} S2 {Q}
{P } if b then S1 else S2 fi {Q}

{P } S1 {R} {R} S2 {Q}
{P } S1 ; S2 {Q}

{P ∧ b} S {P }
{P }while b do S od {P ∧ ¬b}

Hoare logic is sound and (relatively) complete with respect to the operational semantics

(Cook 1978). That is, for all program S and predicates P and Q, the assertion {P } S {Q}
is provable if and only if for all µ, µ′, we have µ |= P and (S, µ) �∗ (

√
, µ′) imply µ′ |= Q,

where µ |= P means that P holds whenever every program variable x appearing in P is

replaced by the value v(µ, x).

Suppose I(I) is a first-order predicate representing the indistinguishability criterion I
on the values of the program, that is,

µ |= I(I) if and only if µ ∼I
ξ µ

(
if and only if (v(µ,�x), v(µ,�x′)) ∈ I

)
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{x l = x l }
{x l + yh − yh = x l }
x l := x l + yh ;

{x l − yh = x l }
x l := x l − yh ;

{x l = x l }
{x l = x l + yh − yh }
x l := x l + yh ;

{x l = x l − yh }
x l := x l − yh

{x l = x l }

{(in = pin ) ↔ (in = pin )}
if (in = pin ) then

{in = pin }
acc := true

else
{in ≠ pin }
acc := false

fi ;
{(acc = true ) ↔ (in = pin )}
if (in = pin ) then acc := true

else acc := false fi
{(acc = true ) ↔ (acc = true )}
{acc = acc }

)b()a(

Fig. 1. Security proofs in Hoare logic

where v(µ, (x1, .., xn)) = (v(µ, x1), .., v(µ, xn)) and var(S) = {x1, .., xn}. We expect that I(I)

is definable in the assertion language embedded in Hoare logic. For instance, predicate

I(=L) for relation ∼=L

ξ (which is the renaming version of ∼=
idL

in Example 3), can be

defined by
∧
x∈L x = x′.

Proposition 2. Termination-insensitive (I1,I2)-security can be characterised in Hoare

logic as follows:

S is TI (I1,I2)-secure if and only if {I(I1)} S ; S[ξ] {I(I2)} is provable.

Proof. Note that the language above has the same semantics on memories as in

Example 1. Moreover, the language is deterministic and we take the sequential composition

to be the operator �. Therefore, the conditions of Corollary 2, which is central to this

proof, are satisfied.

S is TI (I1,I2)-secure if and only if (by Corollary 2 (2))

∀µ, µ′ :
(
µ ∼I1

ξ µ ∧ (S ; S[ξ], µ)�∗ (
√
, µ′)

)
⇒ µ′ ∼I2

ξ µ′

if and only if (by the definition of I)

∀µ, µ′ :
(
µ |= I(I1) ∧ (S ; S[ξ], µ)�∗ (

√
, µ′)

)
⇒ µ′ |= I(I2)

if and only if (by soundness and completeness, provided I is definable)

{I(I1)} S ; S[ξ] {I(I2)}

is provable

Example 5. Let xl and yh be public and confidential variables, respectively, in the program

xl := xl + yh ; xl := xl − yh. We show that it is non-interfering. Indistinguishability in this

case is characterised by the predicate I(={xl}) ≡ (xl = x′l). The proof is given in Figure 1(a).
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The generality of our definition is useful for providing a characterisation of some

forms of controlled declassification. Declassification allows us to leak some confidential

information without being too revealing. A semantic characterisation of this kind of

property has been given in Sabelfeld and Myers (2004), where it was called delimited

release. A typical example is a program S that reports the average salary of the employees

of a company without revealing any other information that may give any further

indications of particular salaries (which is confidential information) – see Example 8.

Another typical example is given by access control procedures, as in the following

example.

Example 6. PIN access control provides an example involving declassification. In the

program

if (in = pin) then acc := true else acc := false fi

the variable pin , which stores the actual PIN number, is supposed to be confidential,

whereas in , containing the attempted number, is a public input variable and acc, conceding

or preventing access to the system, is a public output variable. The declassified information

should only reveal whether the input number (in) agrees with the PIN number (pin) or

not, and such information is revealed by granting or preventing access (indicated in acc).

So we require the program to be (I,={acc})-secure, where I is such that ∼I
id if and only if

(µ(in) = µ(pin)) ⇔ (µ′(in) = µ′(pin)).

Hence,

I(I) ≡ ((in = pin) ↔ (in ′ = pin ′))

and

I(={acc}) ≡ (acc = acc′).

The proof is outlined in Figure 1(b).

7. Weakest precondition

Partial correctness is not enough to formulate a characterisation of termination-sensitive

(I,I′)-security for deterministic programs, where one needs to ensure that if S terminates

for some memory µ1, then S[ξ] terminates for an indistinguishable memory µ2 (Theorem 3).

However, by using total correctness specifications and self-composition, it is possible to

specify TS security using the weakest conservative precondition (wp) (Dijkstra 1997).

Given two predicates P ,Q and a program S , the predicate transformer wp is sound and

complete in the following sense:

P ⇒ wp(S, Q) iff ∀µ : µ |= P ⇒ ∃µ′ : (S, µ)�∗ (
√
, µ′) ∧ µ′ |= Q. (4)

In particular,

µ |= wp(S, true) iff ∃µ′ : (S, µ)�∗ (
√
, µ′). (5)

Therefore, wp(S, true) characterises the set of memories in which the execution of S

terminates.
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The equations for the calculus of wp(S, Q) are

wp(x := e, Q) = Q[e/x]

wp(if b then S1 else S2 fi, Q) = b⇒ wp(S1, Q) ∧ ¬b⇒ wp(S2, Q)

wp(S1 ; S2, Q) = wp(S1, wp(S2, Q))

wp(while b do S od, Q) = ∃k : k � 0 : Hk(Q)

where

H0(Q) = ¬b ∧ Q
Hk+1(Q) = (b ∧ wp(S,Hk(Q))) ∨H0(Q).

Proposition 3. Termination-sensitive (I1,I2)-security can be characterised using wp as

follows:

S is TS (I1,I2)-secure if and only if I(I1) ∧ wp(S, true) ⇒ wp(S ; S[ξ], I(I2)).

Proof. By Corollary 2 (1), S is TS (I1,I2)-secure if and only if

∀µ :
(

( µ ∼I1

ξ µ ∧ ∃µ′ : (S, µ)�∗ (
√
, µ′) )

⇒ ( ∃µ′′ : (S; S[ξ], µ)�∗ (
√
, µ′′) ∧ µ′′ ∼I2

ξ µ′′ )
)

if and only if (by the definition of I)

∀µ :
(

( µ |= I(I1) ∧ ∃µ′ : (S, µ)�∗ (
√
, µ′) )

⇒ ( ∃µ′′ : (S; S[ξ], µ)�∗ (
√
, µ′′) ∧ µ′′ |= I(I2) )

)
if and only if (by (5))

∀µ :
(

( µ |= I(I1) ∧ µ |= wp(S, true) )

⇒ ( ∃µ′′ : (S; S[ξ]), µ)�∗ (
√
, µ′′) ∧ µ′′ |= I(I2) )

)
if and only if (by (4))

( I(I1) ∧ wp(S, true) ) ⇒ wp(S; S[ξ], I(I2)).

The following example shows a program that is termination-insensitive secure but

not termination-sensitive secure. Thus, the program can be proved secure using the

characterisation of Hoare logic with partial correctness, but the verification fails when

using the wp characterisation.



G. Barthe, P. R. D’Argenio and T. Rezk 1226

Example 7. Consider the following program S where y is a high variable:

while y < 3 do

if y < 1 then

y := y − 1

else

y := y + 1

fi

od

Since there are no low variables in S , indistinguishability criteria are trivially true.

Using equations for wp, we calculate wp(S, true):

∃k : k � 0 : y � 3 ∨ (y � 3 ∧ y � 1 ∧ y � 3− k),

which is equivalent to y � 1.

If we calculate wp(S ; S[y′/y], true), we obtain y � 1 ∧ y′ � 1, which is not implied by

wp(S, true), that is, y � 1. Hence, program S (which is trivially TI secure since there are

no low variables) is not TS secure.

Hoare logic with total correctness and wp are related by P ⇒ wp(S, Q) if and only

if [P ] S [Q ], where [P ] S [Q ] denotes the Hoare triple for total correctness. Following

Proposition 3, a first attempt to characterise (I1,I2)-security using Hoare logic with total

correctness yields

[ I(I1) ∧ wp(S, true) ] S ; S[ξ] [ I(I2) ] .

However, this characterisation is impure in the sense that it mixes the calculus of

weakest precondition and Hoare logic triples for total correctness. Since wp(S, true) is the

weakest predicate P such that [P ] S [ true ], it turns out that the characterisation using

Hoare logic with total correctness is not only impossible in its pure form, but also requires

a second-order quantification. In fact, the characterisation should be written as follows:

∀P : [P ] S [ true ] : [ I(I1) ∧ P ] S ; S[ξ] [ I(I2) ] .

This justifies our choice of wp rather than Hoare logic for total correctness to characterise

(I1,I2)-security.

8. Separation logic

Separation logic is an extension of Hoare logic for reasoning about shared mutable data

structures (Ishtiaq and O’Hearn 2001; Reynolds 2002). Whilep extends the While language

with the following commands:

S :: = · · · | x := e.i | x.i := e | x := cons(e1, e2) | dispose(e) (6)

where i ∈ {1, 2} and e is a pure expression (not containing a dot or cons). The command

x := cons(e1, e2) creates a cell in the heap where the tuple (e1, e2) is stored and allows x to

point to that cell, and dispose(e) deallocates a cell from the heap. Furthermore, e.i returns

the value of the ith position of the tuple pointed to by e. (Binary tuples are sufficient

for our purposes, though arbitrary n-tuples appear in the literature and could also be
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considered here.) So, x := e.i and x.i := e, respectively, allow us to read and update the

heap. Values in Whilep may be integers or locations (including nil).

A memory contains two components: a store, mapping variables into values, and a heap,

mapping locations (or addresses) into values. Thus, if V = �∪Loc, then S = Var →V is

the set of stores and H = Loc− {nil} → (V× Loc) is the set of heaps. As a consequence,

variables can have type � or type Loc. Finally, M = S×H.

Separation logic requires additional predicates to make assertions about pointers. In

addition to formulas of the classical predicate calculus, the logic has the following forms

of assertions:

— e 
→ (e1, e2), which holds in a singleton heap with location satisfying e and the cell

values satisfying e1 and e2, respectively;

— emp, which holds if the heap is empty; and

— P ∗ Q, which is called separating conjunction, holds if the heap can be split into two

parts, one satisfying P and the other Q.

There exists a calculus for these operations, which also includes the separating implication

P−∗Q – see Ishtiaq and O’Hearn (2001) and Reynolds (2000). The meaning of an assertion

depends on both the store and the heap:

(s, h) |= emp iff dom(h) = �

(s, h) |= e 
→ (e1, e2) iff dom(h) = {s(e)} and h(s(e)) = (s(e1), s(e2))

(s, h) |= P ∗ Q iff ∃h0, h1 : h0⊕h1 = h, (s, h0) |= P and (s, h1) |= Q

where s(e) is the standard meaning of an expression given the store s. Separation logic

extends Hoare logic with rules to handle pointers. The so-called frame rule, which allows

us to extend local specification, is given by

{P } S {Q}
{P ∗ R} S {Q ∗ R}

where no variable occurring free in R is modified by S . The (local version) rules for heap

manipulation commands are as follows (we omit the symmetric rules):

— Let e 
→ ( , e2) abbreviate ‘∃e′ : e 
→ (e′, e2) and variables occurring in e′ are not free in

e or e2’. Then

{e 
→ ( , e2)} e.1 := e1 {e 
→ (e1, e2)} .
— If x does not occur in e1 or in e2, then

{emp} x := cons(e1, e2) {x 
→ (e1, e2)} .

— If x, x′ and x′′ are different and x does not occur in either e or e2, then

{x=x′ ∧ (e 
→ (x′′, e2))} x := e.1 {x=x′′ ∧ (e 
→ (x′′, e2))} .

— Finally,

{∃e1, e2 : e 
→ (e1, e2)} dispose(e) {emp} .

Using separation logic we can define inductive predicates that refer to structures in the

heap (see Reynolds (2000) and Ishtiaq and O’Hearn (2001)). For simplicity, we will only
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consider the predicate list, which is defined by

list.[ ].p = (p = nil) ∧ emp

list.(x:xs).p = (∃r : (p 
→ (x, r)) ∗ list.xs.r).

For instance, the predicate list.[x0, . . . , xn].p is valid only in the heap represented below:

p �� x0 • �� x1 • �� · · · �� xn •

As we have already mentioned, a memory is a tuple containing a store and a heap. We

need to define var, v and ⊕ in this domain. Therefore, for all s, s1, s2 ∈ S, h, h1, h2 ∈ H
and x ∈ Var, we define var(s, h) = dom(s) by

v((s, h), x) =

{
s(x) if s(x) ∈ �
v(h, s(x)) if s(x) ∈ Loc

where v(h, l) returns the list pointed to by l, that is,

v(h, l) = if l=nil then [ ] else fst(h(l)):v(h−{(l, h(l))}, snd(h(l)))

and

(s1, h1)⊕(s2, h2) = (s1⊕s2, h1⊕h2) (7)

is defined only if all locations reachable from store si are defined in the heap hi, i = 1, 2.

Formally, a location l′ is reached from a location l in a heap h if

l′ ∈ reach(l, h) = {(snd ◦h)k(l) | k � 0}.

Hence, the set of all locations reachable from store s in h is defined by

reach(s, h) =
⋃
{reach(l, h) | l ∈ ran(s) ∩ Loc− {nil}}.

So (7) is defined if reach(si, hi) ⊆ dom(hi) for all i = 1, 2. If this restriction does not hold,

then, for x ∈ var(s1, h1), we have v((s1⊕s2, h1⊕h2), x) may be defined when v((s1, h1), x) is

not (and hence not satisfying the requirement of ⊕ in Section 2).

Now that v and v are defined, note that

(s, h) |= list.xs.x ∗ true iff v(h, s(x)) = xs iff v((s, h), x) = xs. (8)

Let {x1, .., xn} be all the variables in S that have type Loc (the pointer variables) and

{y1, .., ym} be all the variables in S of type � (the integer variables). Let �x = (x1, .., xn) and

�x′ = (x′1, .., x
′
n), and similarly for �y and �y′. We use the denotations �xs = (xs1, .., xsn)

and �xs′ = (xs′1, .., xs
′
n). We fix this notation for the rest of this section.

Let I be the indistinguishability criterion. Notice that, in this setting, I deals with

values in � and lists, which are the interpretation of pointer variables. Assuming there

are m integer variables and n pointer variables, we have I ⊆ (�m ×�n)× (�m ×�n) with

� being the set of all possible lists.

Let Isl(I) be the predicate

∃�xs, �xs′ :
( (∧

1�i�n(list.xsi.xi ∗ true)
)
∗

(∧
1�i�n(list.xs

′
i.x

′
i ∗ true)

) )
∧ Iv(�xs, �xs

′,I)
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where we assume the existence of Iv such that

µ |= Iv(�ds, �ds′,I) iff (〈v(µ,�y), �ds〉, 〈v(µ,�y′), �ds′〉) ∈ I

where v(µ,�y) is defined as in Section 6, and �ds and �ds′ are actual list values. Note that the

following holds:

µ |= Iv(v(µ,�x), v(µ,�x′),I) iff (〈v(µ,�y), v(µ,�x)〉, 〈v(µ,�y′), v(µ,�x′)〉) ∈ I
iff µ∼I

ξ µ.

However, µ needs to be separable so that we are in the setting of Theorem 4. That is why

we also require that

µ |= ∃�xs, �xs′ :
( (∧

1�i�n(list.xsi.xi ∗ true)
)
∗

(∧
1�i�n(list.xs

′
i.x

′
i ∗ true)

) )
.

Therefore, Isl(I) has two parts: the first part states the separation of the heap identifying

the list values represented by the pointer variables, and the second states the proper

indistinguishability of the values (including also the values of the integer variables).

Separation logic is (relatively) complete for the language we are using (Ishtiaq and

O’Hearn 2001). As a consequence, security in separation logic can be completely charac-

terised by the following proposition.

Proposition 4. S is TI (I1,I2)-secure if and only if {Isl(I1)} S ; S[ξ] {Isl(I2)} is provable.

Before continuing with the proof we state the following property.

Property 1. Every Whilep program is observationally deterministic.

Notice that, even if we assume that the heap allocator is non-deterministic (the heap

allocator is used for the semantics of cons to create a fresh address in the heap),

the semantics of the Whilep language is still deterministic in the sense that the same

program with the same inputs produces the same outputs. This is due to the fact that the

language disallows comparisons between addresses in the heap (tests on pointer values

are disallowed).

Notice that if tests on pointers were allowed (that is, Property 1 would not be valid),

new leaks can arise throughout address values. Consider, for example, the program

pl := cons(1, nil) ; ql := cons(1, nil) ; if pl < ql then xl := 1 else xl := 2 fi

with pl , ql , xl being public variables. Assume that the allocator depends on secret

information being allocated before this public command. Then this program is insecure,

since at the end of the program, depending on the location assigned by the allocator to

pl and ql , the value of xl will be 0 or 1, revealing whether secret information has been

allocated before.

Property 1 follows by structural induction using the operational rules defined in Ishtiaq

and O’Hearn (2001). Using the previous observations, we can now finally proceed to prove

the correctness and completeness of the characterisation in Separation Logic.
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Proof. We first prove that Isl(I) characterises indistinguishability in a separable memory,

that is, a memory µ such that ∃µ1, µ2 : µ = µ1⊕µ2 with var(µ1) = var(S) and var(µ2) =

var(S)′. First, we observe that v(h, l) is defined if and only if reach(l, h) ⊆ dom(h).

Let v(h1, s(�x)) = (v(h1, s(x1)), .., v(h1, s(xn))), and similarly for v(h2, s(�x
′)). As a con-

sequence, if dom(s) = var(S) ∪ var(S)′, then

∃h1, h2 : h = h1⊕h2 : v(h1, s(�x)) and v(h2, s(�x
′)) are defined

if and only if (since s is a function with dom(s) = var(S) ∪ var(S)′)

∃s1, s2, h1, h2 : h = h1⊕h2 ∧ s = s1⊕s2
∧ dom(s1) = var(S) ∧ dom(s2) = var(S)′

∧ v(h1, s(�x)) and v(h2, s(�x
′)) are defined

if and only if (from the observation above)

∃s1, s2, h1, h2 : h = h1⊕h2 ∧ s = s1⊕s2
∧ dom(s1) = var(S) ∧ dom(s2) = var(S)′

∧ reach(si, hi) ⊆ dom(hi) for i ∈ {1, 2}

if and only if (by the definition of ⊕ and var(si, hi) = dom(si))

∃s1, s2, h1, h2 : (s, h) = (s1, h1)⊕(s2, h2)

∧ var(s1, h1) = var(S) (9)

∧ var(s2, h2) = var(S)′.

We now prove the correctness of Isl(I). We have

(s, h) |= Isl(I)

if and only if (by unfolding Isl(I))

(s, h) |= ∃�ds, �ds
′
:

( ∧
1�i�n

(list.dsi.xi ∗ true)

)
∗

( ∧
1�i�n

list.ds′i.x
′
i ∗ true)

)

∧ Iv(�xs, �xs
′,I)

if and only if (by semantics (equation (8)))

∃�ds, �ds
′
: ∃h1, h2 : h = h1⊕h2 :

(∀i : 1 � i � n : dsi = v(h1, s(xi)) ∧ ds′i = v(h2, s(x
′
i)))

∧ (s, h) |= Iv(�ds, �ds
′
,I)

if and only if (by the definition of Iv and equality on vectors)

∃�ds, �ds
′
: ∃h1, h2 : h = h1⊕h2 : �ds = v((s, h1),�x) ∧ �ds′ = v((s, h′2),�x

′)

∧ (〈v(µ,�y), �ds〉, 〈v(µ,�y′), �ds
′
〉) ∈ I



Secure information flow by self-composition 1231

if and only if (since v(h1, s(xi))=v((s, h), xi)=dsi and v(h2, s(x
′
i))=v((s, h), x′i) = ds′i, for

1 � i � n)

∃�ds, �ds
′
: ∃h1, h2 : h = h1⊕h2 : �ds = v((s, h1),�x) ∧ �ds′ = v((s, h′2),�x

′)

∧ (〈v(µ,�y), v(µ,�x)〉, 〈v(µ,�y′), v(µ,�x′)〉) ∈ I

if and only if (since ∃v : f(z) = v if and only if f(z) is defined, and the definition of ∼I
ξ )

∃h1, h2 : h = h1⊕h2 : v(h1, s(�x)) and v(h2, s(�x
′)) are defined ∧ (s, h) ∼I

ξ (s, h)

if and only if (by (9))

∃s1, s2, h1, h2 : (s, h) = (s1, h1)⊕(s2, h2)

∧ var(s1, h1) = var(S) ∧ var(s2, h2) = var(S)′ (10)

∧ (s, h) ∼I
ξ (s, h)

Now S is TI (I1,I2)-secure

if and only if (by Property 1 and Theorem 4)

∀µ1, µ2, µ
′
1, µ

′
2 : var(µ1) = var(µ′1) = var(S) ∧ var(µ2) = var(µ′2) = var(S)′ :(

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S; S[ξ], µ1⊕µ2)�
∗ (
√
, µ′1⊕µ′2)

)
⇒ µ′1⊕µ′2 ∼I2

ξ µ′1⊕µ′2
if and only if (logic)

∀µ, µ′ :
(
∃µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ ∧ µ = µ1⊕µ2

)
∧(

∃µ′1, µ′2 : var(µ′1) = var(S) ∧ var(µ′2) = var(S)′ ∧ µ′ = µ′1⊕µ′2
)

:(
µ ∼I1

ξ µ ∧ (S; S[ξ], µ)�∗ (
√
, µ′)

)
⇒ µ′ ∼I2

ξ µ′

if and only if (by logic and (10))

∀µ, µ′ :
(
µ |= Isl(I1) ∧ (S; S[ξ], µ)�∗ (

√
, µ′)

)
⇒ µ′ |= Isl(I2)

if and only if (since Separation Logic is sound and complete)

{Isl(I1)} S ; S[ξ] {Isl(I2)}

is provable

Example 8. The following program receives a list lsalaries with employees salaries and

returns in al the average of the salaries. We use projections .salary and .next as syntactic

sugar for projections .1 and .2 on lists.

p := lsalaries ; s := 0 ; n := 0 ;

while p �= nil do

n := n+1 ; saux := p.salary ; s := s+ saux ;

paux := p.next ; p := paux ;

od

al := s/n

The variables saux and paux are specifically included to meet the syntax restrictions imposed

on the language. We call this program AV SAL (for ‘AVerage SALary’).
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The security requirement is to reveal only the average of the employee salaries without

revealing any information about individual salaries. In this sense, the only public variable

in AV SAL is al , which is intended to store the average salary resulting from the calculation.

If A is defined as in Example 3 (except that the length of the list of salaries is not fixed as

in Example 3), we expect AV SAL to be (A,={al})-secure. Thus, the precondition Isl(A)

and postcondition Isl(={al}) predicates are

∃ps, ps′ : list.ps.lsalaries ∗ list.ps′.lsalaries′ ∧
∑

ps

|ps| =
∑

ps′

|ps′ |

and

∃ps, ps′ : list.ps.lsalaries ∗ list.ps′.lsalaries′ ∧ al = a′l ,

respectively, where we have used the notation |ps| for the length of list ps, and
∑
ps for

the sum of all numbers in ps with
∑

[ ] = 0. We assume that the heap contains exactly

the lists pointed to by lsalaries and lsalaries′, so we can omit ‘ ∗ true’ in these definitions.

The proof of {Isl(A)}AV SAL ; AV SAL[ξ]
{
Isl(={al})

}
is not too difficult to work out

(and can be found in Appendix B).

The Relational Separation Logic (Yang 2007) is closely related to Separation Logic.

Relational separation logic is a logic to specify relations between two pointer programs

and prove their specifications. Note that TS-(I1,I2)-security can also be expressed using

this logic. As relational separation logic deals simultaneously with two programs in tuples

of the form

{P } S
S ′
{Q},

there is no need to use self-composition since this ‘quadruple’ can hold both the program

and its renamed copy separately.

9. Temporal logics

Computation Tree Logic (CTL for short) (Clarke et al. 1986) is a temporal logic that

extends propositional logic with modalities to express properties on the branching structure

of a non-deterministic execution. That is, CTL temporal operators allow us to quantify

over execution paths (that is, maximal transition sequences leaving a particular state).

Apart from the usual propositional operations (atomic propositions, ¬, ∨, ∧, →,. . . ), CTL

provides (unary) temporal operators EF, AF, EG and AG. Formula EFφ states that there

exists an execution path that leads to a future state in which φ holds, while AFφ states

that all execution paths lead to a future state in which φ holds. Dually, EGφ states that

there exists an execution path in which φ globally holds (that is, it holds in every state

along this execution), and AGφ says that for all paths, φ holds globally. CTL includes

other (more expressive) operators, which we omit in this discussion.

Formally, a transition system (Conf ,�) is extended with a function Prop that assigns

a set of atomic propositions to each configuration in Conf , so Prop(c) is the set of all

atomic propositions valid in c. An execution is a maximal (finite or infinite) sequence of

configurations ρ = c0c1c2 . . . such that ci � ci+1, and if it ends in a configuration cn, then
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cn ��. For i � 0, let ρi = ci be the ith state in ρ (if ρ is finite, i + 1 must not exceed ρ’s

length).

Let c |= φ denote the fact that the CTL formula φ holds in configuration c. The

semantics of CTL is defined by

c |= EFφ iff ∃ρ : ρ0 = c : ∃i : ρi |= φ

c |= AFφ iff ∀ρ : ρ0 = c : ∃i : ρi |= φ.

AG and EG are the duals of EF and AF, respectively, that is, AGφ ≡ ¬EF¬φ and

EGφ ≡ ¬AF¬φ. For an atomic proposition p, we have c |= p if and only if p ∈ Prop(c).

The semantics of the propositional operators ¬, ∧, ∨ and → are as usual (for example,

c |= φ ∧ ψ if and only if c |= φ and c |= ψ).

In this section, we impose an extra requirement on the composition S1 � S2, which

allows us to identify syntactically the moment of the execution at which S1 has just

finished executing but S2 has not yet started:

(c) (S1 � S2, µ)�∗ (S2, µ
′) implies (S1, µ)�∗ (

√
, µ′).

Though this requirement is not strictly necessary, it helps us keep the CTL formulas that

characterise security simple.

Let end be the atomic proposition that indicates that the execution reaches a successfully

terminating state, that is, end ∈ Prop(S, µ) if and only if S =
√

. Let mid indicate that

program S[ξ] is about to be executed, that is, mid ∈ Prop(S ′, µ) if and only if S ′ = S[ξ].

Let Ind[I] be an atomic proposition indicating indistinguishability in a state. Thus

Ind[I] ∈ Prop(S, µ) if and only if µ ∼I
ξ µ. We use S |= Φ to denote ∀µ : (S, µ) |= Φ.

For simplicity, we consider simple memories as in Example 1 (more complex states are

possible, but we would need to introduce additional atomic propositions to characterise

separable memories like we did in Section 8.)

In the following we give characterisations of non-interference in CTL.

Proposition 5. A program S is TS (I1,I2)-secure if and only if S � S[ξ] satisfies

Ind[I1] → AG(mid → EF(end ∧ Ind[I2])). (11)

Property (11) states that ‘whenever the initial state is indistinguishable, every time S[ξ]

is reached (and hence S terminates), there is an execution that leads to a terminating

indistinguishable state’. The CTL characterisation of TS security given by Proposition 5

can be proved using Corollary 1 (see Appendix C).

Requirement (c) is necessary so that formula (11) is not confused by the satisfaction of

mid at several states along a single execution. For instance, this confusion appears in the

case of program SW , defined below, if it is self-composed using sequential composition

alone:

while x < 2 do

if � x = 0 → x := 2

� true → x := 1 fi

od
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Note that, for instance,

(SW ; SW [ξ], [x
→0, x′ 
→0])�∗ (SW [ξ], [x
→2, x′ 
→1])

with

(SW [ξ], [x
→2, x′ 
→1]) |= mid,

but configuration (SW [ξ], [x
→2, x′ 
→1]) has already executed program SW for a while.

This contradicts the spirit of proposition mid. To avoid this situation, the composition

SW � SW [ξ] may be defined using, for example, an intermediate skip instruction (or a

trivial assignment): SW ; skip; SW [ξ]. Then mid is defined to hold only in configurations

of the form (skip; SW [ξ], µ) for some memory µ.

For the termination-insensitive case, first note that a program does not terminate if no

execution reaches a terminating state. That is, ¬∃µ′ : (S, µ) �∗ (
√
, µ′), or, equivalently,

∀S ′, µ′ : (S, µ) �∗ (S ′, µ′) : S ′ �=
√

. Therefore, program S does not terminate in µ if and

only if (S, µ) |= AG¬end. The TI security characterisation in CTL is obtained from (11)

by allowing non-termination as follows.

Proposition 6. A program S is TI (I1,I2)-secure if and only if S � S[ξ] satisfies

Ind[I1] → AG(mid → ((AG¬end) ∨ EF(end ∧ Ind[I2]))). (12)

Property (12) says that ‘if the initial state is indistinguishable then, every time S[ξ] is

reached, the program does not terminate or there is an execution that leads to a terminating

indistinguishable state’. The proof of Proposition 6 is similar to that of Proposition 5.

Example 9. Let yh be a confidential variable in the following programs (which are

borrowed from Joshi and Leino (2000)):

(a)

if � yh=0 →
yh := yh

� true →
while true do yh := 0 od

fi

(b)

if � yh=0 →
while true do yh := 0 od

� true →
yh := yh

fi

We can check whether they are non-interfering (Smith and Volpano 1998; Joshi and

Leino 2000), that is, whether they are (=L,=L)-secure. We use CTL, and for this we set

Ind[=�] ≡ true. The automaton of the (self-composed) programs (a) and (b) are shown

in Figure 2. In the picture, variables can only take the value 0 or 1. Also, states are

represented by tuples (d, d′) containing the values of yh and y′h, respectively. Labels mid

and end next to a state indicate that they hold in this state. Initial states are identified by

a small incoming arrow.

Observe that both programs satisfy the TI formula

true → AG(mid → ((AG¬end) ∨ EF(end ∧ true))).
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(a)
(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0) end

mid

(0, 1)

(0, 1) (0, 1)

(0, 0)

mid

(1, 0)

(0, 0)

(1, 1)

(0, 1)

(b)

(0, 1)

(0, 1)

(0, 1)

(0, 1) end

mid

(1, 1)

(1, 1)

(1, 1) end

mid

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0) end

mid

(1, 0)

(1, 0)

(1, 0) (1, 0) end

mid

Fig. 2. Automata for the programs of Example 9

As observed in Joshi and Leino (2000), program (a) does leak information: if it terminates,

yh must be equal to 0 at the beginning of the program. The TS formula

true → AG(mid → EF(true ∧ end))

detects this leakage. Notice that the second automaton from the left has an execution that

completes its ‘first phase’ but never terminates. However, the formula is valid in program

(b).

Linear Temporal Logic characterisation of security.

A similar characterisation can be given for Linear Temporal Logic (LTL) (Manna and

Pnueli 1992) but limited to deterministic programs. Like CTL, LTL extends propositional

logic with modal operations. However, these modalities refer only to properties of single

executions, disregarding path quantification. LTL provides (unary) temporal operators F

and G. Fφ holds in a program execution if φ holds in the future, that is, in some suffix of

this execution. Gφ holds in a program execution if φ holds globally, that is, in all suffixes

of this execution.

In a deterministic setting, the semantics of F and G can be characterised in terms of

reachability:

c |= Fφ if and only if (∃c′ : c�∗ c′ : c′ |= φ)

and

c |= Gφ if and only if (∀c′ : c�∗ c′ : c′ |= φ).

Using Corollary 2, TS and TI (I1,I2)-security can be characterised in LTL by the

formulas

Ind[I1] → ((F mid) → F(end ∧ Ind[I2]))

and

Ind[I1] → G(end → Ind[I2]),

respectively.
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end

(0, 0) (0, 1) (1, 0)

(1, 0) (1, 1)

(1, 1)

(1, 1)

mid mid

Fig. 3. Automata for program of Example 10

It is known that CTL and LTL are incomparable in expressiveness: AG(φ → EFψ) is

a typical CTL formula that cannot be expressed in LTL; it can be shown that this is

also true for AG(φ→ (AGψ ∨EFψ)). These formulas occur as non-trivial subformulas of

the CTL characterisations of security. As a consequence, security in a non-deterministic

setting cannot be characterised using LTL (at least not using our technique).

Example 10. Let yh be a confidential variable in the program while yh=0 do yh := 0 od.

We will check non-interference, that is, (=L,=L)-security. We have Ind(=�) ≡ true because

there are no low variables. Figure 3 depicts the automaton for

while yh=0 do yh := 0 od; while y′h=0 do y′h := 0 od

where variables only take the values 0 or 1. As before, a state is represented by a

tuple (d, d′) containing the values of yh and y′h, respectively, and the validity of mid

and end is shown next to the state. Note that while the TI formula holds (in fact,

true → G(end → true) ≡ true), the TS formula true → ((F mid) → (F(end ∧ true)), does

not hold if yh=1 and y′h=0 (third automaton from the left).

Termination

Example 9 anticipates certain subtleties arising from termination. It has been argued that

program (b) still leaks information (Joshi and Leino 2000). A sharp adversary that can

observe possibilistic non-termination may detect that a possible execution of the same

instance of a program (that is, running with the same starting memory) stalls indefinitely.

Such an adversary can observe a difference between program (b) under yh = 0 (which

sometimes terminates, but sometimes does not) or under yh = 1 (which always terminates).

To this extent, our characterisation of TS (I1,I2)-security fails.

So far, we have considered strict non-termination: (S, µ)⊥ denotes the fact that S

does not terminate in µ. A notion of possibilistic non-termination can also be given:

let (S, µ)↗ denote the fact that there is an execution of S from memory µ that does

not terminate. That is, (S, µ)↗ if and only if there exists ρ such that (S, µ)=ρ0 and

∀i : i � 0 : ¬∃µ′ : ρi=(
√
, µ′).

From Definition 1, S is (TS) (I1,I2)-secure if for all µ1, µ2 such that µ1 ∼I1

id µ2,

(0) ∀µ′1 : (S, µ1)�∗ (
√
, µ′1) ⇒ (∃µ′2 : (S, µ2)�∗ (

√
, µ′2) ∧ µ′1 ∼

I2
id µ′2).

In addition to this, one of the following termination conditions may also be required:

(i) (S, µ1)⊥ ⇒ (S, µ2)⊥.

(ii) (S, µ1)⊥ ⇒ (S, µ2)↗.



Secure information flow by self-composition 1237

(iii) (S, µ1)↗⇒ (S, µ2)⊥.

(iv) (S, µ1)↗⇒ (S, µ2)↗.

Since ¬(S, µ)⊥ if and only if ∃µ′ : (S, µ)�∗ (
√
, µ′), and provided I1 is symmetric, (i) can

be deduced from (0). Since (0) implies (i), and (S, µ)⊥ implies (S, µ)↗, it follows that (ii)

is also redundant.

Condition (iii) states that if a program may not terminate then it must not terminate

in any indistinguishable state. As a consequence, it considers that any program that

sometimes terminates and sometimes does not is insecure. In particular, program (b) in

Example 9 is insecure under this condition. But so is

if � true → while true do h := h od � true → h := h fi, (13)

which evidently does not reveal any information assuming an scheduler that makes

non-deterministic choices without accessing high information.

Condition (iv) states that a program that may not terminate in a given state should

be able to reach a non-termination situation in any indistinguishable state. Provided I1

is symmetric, this also means that a secure program that surely terminates in a state,

surely terminates in any indistinguishable state. This definition rules out Example 9(b) as

insecure, but considers (13) to be secure.

The following CTL formulas characterise these restrictions:

(iii) Ind[I1] →
(

(EG¬mid) → AG¬end
)

(iv) Ind[I1] →
(

(EG¬mid) → AG(mid → EG¬end)
)

(ivs) Ind[I1] →
(

(AFmid) → AFend
)

where (ivs) is the restriction of (iv) to the case in which I1 is symmetric. Note that (iii)

is not satisfied in any of the automata of Figure 2(b), (iv) is not satisfied by the second

automaton from the left, and (ivs) is not satisfied by the third.

10. Related work

Type-based analyses are by far the most common method used for enforcing information

flow policies of programs – see, for example, Sabelfeld and Myers (2003). However,

there is a growing body of work that pursues similar goals to ours, namely, enforcing

non-interference using logical methods.

Work using self-composition

Our work was inspired by earlier results in Joshi and Leino (2000), which provide a

characterisation of non-interference using weakest precondition calculi. Their charac-

terisation, like ours, can be applied to a variety of programming constructs, including

non-deterministic constructs, and can handle termination-sensitive non-interference. Their

use of cylinders means they do not need to resort to self-composition; on the other hand,

their approach is limited to weakest precondition calculi.

The idea of self-composition also appears in Darvas et al. (2005), which suggests that

dynamic logic can be used to verify non-interference policies (termination-sensitive and
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termination-insensitive, and modulo declassification) for imperative programs. Their work

shares many motivations with ours, but they focus on a specific programming language

and program logic; also, they do not discuss completeness issues.

The idea of self-composition has been explored further in a series of recent papers.

For example, Terauchi and Aiken (2005) used this idea to formulate a notion of relaxed

non-interference. They also propose a type-directed transformation as a solution for some

safety analysis tools that try to solve problems semantically, and whose analysis will

eventually not terminate in the presence of certain predicates, for example, predicates

including complex arithmetic. In a nutshell, the type-directed transformation of programs

does not self-compose branching statements depending on public variables, and makes a

sort of copy propagation optimisation for self-composed assignments with low expressions

to variables. For example, if the program

if (x > z) then x := z else x := y fi,

has public variables x and z and confidential variable y, then the program is transformed

into

if (x > z) then x := z ; x′ := z′ else x := y ; x′ := y′ fi.

In addition, Terauchi and Aiken introduce the class of 2-safety properties, which can

be reduced to safety properties by composing the program with itself, and then show

that non-interference is an instance of a 2-safety property. More recently, Clarkson and

Schneider (2008) generalised this work to consider hyperproperties, which cover both

liveness and safety, and generalise 2-safety to n-safety.

Moving closer to realistic programming languages, Jacobs and Warnier (2003) provides

a method for verifying non-interference for (sequential) Java programs. Their method relies

on a relational Hoare logic for JML programs, and is applied to an example involving

logging in a cash register. However, there is no precise analysis of the form of non-

interference enforced by their method. More recently, Dufay et al. (2005) experimented

with verification of information flow for Java programs using self-composition and JML

specifications (Leavens et al. 1998); more precisely, they used the Krakatoa tool (Marché

et al. 2004) to validate data mining algorithms. Their work is more oriented towards

applications and does not formally justify self-composition. However, Naumann (2006)

recently systematised and formally justified the modeling of information flow policies

for Java programs using JML specifications. Naumann’s work was heavily influenced by

Benton (2004), which develops a relational Hoare logic for a simple imperative language.

In a concurrent setting, Huisman et al. (2006) recently proposed a characterisation

of observational determinism (Zdancewic and Myers 2003) using self-composition. Their

characterisation uses temporal logics and is thus amenable to model-checking after a

suitable program abstraction has been constructed. On the negative side, Alur et al. (2006)

established that a more general notion of confidentiality than non-interference cannot be

characterised using self-composition.

More recently, a number of papers have explored self-composition in connection

with quantitative analysis of information flow. For example, Backes et al. (2009) uses

ideas of self-composition to discover automatically paths that yield information leaks,
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and then uses this information to quantify the amount of information leakage. More

recently, Yasuoka and Terauchi (2010) explored the possibility of expressing quantitative

information flow policies as k-safety properties.

Dedicated logics and decision procedures

Andrews and Reitman (1980) was amongst the first papers to develop proof rules for

reasoning about information flow for a concurrent imperative language. More recently,

there have been several papers that use specific logics for enforcing non-interference.

Using the framework of abstract interpretation, Giacobazzi and Mastroeni (2004b)

provides a proof method for proving abstract non-interference. This line of work has been

extended more recently to Java bytecode in Zanardini (2006).

Using a dedicated logic based on the notion of independence, Amtoft et al. (2006)

proposes a logic for information flow analysis for object-oriented programs. Their logic

deals with pointer analysis using region analysis and employs independence assertions to

describe non-interference. This approach has been recently extended to declassification

(Banerjee et al. 2007), and to conditional information flow (Amtoft and Banerjee 2007).

Dam (2006) provides a sound and complete proof procedure for verifying a notion

of non-interference based on strong bisimulation for the While language with parallel

composition of Section 2. In addition, he shows the decidability of non-interference under

the assumption that the set of values is finite.

Certifying compilation for information flow

Motivated by the possibility of automating parts of proofs of non-interference based on

self-composition, our conference paper briefly discussed the relationship between type

systems and program logics, and established the validity of hybrid rules that could be

used to embed type derivations into logic derivations. For example, consider the simple

imperative language of the introduction and let P be a program with low variables �x and

high variables �y, and let [�x′,�y′/�x,�y] be a renaming of the program variables of P with

fresh variables. An immediate consequence of the soundness of Volpano et al. (1996)’s

type system and our characterisation of non-interference is that the following rule is valid:

�y : high, �x : low  P : τ cmd

{�x =�x′} P ; (P [�x′,�y′/�x,�y]) {�x =�x′} .

More recently, several authors have further explored the interplay between type systems

and program logics and provided a systematic method for deriving logical proofs of non-

interference from type derivations. In particular, Beringer and Hofmann have explored a

semantical notion of self-composition, which dispenses with reasoning on a self-composed

program, and shown how to generate automatically formal proofs of non-interference

from valid typing derivations in several information flow type systems, including flow-

sensitive type systems and type systems for fragments of Java. In a similar spirit, Hähnle

et al. (2007) encode the flow-sensitive type system of Hunt and Sands (2006) into an

extension of dynamic logic with updates.
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11. Conclusions

We have developed a general theory of self-composition to prove that programs are

non-interfering. Being based on logic, self-composition is expressive and does not require

us to prove the soundness of type systems. One natural direction for further research is to

provide similar characterisations for other notions of non-interference, and perhaps for

other security properties such as anonymity.

Appendix A. Proof of Theorem 3

A.1. Termination-sensitive case

We have:

S is TS (I1,I2)-secure

if and only if (by Corollary 1)

S �≈
ξ,I1

ξ,I2
S[ξ]

if and only if (by Definition 2)

∀µ1, µ2, µ
′
1 : var(µ1) = var(µ′1) = var(S) ∧ var(µ2) = var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S � S[ξ], µ1⊕µ2)�
∗ (S[ξ], µ′1⊕µ2)

⇒ ∃µ′2 : var(µ′2) = var(S)′ :

(S[ξ], µ′1⊕µ2)�
∗ (
√
, µ′1⊕µ′2) ∧ µ′1⊕µ′2 ∼I2

ξ µ′1⊕µ′2

if and only if (by properties (a) and (b) of � (see Section 4) and Fact 1 (2) for ⇐)

∀µ1, µ2, µ
′
1 : var(µ1) = var(µ′1) = var(S) ∧ var(µ2) = var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S, µ1⊕µ2)�
∗ (
√
, µ′1⊕µ2)

⇒ ∃µ′2 : var(µ′2) = var(S)′ :

(S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′1⊕µ′2) ∧ µ′1⊕µ′2 ∼I2

ξ µ′1⊕µ′2

if and only if (by logic)

∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2

⇒ ∀µ′1 : var(µ′1) = var(S) :

¬( (S, µ1⊕µ2)�∗ (
√
, µ′1⊕µ2) ) ∨

∃µ′2 : var(µ′2) = var(S)′ :

(S � S[ξ], µ1⊕µ2)�∗ (
√
, µ′1⊕µ′2) ∧ µ′1⊕µ′2 ∼

I2

ξ µ′1⊕µ′2.

⎫⎪⎪⎬
⎪⎪⎭ (14)
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Working in the opposite direction of the implication, we have

∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ ∃µ′′1 : (S, µ1⊕µ2)�
∗ (
√
, µ′′1⊕µ2)

⇒ ∃µ′1, µ′2 : var(µ′1) = var(S) ∧ var(µ′2) = var(S)′ :

(S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′1⊕µ′2) ∧ µ′1⊕µ′2 ∼I2

ξ µ′1⊕µ′2
if and only if (by logic)

∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2

⇒ (S, µ1⊕µ2)⊥ ∨
∃µ′1, µ′2 : var(µ′1) = var(S) ∧ var(µ′2) = var(S)′ :

(S � S[ξ], µ1⊕µ2)�∗ (
√
, µ′1⊕µ′2) ∧ µ′1⊕µ′2 ∼

I2

ξ µ′1⊕µ′2.

⎫⎬
⎭ (15)

We now show that (14) and (15) are equivalent by considering two different cases. For

the first case, suppose (S, µ1⊕µ2)⊥. It is easy to check that both (14) and (15) hold under

this hypothesis.

Now suppose ¬((S, µ1⊕µ2)⊥). Because S is deterministic, there must exist a unique

memory µ such that (S, µ1⊕µ2)�∗ (
√
, µ). Moreover, because of Fact 1 (1), there is a unique

µ′′1 with var(µ′′1) = var(S) such that (S, µ1⊕µ2) �∗ (
√
, µ′′1⊕µ2). Under this hypothesis, we

then calculate as follows:

(15) holds

if and only if (since ¬((S, µ1⊕µ2)⊥) and by properties (a) and (b) of � and the uniqueness

of µ′′1)

(S, µ1⊕µ2)�
∗ (
√
, µ′′1⊕µ2)

∧ ∃µ′2 : var(µ′2) = var(S)′ : (S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′′1⊕µ′2) ∧ µ′′1⊕µ′2 ∼I2

ξ µ′′1⊕µ′2
if and only if (the first conjunct holds because of the uniqueness of µ′′1)

∀µ′1 : var(µ′1) = var(S) ∧ µ′1 �= µ′′1 : ¬( (S, µ1⊕µ2)�
∗ (
√
, µ′1⊕µ2) )

∧ (S, µ1⊕µ2)�
∗ (
√
, µ′′1⊕µ2)

∧ ∃µ′2 : var(µ′2) = var(S)′ : (S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′′1⊕µ′2) ∧ µ′′1⊕µ′2 ∼I2

ξ µ′′1⊕µ′2
if and only if (by logic and determinism for ⇐)

(14) holds.

We can adapt this proof so that it works just as well for the termination-sensitive case

of Theorem 4. First observe that if S is an observationally deterministic program, then

either (S, µ1⊕µ2)⊥ or for all µ′1, µ
′′
1 ∈ Θ, we have v(µ′1, x) = v(µ′′1 , x) for every x ∈ var(S),

where Θ = {µ | (S, µ1⊕µ2)�∗ (
√
, µ⊕µ2)}. Moreover, notice that for all µ′1, µ

′′
1 ∈ Θ,

µ′1⊕µ′2 ∼I2

ξ µ′1⊕µ′2 iff µ′′1⊕µ′2 ∼I2

ξ µ′′1⊕µ′2 (16)
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So the only way difference compared with the previous proof is in the last case, in

which ¬((S, µ1⊕µ2)⊥). For this case we proceed as follows:

(15) holds

if and only if (by ¬((S, µ1⊕µ2)⊥))

∃µ′1, µ′2 : var(µ′1) = var(S) ∧ var(µ′2) = var(S)′ :

(S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′1⊕µ′2) ∧ µ′1⊕µ′2 ∼I2

ξ µ′1⊕µ′2

if and only if (by Property (b) of � and Fact 1 (2))

∃µ′1, µ′2 : var(µ′1) = var(S) ∧ var(µ′2) = var(S)′ :

(S, µ1⊕µ2)�
∗ (
√
, µ′1⊕µ2) ∧

(S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′1⊕µ′2) ∧ µ′1⊕µ′2 ∼I2

ξ µ′1⊕µ′2

if and only if (by Θ �= �, observation (16) and logic)

∀µ′1 : var(µ′1) = var(S) ∧ µ′1 ∈ Θ :

(S, µ1⊕µ2)�
∗ (
√
, µ′1⊕µ2) ∧

∃µ′2 : var(µ′2) = var(S)′ : (S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′1⊕µ′2) ∧ µ′1⊕µ′2 ∼I2

ξ µ′1⊕µ′2

if and only if (the first conjunct holds by the definition of Θ)

∀µ′1 : var(µ′1) = var(S) ∧ µ′1 /∈ Θ : ¬( (S, µ1⊕µ2)�
∗ (
√
, µ′1⊕µ2) ) ∧

∀µ′1 : var(µ′1) = var(S) ∧ µ′1 ∈ Θ : (S, µ1⊕µ2)�
∗ (
√
, µ′1⊕µ2) ∧

∃µ′2 : var(µ′2) = var(S)′ : (S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′1⊕µ′2) ∧ µ′1⊕µ′2 ∼I2

ξ µ′1⊕µ′2

if and only if (by logic and the definition of Θ for implication ⇐)

(14) holds.

A.2. Termination-insensitive case

S is TI (I1,I2)-secure if and only if (by Corollary 1)

S �∼
I1

I2
S[ξ]

if and only if (by Definition 2)

∀µ1, µ2, µ
′
1 : var(µ1) = var(µ′1) = var(S) ∧ var(µ2) = var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S � S[ξ], µ1⊕µ2)�
∗ (S[ξ], µ′1⊕µ2)

⇒ ∃µ′2 : var(µ′2) = var(S)′ :(
(S[ξ], µ′1⊕µ2)�

∗ (
√
, µ′1⊕µ′2) ∧ µ′1⊕µ′2 ∼I2

ξ µ′1⊕µ′2
)

∨ (S[ξ], µ′1⊕µ2)⊥
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if and only if (by properties (a) and (b) of � and Fact 1 (2) for implication ⇐)

∀µ1, µ2, µ
′
1 : var(µ1) = var(µ′1) = var(S) ∧ var(µ2) = var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S � S[ξ], µ1⊕µ2)�
∗ (S[ξ], µ′1⊕µ2)

⇒ ∃µ′2 : var(µ′2) = var(S)′ :(
(S � S[ξ], µ1⊕µ2)�

∗ (
√
, µ′1⊕µ′2) ∧ µ′1⊕µ′2 ∼I2

ξ µ′1⊕µ′2
)

∨ (S[ξ], µ′1⊕µ2)⊥

if and only if (by Claim 1 below)

∀µ1, µ2, µ
′
1 : var(µ1) = var(µ′1) = var(S) ∧ var(µ2) = var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S � S[ξ], µ1⊕µ2)�
∗ (S[ξ], µ′1⊕µ2)

⇒ ∃µ′2 : var(µ′2) = var(S)′ :(
(S � S[ξ], µ1⊕µ2)�

∗ (
√
, µ′1⊕µ′2) ∧ µ′1⊕µ′2 ∼I2

ξ µ′1⊕µ′2
)

∨ ∀µ′′2 : var(µ′′2) = var(S)′ : ¬( (S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′1⊕µ′′2) )

if and only if (by logic)

∀µ1, µ2, µ
′
1, µ

′′
2 : var(µ1) = var(µ′1) = var(S) ∧ var(µ2) = var(µ′′2) = var(S)′ :(

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S � S[ξ], µ1⊕µ2)�
∗ (S[ξ], µ′1⊕µ2)

∧ (S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′1⊕µ′′2)

)
⇒ ∃µ′2 : var(µ′2) = var(S)′ :

(S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′1⊕µ′2) ∧ µ′1⊕µ′2 ∼I2

ξ µ′1⊕µ′2

if and only if (by properties (a) and (b) of � and Fact 1 (2))

∀µ1, µ2, µ
′
1, µ

′′
2 : var(µ1) = var(µ′1) = var(S) ∧ var(µ2) = var(µ′′2) = var(S)′ :(

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′1⊕µ′′2)

)
⇒ ∃µ′2 : var(µ′2) = var(S)′ :

(S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′1⊕µ′2) ∧ µ′1⊕µ′2 ∼I2

ξ µ′1⊕µ′2

if and only if (by logic)

∀µ1, µ2, µ
′
1, µ

′′
2 : var(µ1) = var(µ′1) = var(S) ∧ var(µ2) = var(µ′′2) = var(S)′ :(

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′1⊕µ′′2)

)
⇒ ∃µ′2 : var(µ′2) = var(S)′ :

(S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′1⊕µ′′2) ∧

(S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′1⊕µ′2) ∧ µ′1⊕µ′2 ∼I2

ξ µ′1⊕µ′2
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if and only if (by determinism (µ′2 = µ′′2) and logic) (17)

∀µ1, µ2, µ
′
1, µ

′
2 : var(µ1) = var(µ′1) = var(S) ∧ var(µ2) = var(µ′2) = var(S)′ :(

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′1⊕µ′2)

)
⇒ µ′1⊕µ′2 ∼I2

ξ µ′1⊕µ′2

Step (17) can also be justified by observational equivalence, in this case taking into

account the fact that v(µ′2, x) = v(µ′′2 , x) for every x ∈ var(S)′, and hence

µ′1⊕µ′2 ∼I2

ξ µ′1⊕µ′2

if and only if

µ′1⊕µ′′2 ∼I2

ξ µ′1⊕µ′′2 .
This proves the termination-insensitive case of Theorem 4.

Claim 1. Let µ1, µ2, µ
′
1 be such that var(µ1) = var(µ′1) = var(S) and var(µ2) = var(S)′. If

(S � S[ξ], µ1⊕µ2)�∗ (S[ξ], µ′1⊕µ2), then

(S[ξ], µ′1⊕µ2)⊥

if and only if

∀µ′′2 : var(µ′′2) = var(S)′ : ¬( (S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′1⊕µ′′2) ).

Proof. First note that (S, µ1⊕µ2) �∗ (
√
, µ′1⊕µ2) because of property (b) of � and

Fact 1 (2). So we have:

(S[ξ], µ′1⊕µ2)⊥
if and only if (by Fact 1 (1))

¬∃µ′′2 : var(µ′′2) = var(S)′ : (S[ξ], µ′1⊕µ2)�
∗ (
√
, µ′1⊕µ′′2)

if and only if (by the previous observation following the hypothesis of the claim and logic)

(S, µ1⊕µ2)�
∗ (
√
, µ′1⊕µ2)

⇒ ∀µ′′2 : var(µ′′2) = var(S)′ : ¬( (S[ξ], µ′1⊕µ2)�
∗ (
√
, µ′1⊕µ′′2) )

if and only if (by logic)

∀µ′′2 : var(µ′′2) = var(S)′ :

¬( (S, µ1⊕µ2)�
∗ (
√
, µ′1⊕µ2) ∧ (S[ξ], µ′1⊕µ2)�

∗ (
√
, µ′1⊕µ′′2) )

if and only if (by property (b) of � and Fact 1 (2) for ⇐)

∀µ′′2 : var(µ′′2) = var(S)′ : ¬( (S � S[ξ], µ1⊕µ2)�
∗ (
√
, µ′1⊕µ′′2) ).
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Appendix B. Proof for Example 8

The invariant for the while do loop in AV SAL is
∃ps, ps′ : list.ps′.lsalaries′

∗ ( list.ps.lsalaries

∧ ∃psmis, psprev : (ps = psprev ++ psmis) ∧ (list.psmis.p ∗ true)

∧ (s =
∑
psprev) ∧ (n = |psprev|) )

∧
(∑

ps

|ps| =
∑

ps′

|ps′ |
)

where ++ denotes concatenation.

The intuition behind the invariant is as follows. First, the general indistinguishability

invariant has to hold (last line in the equation). Then, it splits the memory into two parts

and then, basically, focuses on the ‘non-primed’ part of the memory (the one confined

to AV SAL). This part states that the original salary list (represented here by list ps) can

be split into two salary lists, psprev and psmis. Now psprev contains the elements that have

already been counted, while psmis contains those still to be counted. This (partial) counting

of the salaries involve two operations: a summation, which is stored in variable s, and an

element counting, which is stored in variable n. In this way, at the end of the loop, p is nil

implying that psmis = [ ] and hence psprev = ps. Therefore, s will be equal to the sum of all

the salaries and n is the length of the original list, that is, the number of summed salaries.

For the verification of {Isl(A)} AV SAL ; AV SAL[ξ] {Isl(={al})}, we focus on the second

part of the algorithm – the first part basically repeats the same proof, which we have left

as an exercise. We only omit a few proof obligations.{
∃ps, ps′ : list.ps.lsalaries ∗ list.ps′.lsalaries′

∧
∑

ps

|ps| =
∑

ps′

|ps′ |

}

// AV SAL: the program itself as a first part

// of the composed program

p := lsalaries

s := 0

n := 0⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∃ps, ps′ : list.ps′.lsalaries′

∗ ( list.ps.lsalaries

∧ ∃psmis, psprev : (ps = psprev ++ psmis) ∧ (list.psmis.p ∗ true)

∧ (s =
∑
psprev) ∧ (n = |psprev |) )

∧
( ∑

ps

|ps| =
∑

ps′

|ps′ |
)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

while p �= nil do

n := n+ 1

saux := p.salary

s := s+ saux

paux := p.next

p := paux

od

al := s/n{
∃ps, ps′ : list.ps.lsalaries ∗ list.ps′.lsalaries′ ∧

(
al =

∑
ps′

|ps′ |
)}

// AV SAL[ξ]: the renamed part of the program
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p′ := lsalaries′{
∃ps, ps′ : list.ps.lsalaries ∗ ( list.ps′.lsalaries′ ∧ list.ps′.p′ ) ∧

(
al =

∑
ps′

|ps′ |
)}

s′ := 0⎧⎪⎨
⎪⎩
∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′ ∧ list.ps′.p′ ∧ s′ = 0 )

∧
(
al =

∑
ps′

|ps′ |
)

⎫⎪⎬
⎪⎭

n′ := 0⎧⎪⎨
⎪⎩
∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′ ∧ list.ps′.p′ ∧ s′ = 0 ∧ n′ = 0 )

∧
(
al =

∑
ps′

|ps′ |
)

⎫⎪⎬
⎪⎭

// take ps′prev = [ ] and ps′mis = ps′, we obtain the invariant⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′

∧ ∃ps′mis, ps′prev : (ps′ = ps′prev ++ ps′mis) ∧ (list.ps′mis.p
′ ∗ true)

∧ (s′ =
∑
ps′prev) ∧ (n′ = |ps′prev |)

)

∧
(
al =

∑
ps′

|ps′ |
)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

while p′ �= nil do⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p′ �= nil

∧ ∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′

∧ ∃ps′mis, ps′prev : (ps′ = ps′prev ++ ps′mis) ∧ (list.ps′mis.p
′ ∗ true)

∧ (s′ =
∑
ps′prev) ∧ (n′ = |ps′prev |)

)

∧
(
al =

∑
ps′

|ps′ |
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

// p′ �= nil allows to change ps′mis by [a] ++ ps′mis⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′

∧ ∃ps′mis, ps′prev , a, q : (ps′ = ps′prev ++ [a] ++ ps′mis)

∧ p′ 
→ (a, q) ∧ list.ps′mis.q

∧ (s′ =
∑
ps′prev) ∧ (n′ = |ps′prev |)

)

∧
(
al =

∑
ps′

|ps′ |
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

n′ := n′ + 1⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′

∧ ∃ps′mis, ps′prev , a, q : (ps′ = ps′prev ++ [a] ++ ps′mis)

∧ p′ 
→ (a, q) ∧ list.ps′mis.q

∧ (s′ =
∑
ps′prev) ∧ (n′ = |ps′prev |+ 1)

)

∧
(
al =

∑
ps′

|ps′ |
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

s′aux := p′.salary
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′

∧ ∃ps′mis, ps′prev , a, q : (ps′ = ps′prev ++ [a] ++ ps′mis)

∧ p′ 
→ (a, q) ∧ list.ps′mis.q ∧ saux = a

∧ (s′ =
∑
ps′prev) ∧ (n′ = |ps′prev |+ 1)

)

∧
(
al =

∑
ps′

|ps′ |
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

s′ := s′ + s′aux⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′

∧ ∃ps′mis, ps′prev , a, q : (ps′ = ps′prev ++ [a] ++ ps′mis)

∧ p′ 
→ (a, q) ∧ list.ps′mis.q

∧ (s′ =
∑
ps′prev + a) ∧ (n′ = |ps′prev |+ 1)

)

∧
(
al =

∑
ps′

|ps′ |
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

p′aux := p′.next⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′

∧ ∃ps′mis, ps′prev , a, q : (ps′ = ps′prev ++ [a] ++ ps′mis)

∧ p′ 
→ (a, q) ∧ list.ps′mis.q ∧ q = p′aux
∧ (s′ =

∑
ps′prev + a) ∧ (n′ = |ps′prev |+ 1)

)

∧
(
al =

∑
ps′

|ps′ |
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

// take ps′prev = ps′prev ++ [a]⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′

∧ ∃ps′mis, ps′prev : (ps′ = ps′prev ++ ps′mis) ∧ (list.ps′mis.p
′
aux ∗ true)

∧ (s′ =
∑
ps′prev) ∧ (n′ = |ps′prev |)

)

∧
(
al =

∑
ps′

|ps′ |
)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

p′ := p′aux⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′

∧ ∃ps′mis, ps′prev : (ps′ = ps′prev ++ ps′mis) ∧ (list.ps′mis.p
′ ∗ true)

∧ (s′ =
∑
ps′prev) ∧ (n′ = |ps′prev |)

)

∧
(
al =

∑
ps′

|ps′ |
)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

od⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p′ = nil

∧ ∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′

∧ ∃ps′mis, ps′prev : (ps′ = ps′prev ++ ps′mis) ∧ (list.ps′mis.p
′ ∗ true)

∧ (s′ =
∑
ps′prev) ∧ (n′ = |ps′prev |)

)

∧
(
al =

∑
ps′

|ps′ |
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

// p′ = nil implies ps′mis = [ ] and ps′prev = ps′
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⎧⎪⎨
⎪⎩
∃ps, ps′ : list.ps.lsalaries

∗ ( list.ps′.lsalaries′ ∧ (s′ =
∑
ps′) ∧ (n′ = |ps′|) )

∧
(
al =

∑
ps′

|ps′ |
)

⎫⎪⎬
⎪⎭{

∃ps, ps′ : list.ps.lsalaries ∗ list.ps′.lsalaries′ ∧ al = s′

n′

}
a′l := s′/n′{
∃ps, ps′ : list.ps.lsalaries ∗ list.ps′.lsalaries′ ∧ al = a′l

}

Appendix C. Proofs for characterisation of security in CTL – TS Case

We have:

S is TS (I1,I2)-secure

if and only if (by Corollary 1)

S �≈
id ,I1

id ,I2
S[ξ]

if and only if (by Definition 2)

∀µ1, µ2, µ
′
1 : var(µ1)= var(µ′1)= var(S) ∧ var(µ2)= var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S � S[ξ], µ1⊕µ2)�
∗ (S[ξ], µ′1⊕µ2)

⇒ ∃µ′2 : var(µ′2) = var(S)′ :

(S[ξ], µ′1⊕µ2)�
∗ (
√
, µ′1⊕µ′2) ∧ µ′1⊕µ′2 ∼I2

ξ µ′1⊕µ′2

if and only if (by the satisfaction of Ind, end and Fact 1 (1)

∀µ1, µ2, µ
′
1 : var(µ1)= var(µ′1)= var(S) ∧ var(µ2)= var(S)′ :(

(S � S[ξ], µ1⊕µ2) |= Ind[I1] ∧ (S � S[ξ], µ1⊕µ2)�
∗ (S[ξ], µ′1⊕µ2)

)
⇒ ∃c : (S[ξ], µ′1⊕µ2)�

∗ c ∧ c |= Ind[I2] ∧ end

if and only if (by the semantics of EF and logic)

∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

(S � S[ξ], µ1⊕µ2) |= Ind[I1]

⇒ ∀µ′1 : var(µ′1) = var(S) :

(S � S[ξ], µ1⊕µ2)�
∗ (S[ξ], µ′1⊕µ2) ⇒ (S[ξ], µ′1⊕µ2) |= EF(Ind[I2] ∧ end)

if and only if (by logic)

∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

(S � S[ξ], µ1⊕µ2) |= Ind[I1]

⇒ ∀µ : ( ∃µ′1 : var(µ′1) = var(S) : µ = µ′1⊕µ2 ∧ (S � S[ξ], µ1⊕µ2)�
∗ (S[ξ], µ′1⊕µ2) )

⇒ (S[ξ], µ) |= EF(Ind[I2] ∧ end)
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if and only if (by property (a) of �)

∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

(S � S[ξ], µ1⊕µ2) |= Ind[I1]

⇒ ∀µ : ( ∃µ′1 : var(µ′1) = var(S) : µ = µ′1⊕µ2 ∧ (S, µ1⊕µ2)�
∗ (
√
, µ′1⊕µ2) )

⇒ (S[ξ], µ) |= EF(Ind[I2] ∧ end)

if and only if (by logic and Fact 1 (1))

∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

(S � S[ξ], µ1⊕µ2) |= Ind[I1]

⇒ ∀µ : (S, µ1⊕µ2)�
∗ (
√
, µ) ⇒ (S[ξ], µ) |= EF(Ind[I2] ∧ end)

if and only if (by property (c) of � for ⇒ and property (a) of � for ⇐)

∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

(S � S[ξ], µ1⊕µ2) |= Ind[I1]

⇒ ∀µ : (S � S[ξ], µ1⊕µ2)�
∗ (S[ξ], µ) ⇒ (S[ξ], µ) |= EF(Ind[I2] ∧ end)

if and only if (by logic and the satisfaction of mid)

∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

(S � S[ξ], µ1⊕µ2) |= Ind[I1]

⇒ ∀c :
(

(S � S[ξ], µ1⊕µ2)�
∗ c ∧ c |= mid

)
⇒ c |= EF(Ind[I2] ∧ end)

if and only if (by the semantics of →, and logic)

∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

(S � S[ξ], µ1⊕µ2) |= Ind[I1]

⇒ ∀c : (S � S[ξ], µ1⊕µ2)�
∗ c⇒ c |= ( mid → EF(Ind[I2] ∧ end) )

if and only if (by the semantics of AG and →)

∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

(S � S[ξ], µ1⊕µ2) |= Ind[I1] → AG( mid → EF(Ind[I2] ∧ end) )

if and only if (since S |= Φ if and only if ∀µ : (S, µ) |= Φ by definition, and, since here

memory operations are functions, ∀µ : ∃µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ ∧
µ = µ1⊕µ2)

S � S[ξ] |= Ind[I1] → AG( mid → EF(Ind[I2] ∧ end) ).
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Darvas, A., Hähnle, R. and Sands, D. (2005) A theorem proving approach to analysis of secure

information flow. In: Hutter, D. and Ullmann, M. (eds.) Security in Pervasive Computing.

Springer-Verlag Lecture Notes in Computer Science 3450 193–209. (Preliminary version in the

informal proceedings of WITS’03.)

Denning, D. E. and Denning, P. J. (1977) Certification of programs for secure information flow.

Communications of the ACM 20 (7) 504–513.

Dijkstra, E. (1997) A Discipline of Programming, Prentice Hall.

Dufay, G., Felty, A. P. and Matwin, S. (2005) Privacy-sensitive information flow with JML. In:

Nieuwenhuis, R. (ed.) Proceedings of CADE’05. Springer-Verlag Lecture Notes in Computer Science

3632 116–130.

Giacobazzi, R. and Mastroeni, I. (2004a) Abstract non-interference: Parameterizing non-interference

by abstract interpretation. In: Proceedings of the 31th ACM Symposium on Principles of

Programming Languages, ACM Press 186–197.



Secure information flow by self-composition 1251

Giacobazzi, R. and Mastroeni, I. (2004b) Proving abstract non-interference. In: Annual Conference

of the European Association for Computer Science Logic (CSL’04). Springer-Verlag Lecture Notes

in Computer Science 3210 280–294.

Goguen, J. and Meseguer, J. (1982) Security policies and security models. In: Proceedings of SOSP’82,

IEEE Computer Society Press 11–22.
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