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1. Introduction

Let H be a separable Hilbert space. A sequence (ψk)k∈N in H is called a Bessel sequence if there exists a positive con-
stant B for which

∞∑
k=1

∣∣〈ξ,ψk〉
∣∣2 � B‖ξ‖2,

for all ξ ∈H. A Bessel sequence (ψk)k∈N is called a frame if there exists a constant A > 0 such that

A‖ξ‖2 <

∞∑
k=1

∣∣〈ξ,ψk〉
∣∣2

,

for every ξ ∈ H. In the sequel, Bψ will denote the optimal bound of the Bessel sequence ψ = (ψk)k∈N . We will use fre-

quently the fact that ‖ψk‖ < B1/2
ψ for every k ∈ N. Bessel sequences and, in particular, frames have been extensively studied

during the last decades due to their multiple applications in different areas, e.g., signal and image processing, filter bank
theory, and so on. The reader will find many relevant results and facts on frame theory in the books by I. Daubechies [8] and
by O. Christensen [7]. For the relationship between Bessel sequences and bounded linear operators the reader is referred
to [1].

Associated to any Bessel sequence ψ = (ψk)k∈N are the analysis operator defined by

Cψ :H → l2, Cψ(ξ) = (〈ξ,ψk〉
)

k∈N
,

and the synthesis operator defined by

Dψ : l2 →H, Dψ

(
(ck)k∈N

) =
∞∑

k=1

ckψk.
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These are everywhere-defined bounded linear operators, each adjoint to each other. Moreover, ‖Cψ‖ = ‖Dψ‖ � B1/2
ψ .

Given two Bessel sequences, (φk)k∈N and (ψk)k∈N in H1 and H2 respectively, and a fixed sequence, m = (mk)k∈N ∈ l∞ ,
the following operator can be defined:

Mm(ψk)(φk) :H1 →H2, Mm(ψk)(φk)(ξ) =
∑
k∈N

mk〈ξ,φk〉ψk.

This operator, in which the analysis coefficients are rescaled by the fixed weight before resynthesis, is called the Bessel
multiplier for (φk)k∈N and (ψk)k∈N . It was introduced in [2] and its properties when m ∈ c0, l1 and l2 were also studied
there. In the present paper we extend these results for m ∈ lp with 1 � p < ∞. Bessel multipliers and, in particular, frame
multipliers have useful applications. For example, in [3], frame multipliers are used to solve approximation problems.

Furthermore, we introduce the concept of Bessel fusion multiplier. This notion results in a generalization of the Bessel
multiplier when Bessel fusion sequences are considered instead of Bessel sequences. Several applications of Bessel fusion
sequences (see [4] and [11]) and multipliers have been studied, which suggest that these notions may be successfully
applied. Bessel fusion sequences and, in particular, fusion frames have been intensely studied during the last years. Even
though many properties of Bessel sequences still hold for Bessel fusion sequences, Bessel fusion theory is much more
delicate. The reader is referred to [5,6,12] and the references therein for a theoretical treatment on this topic.

In the present paper we study the behavior of the Bessel fusion multiplier when m ∈ c0 or m ∈ lp . In order to get similar
results to Bessel multiplier, extras hypotheses regarding the dimension of the subspaces involved are required. Finally, we
prove that the Bessel fusion multiplier depends continuously, in a certain sense, on the weight and on the Bessel fusion
sequences involved if some extra hypotheses are included.

2. Bessel multiplier

During these notes, H and Hi with i ∈ N shall denote separable Hilbert spaces and L(Hi,H j) denotes the space of
bounded linear operators from Hi to H j . Let c0 be the space of all sequences in C which tend to zero. For 1 � p < ∞ let lp

be the space of all sequences (ψi)i∈N such that
∑∞

i=1 |ψi |p is finite, and l∞ be the space of all sequences (ψi)i∈N such that,
for some M > 0, it holds |ψi | < M for every i ∈ N. In what follows, given 1 � p < ∞ we will denote its conjugate by q, i.e.,
1
p + 1

q = 1. Given φ ∈ H1 and η ∈ H2, φ ⊗i η denotes the inner tensor product, i.e., φ ⊗i η is the operator from H2 to H1

defined by (φ ⊗i η)(ξ) = 〈ξ,η〉φ.

Let us introduce the definition of Bessel multiplier.

Definition 2.1. Let (φk)k∈N and (ψk)k∈N be Bessel sequences in H1 and H2 respectively and m ∈ l∞. The operator
Mm(ψk)(φk) :H1 →H2, called the Bessel multiplier for the Bessel sequences (φk)k∈N and (ψk)k∈N , is defined by

Mm(ψk)(φk)(ξ) =
∑
k∈N

mk〈ξ,φk〉ψk =
∑
k∈N

mk
(
ψk ⊗i φk(ξ)

)
.

The sequence m is called the symbol of Mm(ψk)(φk) . Observe that Mm(ψk)(φk) = DψMmCφ where Mm : l2 → l2 is defined
by Mm((ck)k∈N) = (ckmk)k∈N. It is clear that as m ∈ l∞, then Mm ∈ L(l2). Moreover, ‖Mm‖ = ‖m‖∞ and so ‖Mm(ψk)(φk)‖ �
B1/2

ψ B1/2
φ ‖m‖∞. Furthermore, M∗

m(ψk)(φk)
= Mm̄(φk)(ψk).

In [2], the behavior of the Bessel multiplier is studied when m ∈ c0, l1 and l2. In this section we extend these results
for m ∈ lp with 1 � p < ∞. Before that let us recall the concept of Schatten p-class and some results that we will require
throughout the paper.

Definition 2.2. T ∈ L(Hi,H j) is said to be in the Schatten p-class if (λn)n∈N ∈ lp where (λn)n∈N is the sequence of posi-
tive eigenvalues of |T | = (T ∗T )1/2 arranged in decreasing order and repeated according to multiplicity. Given 1 � p < ∞,
Sp(Hi,H j) denotes the Schatten p-class.

The next identity will be useful in the sequel:

λn = inf
{‖T − B‖: B ∈ L(Hi,H j) and dim

(
B(H)

)
� n − 1

}
.

In the next proposition we collect some useful properties of Sp(Hi,H j). For their proofs and more details on this topic
the reader is referred to [10].

Proposition 2.3. Let 1 � p < ∞. Hence,

(1) Sp(Hi,H j) is a Banach space with the norm ‖T ‖p = ‖(λn)n∈N‖p .

(2) If T ∈ Sp(H,H1) and V ∈ L(H1,H2) then V T ∈ Sp(H,H2). Analogously, if S ∈ L(H2,H) then T S ∈ Sp(H2,H1). Further-
more, ‖T S‖p � ‖T ‖p‖S‖ and ‖V T ‖p � ‖T ‖p‖V ‖.
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(3) T ∈ Sp(H1,H2) if and only if the sequence (〈T en, fn〉)n∈N ∈ lp for every orthonormal sequences (en)n∈N in H1 and ( fn)n∈N

in H2.

An easy computations shows that ‖φ ⊗i η‖p = ‖φ‖‖η‖ for p � 1.

In the next proposition we include the proof of the case m ∈ c0 for completeness.

Proposition 2.4. Let m ∈ l∞ , (φk)k∈N and (ψk)k∈N be Bessel sequences in H1 and H2 , respectively. Then:

(1) If m ∈ c0 then Mm(ψk)(φk) is compact.

(2) If m ∈ lp then Mm(ψk)(φk) ∈ Sp(H1,H2). Furthermore, ‖Mm(ψk)(φk)‖p � B1/2
φ B1/2

ψ ‖m‖p .

Proof. Note that since Mm(ψk)(φk) = DψMmCφ, if we prove that if m ∈ c0 (respectively m ∈ lp) then Mm is compact (re-
spectively Mm belongs to the p-Schatten class), then the assertion follows.

Now, consider m ∈ c0 and let mN = (m1,m2, . . . ,mN ,0, . . .) ∈ l∞. Then, for every c ∈ l2 we have ‖Mm(c) − MmN (c)‖ �
‖m−mN‖∞‖c‖

N→∞−−−→ 0. So, there exists a sequence, (MmN )N∈N , of operators of finite rank such that ‖Mm −MmN ‖
N→∞−−−→ 0,

i.e., Mm is compact.
On the other hand, let m ∈ lp and (ek)k∈N be the canonical basis of l2. Then Mm(c) = ∑

k∈N
mk〈c, ek〉ek. Now, let

σ : N → N be the permutation such that 0 � |mσ(k+1)| � |mσ(k)| for k ∈ N. Hence,

Mm(c) =
∑
k∈N

mk〈c, ek〉ek =
∑
k∈N

mσ(k)〈c, eσ(k)〉eσ(k) =
∑
k∈N

sign(mσ(k))mσ(k)〈c, eσ(k)〉 sign(mσ(k))eσ(k)

=
∑
k∈N

|mσ(k)|〈c, eσk〉U (eσk),

where U is an unitary operator in L(l2). So, as (|mσ(k)|)k∈N ∈ lp, we get that Mm ∈ Sp(l2). Furthermore, ‖Mm‖p = ‖m‖p

and then ‖Mm(ψk)(φk)‖p � B1/2
φ B1/2

ψ ‖m‖p . �
In the next proposition we study the continuity of Mm(ψk)(φk) .

Proposition 2.5. Let (φk)k∈N and (ψk)k∈N be Bessel sequences in H1 and H2 , respectively.

(1) If m(n)

n→∞−−−→ m in lp then ‖Mm(n)(ψk)(φk)
− Mm(ψk)(φk)‖p

l→∞−−→ 0.

(2) If m ∈ lp and (φ
(n)

k )k∈N
n→∞−−−→ (φk)k∈N in lq then ‖M

m(ψ
(n)
k )(φk)

− Mm(ψk)(φk)‖p
n→∞−−−→ 0 and ‖M

m(φk)(ψ
(n)
k )

− Mm(φk)(ψk)‖p
n→∞−−−→ 0.

Proof. (1) Let m(n)

n→∞−−−→ m in lp . Hence, by the proof of Proposition 2.4, Mm(n)−m ∈ Sp(l2) and ‖Mm(n)−m‖p = ‖m(n) − m‖p

for every n ∈ N. Therefore,

‖Mm(n)(ψk)(φk)
− Mm(ψk)(φk)‖p = ‖M(m(n)−m)(ψk)(φk)

‖p = ‖DψMm(n)−mCφ‖p � B1/2
ψ B1/2

φ ‖Mm(n)−m‖p

= (Bψ Bφ)1/2
∥∥m(n) − m

∥∥
p n→∞−−−→ 0.

(2) If m ∈ lp then M
m(ψ

(n)

k )(φk)
, Mm(ψk)(φk) ∈ Sp(H1,H2). Therefore,

‖M
m(ψ

(n)

k )(φk)
− Mm(ψk)(φk)‖p =

∥∥∥∥∥
∞∑

k=1

mk.
(
ψ

(n)

k − ψk
) ⊗i φk

∥∥∥∥∥
p

�
∞∑

k=1

|mk|
∥∥(

ψ
(n)

k − ψk
) ⊗i φk

∥∥
p

=
∞∑

k=1

|mk|
∥∥(

ψ
(n)

k − ψk
)∥∥‖φk‖

� B1/2
φ

( ∞∑
k=1

|mk|p

)1/p( ∞∑
k=1

∥∥(
ψ

(n)

k − ψk
)∥∥q

)1/q

= B1/2
φ ‖m‖p

∥∥(
ψ

(n)

k

) − (ψk)
∥∥

q n→∞−−−→ 0

where the last inequality holds by Holder inequality.
The other limit can be proved analogously. �
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Corollary 2.6. Let m(n)

n→∞−−−→ m in lp, (ψ
(n)

k ), (φ
(n)

k ) be Bessel sequences and B1,B2 such that Bψ(n) < B1 and Bφ(n) < B2 . Then, if

(ψ
(n)

k )k∈N and (φ
(n)

k )k∈N converge to (ψk)k∈N and (φk)k∈N in lq, respectively, then

‖M
m(n),(ψ

(n)

k ),(φn
k )

− Mm(ψk)(φk)‖p
n→∞−−−→ 0.

Proof. Joining items (1) and (2) of the above proposition we get:

‖M
m(n)(ψ

(n)
k )(φn

k )
− Mm(ψk)(φk)‖p � ‖M

m(n)(ψ
(n)
k )(φ

(n)
k )

− M
m(ψ

(n)
k )(φ

(n)
k )

‖p + ‖M
m(ψ

(n)
k )(φ

(n)
k )

− Mm(ψk)(φ
n
k )‖p

+ ‖M
m(ψk)(φ

(n)
k )

− Mm(ψk)(φk)‖p

< (B1 · B2)
1/2

∥∥m(n) − m
∥∥

p + B1/2
2 ‖m‖p

∥∥(
φ

(n)

k

) − (φk)
∥∥

q

+ B1/2
1 ‖m‖p

∥∥(
ψ

(n)

k

) − (ψk)
∥∥

q n→∞−−−→ 0. �
3. Bessel fusion multiplier

We start this section by stating the definition of a Bessel fusion sequence. In what follows, I denotes a set which is finite
or countable and PW denotes the orthogonal projection onto a closed subspace W .

Definition 3.1. Let {Wi}i∈I be a family of closed subspaces of H and (ωi)i∈I be a family of weights, i.e., ωi > 0 for every
i ∈ I. The family {(Wi,ωi)}i∈I is a Bessel fusion sequence if there exists a constant B > 0 such that∑

i∈I

ω2
i ‖PWi ξ‖2 � B‖ξ‖2,

for every ξ ∈H.

If in addition there exists a constant A > 0 such that

A‖ξ‖2 �
∑
i∈I

ω2
i ‖PWi ξ‖2,

for every ξ ∈H, then {(Wi,ωi)}i∈I is called a fusion frame.

It is clear that a Bessel sequence (respectively frame) is a special case of Bessel fusion sequence (respectively fusion
frame). Indeed, if (ψk)k∈N is a Bessel sequence (respectively frame) then {(span{ψk},‖ψk‖)}k∈N is a Bessel fusion sequence
(respectively fusion frame). This Bessel fusion sequence will be called the Bessel fusion sequence related to (ψk)k∈N.

The notions of synthesis and analysis operator also can be defined for Bessel fusion sequences. For this, a new Hilbert
space must be considered. Given {(Wi,ωi)}i∈I a Bessel fusion sequence on H, define the Hilbert space(∑

i∈I

⊕
Wi

)
l2

= {
(ξi)i∈I : ξi ∈Wi and

(‖ξi‖
)

i∈I ∈ l2(I)
}

with the inner product 〈(ξi)i∈I , (ηi)i∈I 〉 = ∑
i∈I 〈ξi, ηi〉. So, ‖(ξi)i∈I‖2 = ∑

i∈I ‖ξi‖2.

Therefore, the analysis operator CW :H → (
∑

i∈I

⊕
Wi)l2 is defined by

CW (ξ) = (ωi PWi ξ)i∈I

and the synthesis operator DW : (∑i∈I

⊕
Wi)l2 →H is defined by

DW
(
(ξi)i∈I

) =
∑
i∈I

ωiξi .

Many properties of Bessel fusion sequences can be studied using these operators, as well as for Bessel sequences (see [5]).
However, several known results of Bessel theory are not valid in the Bessel fusion setting. For example, not every surjective
operator is the synthesis operator of a fusion frame. For this, and for more details on the relationship between operators
and fusion frames the reader is referred to [12].

Given two Bessel fusion sequences, W = (Wi,ωi)i∈I and V = (Vi,υi)i∈I , and a fixed m ∈ l∞(I) we are interested on the
operator SmVW :H →H defined by

SmVW (ξ) =
∑
i∈I

miυiωi PVi PWi ξ.

We shall call SmVW the Bessel fusion multiplier of the Bessel fusion sequences W = (Wi,ωi)i∈I and V = (Vi,υi)i∈I .

Observe that if W and V are the Bessel fusion sequences related to the Bessel sequences (φk)k∈N and (ψk)k∈N , respectively,
then Sm′VW = Mm(ψ )(φ ) where mk = m′ 〈ψk,φk〉 .
k k k ‖ψk‖‖φk‖
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In order to express SmVW as composition of CV and DW , a new operator which relates (
∑

i∈I

⊕
Wi)l2 and (

∑
i∈I

⊕
Vi)l2

is needed. Namely, let

P :
(∑

i∈I

⊕
Wi

)
l2

→
(∑

i∈I

⊕
Vi

)
l2

defined by P
(
(ξi)i∈I

) = (PVi ξi)i∈I .

P is a well defined linear bounded operator. In fact, PVi ξi ∈ Vi for every i ∈ I and ‖(PVi ξi)i∈I‖2 = ∑
i∈I ‖PVi ξi‖2 �∑

i∈I ‖ξi‖2 = ‖(ξi)i∈I‖2. Therefore, it is easy to check that

SmVW = DVSm P CW ,

where Sm : (
∑

i∈I

⊕
Vi)l2 → (

∑
i∈I

⊕
Vi)l2 is defined by Sm((ξi)i∈I ) = (miξi)i∈I . SmVW is bounded. In fact, as m ∈ l∞,

for every (ξi)i∈I ∈ (
∑

i∈I

⊕
Vi)l2 we have that ‖Sm((ξi)i∈I )‖2 = ‖(miξi)i∈I‖2 = ∑

i∈I ‖miξi‖2 � ‖m‖2∞‖(ξi)i∈I‖2. So, Sm is
bounded and ‖Sm‖ � ‖m‖∞. Thus, since SmVW = DVSm P CW , then SmVW is bounded. It is easy to check that S∗

mVW =
Sm̄WV .

In the next proposition we study the behavior of the Bessel fusion multiplier when the symbol belongs to c0 or lp with
p � 1.

Proposition 3.2. Let W = (Wi,ωi)i∈N and V = (Vi,υi)i∈N be Bessel fusion sequences. Hence,

(1) If m ∈ c0 and dimVi is finite for every i ∈ N, then Sm is compact and, in particular, SmVW is compact.
(2) If m ∈ lp and (dimVi)i∈N ∈ l∞ then Sm ∈ Sp((

∑
i∈N

⊕Vi)l2 ) and, in particular, SmVW ∈ Sp(H).

Proof. (1) Let m ∈ c0 and consider mN = (m1, . . . ,mN ,0,0, . . .). Therefore,∥∥SmN

(
(ξi)i∈N

) − Sm
(
(ξi)i∈N

)∥∥ = ∥∥SmN −m
(
(ξi)i∈N

)∥∥ � ‖mN − m‖∞
∥∥(ξi)i∈N

∥∥
N→∞−−−→ 0.

Observe that, since dimVi is finite for every i ∈ N, then SmN is a finite rank operator for every N. Thus, Sm is compact. In
particular, as SmVW = DVSm P CW , SmVW is compact.

(2) Let Ei = (ei
k)k∈Ki be an orthonormal basis of Vi . Define

Fi,k = (
0, . . . , ei

k︸︷︷︸
position i

, . . . ,0, . . .
) ∈

(∑
i∈N

⊕Vi

)
l2
.

So, F = ((Fi,k)k∈Ki )i∈N is an orthonormal basis of (
∑

i∈N
⊕Vi)l2 . Now, let ( F̂ j) j∈N be the rearrangement of F given by:

(a) if 1 � j � K1 then F̂ j = F1, j,

(b) if j > K1 then F̂ j = Fn+1,k where n = max{m ∈ N: j − (K1 + · · · + Km) > 0} and k = j − (K1 + · · · + Kn).

Hence, for every f = ( f j) j∈N ∈ (
∑

i∈N
⊕Vi)l2 it holds:

Sm( f ) =
∑
i∈N

∑
k∈Ki

mi〈 f , Fi,k〉Fi,k =
∑
j∈N

m̂ j〈 f , F̂ j〉 F̂ j,

where (m̂ j) j∈N = (m1, . . . ,m1︸ ︷︷ ︸
K1

,m2, . . . ,m2︸ ︷︷ ︸
K2

, . . . ,m j, . . . ,m j︸ ︷︷ ︸
K j

, . . .).

Now,
∑

j∈N
|m̂ j|p = ∑

i∈N
Ki |mi |p � ‖(dimVi)i∈N‖∞‖m‖p

p < ∞. Thus, Sm ∈ Sp((
∑

i∈N
⊕Vi)l2 ). In particular, SmVW =

DVSm P CW ∈ Sp(H). �
As the next examples show, the hypotheses in the above proposition regarding the dimension of Vi are crucial.

Example 3.3. Consider H = l2 and (ek)k∈N be an orthonormal basis of l2.
1. Define W0 = span{e2k+1}k∈N and ω0 = 1 and for i � 1 define Wi = span{e2k}k∈N−{i}, ωi = 1

(
√

2)i . It is clear that Wi is

infinite dimensional for every i ∈ N. Let us see that (Wi,ωi)i∈N is a Bessel fusion sequence. By simple calculation, we get
that, for i � 1, it holds ω2

i ‖PWi (ξ)‖2 = 1
2i

∑∞
k=1, k =i |〈ξ, e2k〉|2 for every ξ ∈H. Hence, for every ξ ∈H it holds

∑
i∈N0

ω2
i

∥∥PWi (ξ)
∥∥2 =

∞∑
k=0

∣∣〈ξ, e2k+1〉
∣∣2 +

( ∞∑
k=1, k =1

1

2k

)∣∣〈ξ, e2〉
∣∣2 +

( ∞∑
k=1, k =n

1

2k

)∣∣〈ξ, e2n〉∣∣2 + · · ·

=
∞∑∣∣〈ξ, e2k+1〉

∣∣2 +
(

1 − 1

2

)∣∣〈ξ, e2〉
∣∣2 +

(
1 − 1

2n

)∣∣〈ξ, e2n〉∣∣2 + · · · . (3.1)

k=0
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Therefore,∑
i∈N0

ω2
i

∥∥PWi (ξ)
∥∥2 � ‖ξ‖2 for every ξ ∈H.

Now, let us see that SωWW is not compact where ω = (ωi)i∈N = ( 1√
2

i ) ∈ c0. For this, note that SωWW (e2k+1) =∑
i∈N0

ω3
i PWi e2k+1 = e2k+1 and so, the sequence (SωWV (e2k+1))k∈N does not possess a convergent subsequence.

2. Let Wi = span{e1, e2, . . . , e2i }, ωi = 1
(

3√2)i
, i � 1. It is clear that there does not exist A > 0 such that dimWi < A

for every i ∈ N. Let us show that W = (Wi,ωi)i∈N is a Bessel fusion sequence. It is straightforward that ω2
i ‖PWi (ξ)‖2 =

1
4i/3

∑2i

j=1 |〈ξ, e j〉|2 for every ξ ∈H. Hence,

∞∑
i=1

ω2
i

∥∥PWi (ξ)
∥∥2 =

( ∞∑
j=1

1

4 j/3

)(∣∣〈ξ, e1〉
∣∣2 + ∣∣〈ξ, e2〉

∣∣2) +
( ∞∑

j=2

1

4 j/3

)(∣∣〈ξ, e3〉
∣∣2 + ∣∣〈ξ, e4〉

∣∣2) + · · · .

Now, as
∑∞

j=1
1

4 j/3 < 2, then
∑∞

i=1 ω2
i ‖PWi (ξ)‖2 � 2‖ξ‖2 for every ξ ∈H.

Observe that
∑∞

i=1 ωi = ∑∞
i=1

1
(

3√2)i
< ∞, i.e., ω = (ωi)i∈N ∈ l1. However, let us see that SωWW /∈ S1(H). For this, it suf-

ficies to show that (〈SωWW (en), en〉)n∈N /∈ l1. Now, by simple calculation, we get that
∑∞

n=1〈SωWW (en), en〉 = ∑∞
n=1 αn

1
2n−1

where α1 = 2 and αn = 2n−1 for n > 1, then
∑∞

n=1〈SωWW (en), en〉 diverges.

Corollary 3.4. Let W = (Wi,ωi)i∈N and V = (Vi,υi)i∈N be Bessel fusion sequences such that (dimVi)i∈N ∈ l∞. Hence, if
m(k)

k→∞−−→ m in lp then ‖Sm(k)VW − SmVW‖p
k→∞−−→ 0.

Proof. Let m(k)

k→∞−−−→ m in lp . By Proposition 3.2, we have that Mm(k)−m ∈ Sp((
∑

i∈I

⊕
Vi)l2 ) and ‖Mm(k)−m‖p �

‖m(k) − m‖p for every k ∈ N. Therefore,∥∥Sm(k)VW − SmVW
∥∥

p = ∥∥S(m(k)−m)VW
∥∥

p = ∥∥DVSm(k)−m P CW
∥∥

p � ‖DV‖∥∥m(k) − m
∥∥

p‖CW‖
k→∞−−−→ 0. �

Proposition 3.5. Let W = (Wi,ωi)i∈N, Wk = (Wi,ω
k
i )i∈N, and V = (Vi,υi)i∈N be Bessel fusion sequences such that (dimWi)i∈N

and (υi)i∈N ∈ l∞. Hence, if m ∈ lp and (ωk
i )i∈N

k→∞−−→ (ωi)i∈N in lq then

‖SmVWk − SmVW‖p
k→∞−−→ 0 and ‖SmWkV − SmWV‖p

k→∞−−→ 0.

Proof.∥∥SmVWk − SmVW
∥∥

p =
∥∥∥∥∑

i∈N

miυi
(
ωk

i − ωi
)

PVi PWi

∥∥∥∥
p

�
∑
i∈N

|miυi |
∣∣ωk

i − ωi
∣∣‖PWi ‖p

=
∑
i∈N

|miυi |
∣∣ωk

i − ωi
∣∣dimWi

� C
∑
i∈N

|mi|
∣∣ωk

i − ωi
∣∣

� C

(∑
i∈N

|mi |p

)1/p(∑
i∈N

∣∣ωk
i − ωi

∣∣q

)1/q

= C‖m‖p
∥∥(

ωk
i

)
i∈N

− (ωi)i∈N

∥∥
q k→∞−−−→ 0,

where C = ‖(dimWi)i∈N‖∞‖(υi)i∈N‖∞.

Analogously, it can be proved that ‖SmWkV − SmWV‖p → 0. �
3.1. The case m = (1,1, . . .)

In [9] the next operator which relates two Bessel fusion sequences W = (Wi,ωi)i∈I and V = (Vi,υi)i∈I is studied:

SVW :H →H defined by SVW (ξ) =
∑

υiωi PVi PWi ξ.
i∈I
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Clearly, in our context, SVW is the Bessel fusion multiplier of the Bessel fusion sequences (Wi,ωi)i∈I and V = (Vi,υi)i∈I
where m = (1,1, . . .) ∈ l∞. Since m does not belong to lp neither to co we study under which conditions SVW is compact
or it belongs to Sp(H).

Proposition 3.6. Let W = (Wi,ωi)i∈N and V = (Vi,υi)i∈N be Bessel fusion sequences. Then:

(1) If (υi)i∈N ∈ c0, (ωi)i∈N ∈ l1 and dimVi is finite for every i ∈ N then SVW is compact.
(2) If (υi)i∈N ∈ lp, (ωi)i∈N ∈ lq and (dimVi)i∈N ∈ l∞ then SVW ∈ Sp(H).

Proof. We can assume without loss of generality that υk+1 � υk for every k ∈ N.

(1) Define SN
VW :H →H by SN

VW (ξ) = ∑N
i=1 υiωi PVi PWi ξ. Then,

∥∥SVW (ξ) − SN
VW (ξ)

∥∥ =
∥∥∥∥∥

∞∑
i=N+1

υiωi PVi PWi ξ

∥∥∥∥∥ � ‖ξ‖
∞∑

i=N+1

υiωi � ‖ξ‖υN+1

∞∑
i=N+1

ωi � ‖ξ‖υN+1‖ω‖1.

Therefore, ‖SVW − SN
VW‖ � υN+1‖ω‖1

N→∞−−−→ 0. So, as SN
VW are finite rank operators, we get that SVW is compact.

(2) Observe that

λ1(SVW ) = ‖SVW‖ � υ1‖ω‖1.

Let Nk = dimVk and SN1
VW = υ1ω1 PV1 PW1 . Then, dimSN1

VW (H) � N1 and ‖SVW − SN1
VW‖ � υ2‖ω‖1. Hence,

λN1+1(SVW ) � υ2‖ω‖1.

Moreover,

λN1 (SVW ) � λN1−1(SVW ) � · · · � λ1(SVW ) � υ1‖ω‖1.

Now, let SN1+N2
VW = υ1ω1 PV1 PW1 +υ2ω2 PV2 PW2 . So, dimSN1+N2

V,W (H) � N1 +N2 and ‖SVW −SN1+N2
VW ‖ � υ3‖ω‖1. Hence,

λN1+N2+1(SVW ) � υ3‖ω‖1

and

λN1+N2 (SVW ) � λN1+N2−1(SVW ) � · · · � λN1+1(SVW ) � υ2‖ω‖1.

Therefore,
∞∑

i=1

λ
p
i (SVW ) �

∞∑
i=1

Niυ
p
i ‖ω‖p

1 � ‖ω‖p
1

∥∥(Ni)i∈N

∥∥∞‖υ‖p
p < ∞.

So, SVW ∈ Sp(H). �
3.2. Final comments

The results presented in this paper can also be extended to symmetrically-normed ideals generated by symmetric norm-
ing functions. See [10] for a complete treatment on this topic. Following the notation used in [10], given a symmetric
norming function Φ(ξ) let cΦ be the natural domain of Φ, and SΦ(H1,H2) be the symmetrically-normed ideal of all com-
pact operators T ∈ L(H1,H2) such that (λi(T ))i∈N ∈ cΦ with the norm ‖T ‖Φ = Φ((λi(T ))i∈N). Then, the previous results
can be rephrased as follows:

Let (φk)k∈N and (ψk)k∈N be Bessel sequences in H1 and H2, respectively.

(1) If m ∈ cΦ then Mm(ψk)(φk) ∈ SΦ(H1,H2).
(2) If Φ(m(l) − m)

l→∞−−→ 0 then ‖Mm(l)(ψk)(φk)
− Mm(ψk)(φk)‖Φ

l→∞−−→ 0.

(3) If m ∈ cΦ and Φ∗((φ(l)
k )k∈N − (φk)k∈N)

l→∞−−→ 0, then

‖M
m(ψ

(l)
k )(φk)

− Mm(ψk)(φk)‖Φ
l→∞−−→ 0 and ‖M

m(φk)(ψ
(l)
k )

− Mm(φk)(ψk)‖Φ
l→∞−−→ 0.

Let W = (Wi,ωi)i∈N , Wk = (Wi,ω
k
i )i∈N , and V = (Vi,υi)i∈N be Bessel fusion sequences.

(1) If m ∈ cΦ and (dimVi)i∈N ∈ l∞ then SmVW ∈ SΦ(H).

(2) If (dimVi)i∈N ∈ l∞ and Φ(m(l) − m)
l→∞−−→ 0 then ‖Sm(l)VW − SmVW‖Φ

l→∞−−→ 0.

(3) Let (dimWi)i∈N and (υi)i∈N ∈ l∞. Hence, if m ∈ cΦ and Φ((ωk
i )i∈N − (ωi)i∈N)

k→∞−−−→ 0 then

‖SmVWk − SmVW‖Φ
k→∞−−−→ 0 and ‖SmWkV − SmWV‖Φ

k→∞−−−→ 0.
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