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We study the geometry of the set �p , with 1 < p < ∞, which consists of perturbations
of the identity operator by p-Schatten class operators, which are positive and invertible
as elements of B(H). These manifolds have natural and invariant Finsler structures. In
[C. Conde, Geometric interpolation in p-Schatten class, J. Math. Anal. Appl. 340 (2008) 920–
931], we introduced the metric dp and exposed several results about this metric space.
The aim of this work is to prove that the space (�p,dp) behaves in many senses like a
nonpositive curvature metric space.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let B(H) denote the algebra of bounded operators acting on a complex and separable Hilbert space H , Gl(H) the group
of invertible elements of B(H) and Gl(H)+ the set of all positive elements of Gl(H).

If X ∈ B(H) is compact we denote by {s j(X)} the sequence of singular values of X (decreasingly ordered). For 1 � p < ∞,
let

‖X‖p =
(∑

s j(X)p
)1/p = (

tr|X |p)1/p
,

where tr is the usual trace functional, this defines a norm on the set

B p(H) = {
X ∈ B(H): ‖X‖p < ∞}

,

called the p-Schatten class of B(H) (to simplify notation we use B p). A reference for this subject is [8].
The Clarkson–McCarthy inequalities on B p (see [11]) assert that for 2 � p < ∞,

2
(‖A‖p

p + ‖B‖p
p
)
� ‖A − B‖p

p + ‖A + B‖p
p � 2p−1(‖A‖p

p + ‖B‖p
p
)
, (1)

and for 1 � p � 2, the inequality is reversed.
In a fascinating paper [1], Ball, Carlen and Lieb defined that a Banach space X is q-uniformly convex with q � 2, if there

exists a positive constant K > 0 such that

2

(
1

K
‖v‖q + ‖w‖q

)
� ‖v − w‖q + ‖v + w‖q,

for any u, v ∈ X (it is easily to see that any Banach space q-uniformly convex is uniformly convex). In this paper Ball et al.
proved that for 1 < p � 2, B p is 2-uniformly convex (see Proposition 3.3). For the cases 2 � p < ∞, the Clarkson–McCarthy
inequalities imply the p-uniform convexity of B p .
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On B p we define the following norm associated with a ∈ Gl(H)+:

‖X‖p,a := ∥∥a−1/2 Xa−1/2
∥∥

p .

This metric is invariant under the action by Gl(H, B p) = {x ∈ Gl(H): x − 1 ∈ B p},

l : Gl(H, B p) × �p → �p, lg(X) = g X g∗.
For each a ∈ �p , the tangent space Ta(�p) can be identified with Bsa

p , the selfadjoint part of B p and the geometry induced
by the norm ‖.‖p,a has a rich geometrical structure, for example uniqueness of the short curve (or geodesic) connecting two
points.

In this work we expose several results about the geometrical structure of the manifold

�p = {a = 1 + X: X ∈ B p} ⊂ Gl(H)+,

for 1 < p < ∞. This study relates to previous work on differential geometry of positive operators (or positive definite
matrices). Mainly a series of papers [4–6] by Corach, Porta and Recht, where the geometry of the set of positive invertible
elements of a C∗ algebra was studied. Also this study is related to classical work on the geometry of positive matrices [12].
In all these works, the authors have obtained among other properties that the distance function between two short curves
is a convex function, that is if γ1, γ2 are geodesics then for all t ∈ [0,1],

d
(
γ1(t), γ2(t)

)
� (1 − t)d

(
γ1(0), γ2(0)

) + td
(
γ1(1), γ2(1)

)
.

The notion of convexity of the distance between short curves (with the same initial point) or the strict convexity of
the power 2 of the distance are related with the notion of nonpositive curvate in metric spaces in sense of Busemann or
Alexandrov respectively. For the development of the theory of nonpositively curved metric spaces, we shall consider works
that have been carried out in two different directions: the works of H. Busemann and the works of A.D. Alexandrov and his
collaborators. Both Busemann and Alexandrov started their works in the 1940s, and they showed that the notions of upper
and lower curvature bounds make sense for a more general class of metric spaces than Riemannian manifolds, namely for
“geodesic spaces.” Let us briefly describe these spaces: a complete metric space (X,d) is called a geodesic length space, or
simply a geodesic space, if for any two points x, y ∈ X , there exists a shortest geodesic joining them, i.e. a continuous curve
such that γ : [0,1] → X with γ (0) = x, γ (1) = y, and d(x, y) = Ld(γ ). Here, Ld(γ ) denotes the length of γ (respect to the
metric d) and it is defined as

Ld(γ ) := sup

{
n∑

i=1

d
(
γ (ti−1), γ (ti)

)
: 0 = t0 < t1 < · · · < tn = 1, n ∈ N

}
.

A curve γ : [0,1] → X is called a geodesic if there exists ε > 0 such that

Ld(γ |[t,t′]) = d
(
γ (t), γ (t′)

)
whenever |t − t′| < ε.

Finally, a geodesic γ : [0,1] → X is called a shortest geodesic if Ld(γ ) = d(γ (0), γ (1)).

For more details on such metric spaces we refer to [9] and [2]. The ramifications of these two theories continue to grow
today, especially since the rekindling of interest that was given to nonpositive curvature by M. Gromov in the 1970s. Let us
briefly describe the basic underlying ideas of these works.

A geodesic space (X,d) is said to be a Busemann nonpositive curvature space (BNPC) if for every p ∈ X there exists δp > 0
such that for any x, y, z ∈ B(p, δp) and any shortest geodesic γ1, γ2 : [0,1] → X with γ1(0) = γ2(0) = x ∈ B(p, δp) and with
endpoints γ1(1), γ2(1) ∈ B(p, δp), we have

d

(
γ1

(
1

2

)
, γ2

(
1

2

))
� 1

2
d
(
γ1(1), γ2(1)

)
.

A geodesic space (X,d) is said to be an Alexandrov nonpositive curvature space (ANPC) if for every p ∈ X there exists
ρp > 0 such that for any x, y, z ∈ B(p,ρp) and any shortest geodesic γ : [0,1] → X with γ (0) = x, γ (1) = z, we have for
0 � t � 1,

d2(y, γ (t)
)
� (1 − t)d2(y, γ (0)

) + td2(y, γ (1)
) − t(1 − t)Ld(γ )2.

This paper is organized as follows: In Section 2 we introduce a metric in the tangent spaces of �p , which are r-uniformly
convex with r = max{2, p}. This strong geometric condition implies the uniqueness of short curves in the metric space
(�p,dp), where dp is the metric given by the infima of the lengths of curves joining two given points in �p , measured
with the Finsler metric ‖.‖p,a . This space was previously studied in [3].

In Section 3 we introduce the notion of p-uniform convexity of a metric space (see Definition 3.2) and we prove that
the space �p is r-uniformly convex. As a consequence of this metric condition we obtain existence and uniqueness of best
approximation to convex closed subsets of �p (where by a convex set K we mean a set such that any geodesic joining two
elements of K is entirely contained in K ).
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2. The geometry of �p

We shall need the following facts concerning the geometric structure of the submanifold �p , which we take from [3].
The first fact states that if we measure the length of a smooth curve γ (t) ⊂ �p , t ∈ [a,b], using the Finsler norm, i.e.

L p(γ ) =
b∫

a

∥∥γ̇ (t)
∥∥

p,γ (t) dt,

then the curves of the form γa,b(t) = a1/2(a−1/2ba−1/2)ta1/2, with a,b ∈ �p , have minimal length along their paths for
t ∈ [0,1]. Note that γa,b(0) = a and γa,b(1) = b, and thus

dp(a,b) = inf
{

L p(γ ): γ ∈ Ωa,b
} = L p(γa,b) = ∥∥log

(
a−1/2ba−1/2)∥∥

p,

where we denote by

Ωa,b = {
α : [0,1] → �p: α is a C1 curve, α(0) = a and α(b) = 1

}
the set of smooth curves in �p joining a to b.

Lemma 2.1. (See [3, Proposition 5.2].) For all X, Y ∈ Bsa
p ,

‖Y ‖p �
∥∥e−X/2d expX (Y )e−X/2

∥∥p,

where d expX denotes the differential of the exponential map at X.

We give now a different proof of the existence of minimal curves. This proof involves the uniform convexity of the
tangent spaces.

For a piecewise differentiable curve β : [0,1] → Bsa
p , one computes the length of the curve β by

L(β) =
1∫

0

∥∥β̇(t)
∥∥

p dt.

Let δ be a piecewise smooth curve δ ⊂ �p . Then δ = eβ for a uniquely determined piecewise smooth curve β = log(δ)

such that β ⊆ Bsa
p . By the previous lemma, we get

δ̇ = d expβ(β̇) =
1∫

0

e(1−t)β β̇etβ dt.

We begin comparing the lengths of the curves δ and β .

Theorem 2.2. Let δ = eβ ⊆ �p be a piecewise smooth curve. Then L(β) � L p(δ).

Proof. Let us compute the speed of δ using Lemma 2.1:

‖β̇‖p �
∥∥e− β

2 d expβ(β̇)e− β
2
∥∥

p = ‖δ̇‖p,δ . �
Corollary 2.3 (EMI property). Let X, Y ∈ Bsa

p . Then

‖X − Y ‖p � dp
(
e X , eY )

.

Proof. Let δ ∈ Ωe X ,eY , put δ = eβ as before. Then

‖Y − X‖p = ∥∥β(1) − β(0)
∥∥

p =
∥∥∥∥∥

1∫
0

β̇ dt

∥∥∥∥∥
p

�
1∫

0

‖β̇‖p dt = L(β) � L p(δ).

Hence

‖Y − X‖p � dp
(
e X , eY )

. � (2)
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Theorem 2.4. Assume that, for the geometry induced by the norm ‖ · ‖p , the unique short curve joining 0 to v in Bsa
p is the straight

segment γ (t) = t X . Then γa,b is the unique short piecewise smooth curve joining a to b in �p .

Proof. Let δ = eβ be a short, piecewise smooth curve joining 1 and e X in �p . Now L(β) = ‖X‖p . Since L(β) � L p(δ), then β

is a piecewise smooth curve in Bsa
p , joining 0 to X , with length less or equal than ‖X‖p , which is the length of the straight

segment t X (t ∈ [0,1]) in Bsa
p . Then β(t) = t X , and δ(t) = et X . The general case follows by the homogeneity of the metric

of �p . �
Remark 2.5. The hypothesis of Theorem 2.4 holds for any p ∈ (1,∞), since it is a simple consequence of the uniform
convexity of these spaces.

We summarize in the following proposition the basic properties of the metric space �p .

Proposition 2.6. Given a,b ∈ �p and g ∈ Gl(H, B p), we get

1.

dp(a,b) = dp
(
a−1,b−1).

2. For all t ∈ R

dp
(
a, γa,b(t)

) = |t|dp(a,b).

3. Invariance of the metric under the action by Gl(H, B p),

dp(a,b) = dp(gag∗, gbg∗).

4. If X, Y ∈ Bsa
p commute, we have

‖X − Y ‖p = dp
(
e X , eY )

.

In particular on each line RX ⊆ Bsa
p the exponential map preserves distances.

5. If 1 lies on the geodesic γa,b, then a and b commute and

log(b) = −1 − t

t
log(a),

where t = dp(a,1)/dp(a,b).
6. Let s ∈ [1,∞). Then the s-energy functional

Es : Ωa,b → R
+, Es(β) :=

1∫
0

∥∥β̇(t)
∥∥s

p,β(t) dt

has its global minimum ds
p(a,b) precisely at γa,b.

7. �p is a complete metric space with the geodesic distance dp .

A midpoint map for a metric space (X,d) is a map m : X × X → X satisfying

d
(
m(x, y), x

) = 1

2
d(x, y) = d

(
m(x, y), y

) ∀x, y ∈ X .

Given a,b ∈ �p and γa,b the shortest curve joining them, we can define the following midpoint map

m : �p × �p → �p, m(a,b) := γa,b

(
1

2

)
.

Definition 2.7. Let K ⊆ �p . We say that K is convex if, for any a,b ∈ K , γa,b(t) ∈ K for any t ∈ [0,1].
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3. Clarkson’s inequalities and uniform convexity

3.1. Weak semi parallelogram law

Let (V , 〈.,.〉) be an euclidean space, i.e. V is a real vector space (finite or infinite dimensional) and 〈.,.〉 is a positive
definite symmetric bilinear form on V . Then ‖v‖ = √〈v, v〉 defines a norm on V and the parallelogram law states that for
u, v ∈ V we have

‖v − w‖2 + ‖v + w‖2 = 2
(‖v‖2 + ‖w‖2).

If we consider a parallelogram with vertices x, x1, x2 and x3 = x1 + x2 − x, then the parallelogram law reads

d(x1, x2)
2 + d(x, x3)

2 = 2d(x, x1)
2 + 2d(x, x2)

2

where d(a,b) := ‖a − b‖. If z = x1+x2
2 is the midpoint of x1 and x2, then we get

d(x1, x2)
2 + 4d(x, z)2 = 2d(x, x1)

2 + 2d(x, x2)
2.

Definition 3.1. Let (X,d) be a metric space. We say that (X,d) satisfies the semi parallelogram law (SPL) if for x1, x2 ∈ X
there exists a point z ∈ X such that for each x ∈ X we have

d(x1, x2)
2 + 4d(x, z)2 � 2d(x, x1)

2 + 2d(x, x2)
2.

Note that the point z occuring in the preceding definition plays the role of a midpoint between x1 and x2.
The above condition can be rephrased as follows in a geodesic length space (see [9]):
For any x ∈ X and any minimal curve η : [0,1] → X with η(0) = x1, η(1) = x2, we have

d

(
x, η

(
1

2

))2

� 1

2
d
(
x, η(0)

)2 + 1

2
d
(
x, η(1)

)2 − 1

4
d
(
η(0), η(1)

)2
. (3)

One natural generalization of the p-uniform convexity to a metric space is the following:

Definition 3.2. Let (X,d) be a metric space and p � 2. We say that (X,d) is p-uniformly convex if for any x ∈ X and any
minimal curve η : [0,1] → X with η(0) = x1, η(1) = x2, there exists a constant cp > 0 such that

d

(
x, η

(
1

2

))p

� 1

2
d
(
x, η(0)

)p + 1

2
d
(
x, η(1)

)p − 1

4
cpd

(
η(0), η(1)

)p
. (4)

If p = 2 and c2 = 1, then the inequality (4) corresponds to the SPL.
At this point we can easily prove the r-uniform convexity “at the origin” of �p .
The proof of this fact requires some preliminaries. We begin with the following inequalities, proved in [1] by Ball, Carlen

and Lieb.

Proposition 3.3. For A, B ∈ B p(H) and 1 � p � 2 it holds that

‖A‖2
p + (p − 1)‖B‖2

p � 1

2

(‖A + B‖2
p + ‖A − B‖2

p

)
. (5)

Lemma 3.4. Let X, B ∈ Bsa
p and γ : [0,1] → �p be the geodesic joining eB with e−B . Then for 1 < p < ∞,

dp

(
e X , γ

(
1

2

))r

� 1

2

(
dp

(
e X , γ (0)

)r + dp
(
e X , γ (1)

)r) − 1

4
crdp

(
γ (0), γ (1)

)r
, (6)

with r = max{p,2} and cr = p − 1 if r = 2 or cr = 1
2p−2 if r �= 2.

Proof. By (1), if 2 < p < ∞, then

2
(‖X‖p

p + ‖B‖p
p
) = 2

(
dp

(
e X ,1

)p + dp
(
eB ,1

)p)
� ‖X − B‖p

p + ‖X + B‖p
p

� dp
(
e X , eB)p + dp

(
e X , e−B)p

.
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Since dp(eB ,1) = 1
2 dp(eB , e−B) = 1

2 L p(γ ) we have

1

2p
L p(γ )p � 1

2

(
dp

(
e X , γ (0)

)p + dp
(
e X , γ (1)

)p) − dp

(
e X , γ

(
1

2

))p

.

Now, we consider the case 1 < p � 2. Applying the exponential map and using the EMI property in the inequality (5) we
obtain

‖X‖2
p + (p − 1)‖B‖2

p = dp
(
e X ,1

)2 + (p − 1)dp
(
eB ,1

)2

� 1

2

(‖X + B‖2
p + ‖X − B‖2

p

)
� 1

2

(
dp

(
e X , eB)2 + dp

(
e X , e−B)2)

.

Since dp(eB ,1) = 1
2 dp(eB , e−B) = 1

2 L p(γ ), we have

(p − 1)
1

22
L p(γ )2 � 1

2

(
dp

(
e X , γ (0)

)2 + dp
(
e X , γ (1)

)2) − dp

(
e X , γ

(
1

2

))2

. �

The following proposition establishes the r-uniform convexity for �p .

Theorem 3.5. Let X ∈ Bsa
p , and γ : [0,1] → �p be a geodesic. Then for 1 < p < ∞,

dp

(
e X , γ

(
1

2

))r

� 1

2

(
dp

(
e X , γ (0)

)r + dp
(
e X , γ (1)

)r) − 1

4
crdp

(
γ (0), γ (1)

)r
, (7)

with r and cr as above.

Proof. Given a = γ (0), b = γ (1) ∈ �p , let m = m(a,b) be the midpoint of a and b. We claim that there exist g ∈ GL(H, B p)

and X ∈ Bsa
p with

lg(a) = e X , lg(b) = e−X .

First, observe that h1 = b− 1
2 satisfies lh1(b) = 1. Let x := lh1 (a) and we define h2 : x− 1

4 and g := h2h1. Then

lg(a) = h2h1ah1h2 = lh2 (x) = x
1
2 ,

lg(b) = h2h1bh1h2 = lh2(1) = x− 1
2 .

Now the claim above follows with x = e2X .

By the invariance of the distance under the action of GL(H, B p) and the claim, it suffices to verify the inequality for pairs
a,b with b = a−1. This case follows from the previous lemma. �

Following [7], one can define two different notions of convexity for metric spaces.

Definition 3.6. Let (X,d) be a metric space admitting a midpoint map. (X,d) is called

1. ball convex if for all x, y, z ∈ X ,

d
(
m(x, y), z

)
� max

{
d(x, z),d(y, z)

}
(8)

for any midpoint m. It is called strictly ball convex if the inequality is strict whenever x �= y;
2. distance convex if for all x, y, z ∈ X ,

d
(
m(x, y), z

)
� 1

2

[
d(x, z) + d(y, z)

]
, (9)

for any midpoint map m.

Note that the condition (9) implies condition (8), and also that strict ball convexity implies the uniqueness of a midpoint
map.

Now, we give the definition of uniform ball convexity of metric spaces, see [7].
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Definition 3.7. Let (X,d) be a metric space admitting a midpoint map. (X,d) is called uniformly ball convex if for all ε > 0
there exists a ρ(ε) > 0 such that for all x, y, z ∈ X satisfying d(x, y) > ε max{d(x, z),d(y, z)}, it holds that

d
(
m(x, y), z

)
�

(
1 − ρ(ε)

)
max

{
d(x, z),d(y, z)

}
for the (unique) midpoint map m.

Corollary 3.8. The metric space (�p,dp) is strictly ball convex for 1 < p < ∞.

Proof. Let a,b, c ∈ �p with a �= b, then

dp

(
c, γa,b

(
1

2

))r

� 1

2

(
dp(c,a)r + dp(c,b)r) − 1

4
crdp(a,b)r <

(
max

{
dp(c,a),dp(c,b)

})r
. �

Corollary 3.9. If a,b, c ∈ �p (1 < p < ∞) are three arbitrary points, then we have

2r(L A)r � 2r−1 Br + 2r−1Cr − cr Ar

with A = dp(b, c), B = dp(c,a), C = dp(a,b) and L A the length of the geodesic joining a to m(b, c).

Another interesting consequence of Theorem 3.5 is the uniform convexity of (�p,dp).

Corollary 3.10. For 1 < p < ∞, the metric space (�p,dp) is uniformly ball convex.

One can to compute the modulus of uniform convexity explicitly in these cases.
Consider ε > 0, set dp(a,b),dp(a, c) � s and dp(b, c) � εs. Then,

dp
(
a,m(b, c)

)r � sr − 1

4
crdp(b, c)r � sr − 1

4
cr(εs)r =

[
1 − cr

(
ε

22/r

)r]
sr .

Then an admissible value for the modulus of uniform convexity is ρ�p (ε) = 1 − [1 − cr(
ε

22/r )
r]1/r .

Note that the formula of the modulus is similar with the one obtained by Clarkson for the space L p .

Proposition 3.11. Let X ∈ Bsa
p , γ : [0,1] → �p a geodesic and 1 < p � 2. Then for all t ∈ [0,1],

dp
(
e X , γ (t)

)r � (1 − t)dp
(
e X , γ (0)

)r + tdp
(
e X , γ (1)

)r − t(1 − t)crdp
(
γ (0), γ (1)

)r
. (10)

Proof. Let us denote W2(t) = t(1 − t). Given any geodesic γ : [0,1] → �p , it suffices to prove the previous inequality for all
dyadic t ∈ [0,1]. It obviously holds for t = 0 and t = 1. Assume that it holds for all t = k2−n with k = 0,1, . . . ,2n . We want
to prove that (10) also holds for all t = k2−(n+1) with k = 0,1, . . . ,2n+1. For k even this is clear. Fix t = k2−(n+1) with k odd;
and put �t = 2−(n+1) . Then by (7)

dp
(
e X , γ (t)

)r � 1

2

(
dp

(
e X , γ (t − �t)

)r + dp
(
e X , γ (t + �t)

)r) − 1

4
crdp

(
γ (t − �t), γ (t + �t)

)r
. (11)

By the assumption for multiples of 2−n ,

dp
(
e X , γ (t ± �t)

)r � (1 − t ∓ �t)dp
(
e X , γ (0)

)r + (t ± �t)dp
(
e X , γ (1)

)r − W2(t ± �t)crdp
(
γ (0), γ (1)

)r
.

Thus, by (11)

dp
(
e X , γ (t)

)r � (1 − t)dp
(
e X , γ (0)

)r + tdp
(
e X , γ (1)

)r − [
g(t,�t)

]
crdp

(
γ (0), γ (1)

)r
,

where g(t,�t) = (�t)2 + 1
2 W2(t − �t) + 1

2 W2(t + �t).
Since

W2(t) = (�t)2 + 1

2
W2(t − �t) + 1

2
W2(t + �t) = g(t,�t), (12)

then

dp
(
e X , γ (t)

)r � (1 − t)dp
(
e X , γ (0)

)r + tdp
(
e X , γ (1)

)r − W2(t)crdp
(
γ (0), γ (1)

)r
. �
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Corollary 3.12. Let γ ,η : [0,1] → �p,1 < p � 2 and t ∈ [0,1], then

dp
(
η(t), γ (t)

)r � (1 − t)2dp
(
η(0), γ (0)

)r + t2dp
(
η(1), γ (1)

)r − t(1 − t)cr
(
L p(η)r + L p(γ )r)

+ t(1 − t)
[
dp

(
η(0), γ (1)

)r + dp
(
η(1), γ (0)

)r]
.

Proof. Applying (10) twice, we obtain that

dp
(
η(t), γ (t)

)r � (1 − t)dp
(
η(0), γ (t)

)r + tdp
(
η(1), γ (t)

)r − t(1 − t)cr L p(η)r

� (1 − t)
[
(1 − t)dp

(
η(0), γ (0)

)r + tdp
(
η(0), γ (1)

)r − t(1 − t)cr L p(γ )r]
+ t

[
(1 − t)dp

(
η(1), γ (0)

)r + tdp
(
η(1), γ (1)

)r − t(1 − t)cr L p(γ )r] − t(1 − t)cr L p(η)r

= (1 − t)2dp
(
η(0), γ (0)

)r + t2dp
(
η(1), γ (1)

)r − t(1 − t)cr
(
L p(η)r + L p(γ )r)

+ t(1 − t)
[
dp

(
η(0), γ (1)

)r + dp
(
η(1), γ (0)

)r]
. �

In particular if p = r = 2, the metric space (�2,d2) is an Alexandrov nonpositive curvature space and we get

d2
(
η(t), γ (t)

)
< (1 − t)d2

(
η(0), γ (0)

) + td2
(
η(1), γ (1)

)
,

or equivalently, d2 is strictly convex on geodesics.
Now, we try to extend this result for p > 1 with p �= 2. Recently, Larotonda [10] using the theory of dissipative opera-

tors and the theory of entire functions, derived several operator inequalities for unitarily invariant norms. Among them, if
X, Y ∈ Bsa

p ,

∥∥log
(
e

−t
2 X etY e

−t
2 X )∥∥

p � t
∥∥log

(
e

−X
2 eY e

−X
2

)∥∥
p . (13)

This inequality establishes the convexity of the geodesic distance dp in the Finsler manifold �p , that is:

Proposition 3.13. Let a,b, c,d ∈ �p , then

dp
(
γa,b(t), γc,d(t)

)
� tdp(a, c) + (1 − t)dp(b,d). (14)

Proof. Consider the geodesic rectangle with vertices a,b, c,d. Let γc,b be the short curve joining c to b in ΣΦ , and consider
the triangle with sides c,b,d, and the geodesic triangle with sides b,a, c. Note that γc,b(t) = γb,c(1 − t) and the same holds
for γa,b . Then, by the triangle inequality

dp
(
γa,b(t), γc,d(t)

)
� dp

(
γa,b(t), γc,b(t)

) + dp
(
γc,b(t), γc,d(t)

)
,

and by (13)

dp
(
γc,b(t), γc,d(t)

)
� t dp(b,d).

Also

dp
(
γb,c(1 − t), γb,a(1 − t)

)
� (1 − t)dp(a,b).

Adding these two inequalities yields the convexity of dp . �
3.2. Best approximation

Given a subset K ⊆ �p and an element a ∈ �p , put

dp(a, K ) = inf
{

dp(a,k): k ∈ K
}
.

In Theorem 3.14, we shall prove that, as in a Hilbert space, one can define a metric projection onto convex closed subsets
of �p . In other words given K a convex closed subset of �p and a ∈ �p , there is a unique k0 ∈ K such that the length
of the geodesic joining a with k0 is the distance between a and K . That is, there is a unique solution to the minimization
problem{

k0 ∈ K ,

dp(a,k0) � dp(a,k) ∀k ∈ K .
(15)
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Theorem 3.14 (Best approximation). Let K ⊆ �p be a convex closed set, 1 < p < ∞ and a ∈ �p . Then the problem (15) has a unique
solution. In other words, there is a unique πK (a) = k0 ∈ K such that dp(a,q0) = dp(a, K ). In addition, if ã belongs to the geodesic
segment [a,πK (a)], then πK (ã) = πK (a).

Proof. Let {kn}n∈N be a sequence in K , such that dp(a,kn) → dp(a, K ). By Theorem 3.5 we obtain that

1

4
crdp(kn,km)r � 1

2

(
dp(kn,a)r + dp(a,km)r) − dp(a,kn,m)r

� 1

2

(
dp(kn,a)r + dp(a,km)r) − dp(a, K )r, (16)

where kn,m = γ ( 1
2 ) ∈ K , with γ the geodesic joining kn and km .

This implies that {kn}n∈N is a Cauchy sequence in K , hence convergent to some k0 ∈ K . Since K is closed, k0 ∈ K . By the
continuity of the distance we have

dp(k0,a) = lim
n→∞ dp(kn,a) = dp(a, K ).

For the uniqueness part, let k1,k2 ∈ K such that

dp(k1,a) = dp(a, K ) = dp(k2,a).

Replacing kn and km by k1 and k2 respectively in (16), we obtain

dp(a,k1,2)
r � 1

2

(
dp(k1,a)r + dp(a,k2)

r) − 1

4
crdp(k1,k2)

r = dp(a, K )r − 1

4
crdp(k1,k2)

r,

since k1,2 ∈ K , the above inequality proves that dp(k1,k2) = 0. �
Definition 3.15. Let K ⊆ �p be a convex closed set, 1 < p < ∞ and a ∈ �p . By Theorem 3.14 there is exactly one point
πK (a) ∈ K such that

dp
(
a,πK (a)

) = dp(a, K ).

Then πK (a) is called the projection of a to K . The map πK : �p → K is called the projection map to K .

Remark 3.16.

1. We remark that we have proved the existence of a unique projection without assuming any kind of compactness for K .
2. Clearly π2

K = πK .

Theorem 3.17. Let K ⊆ �p be a convex closed set, 1 < p < ∞ and πK the projection map onto K . Then πK is continuous.

Proof. Let the sequence {cn} converge to c in �p . For simplicity, denote πK (cn) by un . Now {un} is a Cauchy sequence in K ,
otherwise there are positive numbers ε and subsequences {unk } and {umk } such that nk < mk and dp(unk , umk ) � ε for all k.
Put ak = unk , bk = umk and Mk = max{dp(c,ak),dp(c,bk)}.

Note that Mk → dp(c, K ) as k → ∞. Now dp(c,ak) � Mk,dp(c,bk) � Mk and dp(ak,bk) � ( ε
Mk

)Mk . This implies

dp
(
c,m(ak,bk)

)
� Mk

(
1 − ρ�p

(
ε

Mk

))
� Mk

(
1 − ρ�p

(
d(ak,bk)

Mk

))
.

Also ρ�p (
ε

Mk
) � 1 − dp(c,K )

Mk
, letting k → ∞, one has δ�p (

ε
Mk

) → 0 and ε cannot be positive. Thus {πK (cn)} is a Cauchy
sequence in K and therefore converges to a point z in K , as dp(c, z) = dp(c, K ), then z = πK (c). �

Another useful property of the �p spaces with 1 < p � 2 is the following Pythagoras type inequality.

Corollary 3.18. Under the same conditions stated above, we have that for all k ∈ K with K a closed and convex set and t ∈ (0,1],

dp
(
a,πK (a)

)2 + (1 − t)(p − 1)dp
(
πK (a),k

)2 � dp(a,k)2, (17)

in particular

dp
(
a,πK (a)

)2 + (p − 1)dp
(
πK (a),k

)2 � dp(a,k)2. (18)
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Proof. Let γ : [0,1] → �p be the geodesic joining γ (0) = πK (a) and γ (1) = k, then γ (t) ∈ K by the convexity of K . Hence,
by Proposition 3.11

dp
(
a,πK (a)

)2 � dp
(
a, γ (t)

)2 � (1 − t)dp
(
a,πK (a)

)2 + tdp(a,k)2 − t(1 − t)(p − 1)dp
(
πK (a),k

)2
,

and therefore

tdp
(
a,πK (a)

)2 � tdp(a,k)2 − t(1 − t)(p − 1)dp
(
πK (a),k

)2
.

Now if t ∈ (0,1], this is the desired inequality. �
We shall prove now that the inequality (18) characterizes solutions of the minimization problem.

Theorem 3.19. Let K ⊆ �p be a convex closed subset and q ∈ �p with 1 < p � 2. Suppose that q0 ∈ K verifies (18), then q0 is the
unique solution of (15).

Proof. For all k ∈ K and t ∈ (0,1] we have

d(q,q0)
2 + (p − 1)d(q0,k)2 � d(q,k)2.

Then d(q,q0) � d(q,k). For the uniqueness part, let q0,q1 ∈ K satisfying (18), then

(p − 1)d(q1,q0)
2 � d(q,q1)

2 − d(q,q0)
2 = d(q, K )2 − d(q, K )2. �
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