
1st Reading

September 29, 2008 15:24 WSPC/133-IJM 00510

International Journal of Mathematics1
Vol. 19, No. 10 (2008) 1–24
c© World Scientific Publishing Company3

GEOMETRY OF UNITARIES IN A FINITE ALGEBRA:
VARIATION FORMULAS AND CONVEXITY∗5

ESTEBAN ANDRUCHOW

Instituto de Ciencias7
Universidad Nacional de General Sarmiento

J.M. Gutierrez 1150, (1613) Los Polvorines, Argentina9
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Given a C∗-algebra A with trace τ , we compute the first and second variation formulas
for the p-energy functional Fp of the unitary group UA of A, for p = 2n an even integer,
namely:

Fp(γ) =

Z b

a
τ([γ̇∗γ̇]n)dt,

where γ(t) ∈ UA is a smooth curve for t ∈ [a, b]. As an application of these formulas,
we prove that if dp denotes the geodesic distance of the Finsler metric induced by the

p-norm ‖x‖p = τ([x∗x]n)1/p, u0, u1, u2 ∈ UA with ‖ui − uj‖ < 1
2

p
2 −√

2 and δ(t) is a
geodesic of UA joining δ(0) = u0 and δ(1) = u1, then the mapping

f(t) = dp(u2, δ(t))p , t ∈ [0, 1]

is convex.15
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1. Introduction

In this paper we study the geometry of the unitary group UA of a C∗-algebra A19

with a finite trace, endowed with the Finsler metric given by the p-Schatten norms
of the trace (p = 2n an even integer). It is a continuation of [2], where it was shown21

that the unitary group is a complete metric space with the rectifiable metric given
by the p-norm, and that any pair of unitaries can be joined by a smooth minimal23

∗Geometry of unitaries: variation and convexity.
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geodesic (if the unitaries lie at norm distance less than 2, the minimal geodesic is1

unique). We remark that these results do not follow from general facts concerning
Riemann or Finsler metrics, because the tangent spaces are not complete for the3

p-norms, neither is the unitary group a Banach–Lie group with the local structure
given by these norms. For background material on C∗-algebras and the differential5

geometry of infinite-dimensional Finsler manifolds, we refer the reader to the book
by Upmeier [11].7

In this paper we consider the properties of the (rectifiable) distance function dp:

f(s) = dp(u2, γ(s))p,

where u2 ∈ UA is fixed and γ is a geodesic, namely, a curve of the form γ(s) = u0e
sx,

with u0 unitary and x skew-hermitian. To pursue this study, we compute the first9

and second variational formulas, which we claim are of interest in their own. Using
these formulas, we show that the function f is convex provided that u and the11

endpoints of γ lie at norm distance less than 1
2

√
2 −√

2. Also we give estimates for
the Taylor coefficients of f .13

One motivation for this study is the problem of the existence of curves of min-
imal length in homogeneous spaces of the unitary group of a C∗-algebra. Namely,15

in spaces UA/UB, where B ⊂ A is a unital sub-C∗-algebra. These quotients have
natural Finsler metrics introduced in [5], induced by the (quotient) norm. In [6],17

existence of minimal curves was proved under restrictive conditions on the sub-
algebra B, which allowed compactness arguments. In order to obtain more general19

results on minima of the length functional, in the absence of compactness, con-
vexity arguments are useful. More precisely, our main result here shows that the21

p-power of the distance function dp from a fixed element u2 in UA to the left coset
u1 ·UB of another near element u2 in UA, is a convex function. Approximation argu-23

ments (as p → ∞) should provide insight into the problem of existence of minimal
cure.25

Denote by Ah and Aah the sets of hermitian and skew-hermitian elements of A.
The group UA is a Banach–Lie group in the operator norm topology. The Banach–
Lie algebra is the space Aah, and the tangent space at an element u ∈ UA is

(TUA)u = uAah = Aahu.

If one endows UA with the Finsler metric which consists of the usual norm at each
tangent space, it is known that the geodesics (=short curves) are curves of the form27

δ(t) = uetz, for z ∈ Aah with ‖z‖ ≤ π. Moreover, any pair of unitaries can be joined
by a short curve of this form, which is unique if ‖z‖ < π.29

We make the assumption that A has a faithful trace τ . The group UA is a
complete topological group when regarded with the 2-metric induced by τ : ‖x‖2 =31

τ(x∗x)1/2. It is not a Lie group in this topology. Nevertheless one can introduce a
non-complete Riemannian metric, endowing the tangent space with this quadratic33

norm. This type of manifolds (with non complete Riemannian metrics) are called
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weak Riemannian manifolds in the literature. The Levi–Civita connection of this1

metric is given by the expression:

DX

dt
= Ẋ − 1

2
{µ∗µ̇X + Xµ∗µ̇}, (1.1)3

where µ is a smooth curve and X is smooth a vector field, tangent along µ, i.e.
Xµ(t) ∈ µ(t)Aah (here smoothness refers to differentiability in the operator norm5

topology). Remarkably, the short curves δ described before are geodesics for this
connection, that is, they satisfy the Euler equation corresponding to (1.1). In [1], it7

was proven that they are also short geodesics, when the length of curves is measured
using the 2-norm ‖ ‖2 at each tangent space, i.e. they are minimal geodesics of the9

Riemannian metric. Furthermore, in [2], it was proved that they are also minimal
for the Finsler metric given by the p-norms ‖x‖p = τ((x∗x)p/2)1/p, for 2 ≤ p ≤ ∞.11

In Sec. 2, we compute the first and second variation formulas for the p-energy
functional Fp, for p = 2n an even integer, namely

Fp(γ) =
∫ 1

0

τ([γ̇∗γ̇]n)dt

defined on smooth curves γ ∈ UA (which, for simplicity, we shall suppose
parametrized in the unit interval [0, 1]).13

These formulas will play an important role in the metric study of homogeneous
spaces, which we will pursue elsewhere. As an application of these formulas in this
direction, we prove our main result in Sec. 4: if dp denotes the geodesic distance
for the Finsler metric induced by the p-norm (p = 2n), δ(t) ∈ UA is a minimizing
geodesic joining δ(0) = u0 and δ(1) = u1, and u2 is a fixed element in UA, then the
map

f(s) = dp(u2, δ(s))p, s ∈ [0, 1]

is convex, provided that ‖ui − uj‖ < 1
2

√
2 −√

2.
The minimality results for geodesics in the p-norms establish that UA with

the Finsler p-metric is a geodesic metric space (see [8]). The result above can be
formulated in the language of geodesic metric spaces: the map

F : {u ∈ UA : ‖u − u2‖ < r/2} → R, F (u) = dp(u, u2)p

is convex, for r = 1
2

√
2 −√

2.15

In Sec. 5, we estimate the Taylor coefficients of f(s). Namely, if n ≥ 2 (p ≥ 4)
and (without loss of generality) u = 1 and δ(s) = evesz , we prove that

f(s) = |τ(vp)| + sp|τ(zp)| +
∞∑

k=1

Qk(v, z)sk,

and there exist constants R and C = C(‖v‖, ‖z‖) with C → 0 if ‖v‖, ‖z‖ → 0, such
that

|Qk(v, z)| ≤ C‖z‖1−1/(n−1)
2 f ′′(0)1/(p−2),



1st Reading

September 29, 2008 15:24 WSPC/133-IJM 00510

4 E. Andruchow & L. A. Recht

for ‖v‖, ‖z‖ < R. In particular, if f ′′(0) = 0, then f reduces to f(s) = |τ(vp)| +1

sp|τ(zp)|.
We shall adopt the following conventions. Capital letters X, Y, Z will denote3

fields of operators. If X is a tangent field, Xu ∈ uAah, we will denote with the lower
case type x the field left translation of the field to the origin: xu = u∗Xu ∈ Aah, and5

will omit the subindex u when possible. For example, if one performs this translation
for the covariant derivative formula (1.1), one obtains, after routine computations:7

µ∗DX

dt
= ẋ − 1

2
[x, µ∗µ̇], (1.2)

where [, ] is the usual commutator of operators.9

Note that an element z of A which is tangent at u ∈ UA verifies z∗u + u∗z = 0.
Therefore z∗ = −u∗zu∗ and z∗z = −(u∗)z2. It follows that we can replace the11

formula of Fp by the following expression:

Fp(γ) = (−1)n

∫ 1

0

τ([γ∗γ̇]p)dt. (1.3)
13

Note that if γ is a geodesic of UA, then v = γ∗(t)γ̇(t) = (uetz)∗ ˙(uetz) = z is
constant.15

Let us also recall the Jacobi operator. For a field X tangent along a curve µ,

J(X) =
D2X

dt2
+ R(X, V )V.

In our case, following the convention concerning the left translation of the fields,

µ∗J(X) = µ∗D2X

dt2
− 1

4
[[x, v], v]. (1.4)17

2. First and Second Variation Formulas for Fp

Let γs(t), t ∈ [0, 1], s ∈ (−r, r) be a smooth variation of the curve γ, i.e.19

(1) γs(t) ∈ UA, for all s, t.
(2) The map (s, t) 	→ γs(t) is smooth (in the ‖ ‖ topology of UA).21

(3) γ0(t) = γ(t).

Our first task will be to find a formula for

d

ds
Fp(γs)|s=0.

As in classical differential geometry, we shall call the expression obtained the first
variation formula. We adopt the following conventions: · will denote the derivative
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with respect to the parameter t, and ′ the derivative with respect to s. Let

Vs = γ̇s and Ws = γ′
s,

and as remarked before, with lower case types the left translations

vs = γ∗
sVs and ws = γ∗

sWs.

Note that Vs, Ws ∈ (TUA)γs whereas vs, ws ∈ Aah. Then

d

ds
Fp(γs) = (−1)n d

ds

∫ 1

0

τ(vs(t)p)dt = (−1)n

∫ 1

0

τ

(
d

ds
vs(t)p

)
dt.

By the properties of the trace τ , τ( d
dsvs(t)p) = pτ(vp−1

s v′s). Note also that

v′s =
d

ds
γ∗

s γ̇s = W ∗
s Vs + γ∗

s

d

ds
γ̇s.

Therefore1

d

ds
Fp(γs) = (−1)np

∫ 1

0

τ(W ∗
s Vsv

p−1
s )dt + (−1)np

∫ 1

0

τ

(
vp−1

s γ∗
s

d

ds
γ̇s

)
dt. (2.1)

Let us first consider the second integral in (2.1):

(−1)np

∫ 1

0

τ

(
vp−1

s γ∗
s

d

ds
γ̇s

)
dt = (−1)np

∫ 1

0

τ

(
vp−1

s γ∗
s

d

dt
Ws

)
dt

= (−1)np

∫ 1

0

τ

(
d

ds
[vp−1

s γ∗
sWs]

)
dt

− (−1)np

∫ 1

0

τ

(
d

ds
[vp−1

s γ∗
s ]Ws

)
dt.

Note that d
ds [vp−1

s γ∗
s ] = d

ds [vp−1
s ]γ∗

s + vp−1
s V ∗

s . Therefore

(−1)n

p

d

ds
Fp(γs) =

∫ 1

0

τ(Vsv
p−1
s W ∗

s )dt −
∫ 1

0

τ(vp−1
s V ∗

s W )dt

−
∫ 1

0

τ

(
d

dt
[vp−1

s ]γ∗
sWs

)
dt + τ(vp−1

s γ∗
sWs)|t=1

t=0.

Note that since p − 1 is odd, vp−1
s is skew-hermitian, and therefore

τ̄ (Vsv
p−1
s W ∗) = −τ(Wsv

p−1
s V ∗

s ) = −τ(vp−1
s V ∗

s Ws).

Then the first two integrals above equal∫ 1

0

2Re τ(vp−1
s V ∗

s Ws)dt.

Since Vs is tangent to UA at γs, we have that V ∗
s = −γ∗

sVsγ
∗
s , as explained before.3

Then vp−1
s V ∗

s Ws = (γ∗
sVs)p−1(−γ∗

sVsγ
∗
s )Ws = −vp

sγ∗
sWs, where vp

s is hermitian and
γsWs is skew-hermitian (recall that Ws is tangent at γs). Therefore the trace of5

this product (of an hermitian times a skew-hermitian operator) is a pure imaginary
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number. Then the sum of the first two integrals vanishes. If ws = γ∗
sWs, we arrive1

at the following expression for the first variation:

Theorem 2.1. Let γs(t) ∈ UA with t ∈ [0, 1], s ∈ (−r, r), vs(t) = γ∗
s (t)γ̇s(t),

ws(t) = γ∗
s (t)γ′

s(t). Then

(−1)n

p

d

ds
Fp(γs) = τ(vp−1

s ws)|t=1
t=0 −

∫ 1

0

τ

(
d

dt
[vp−1

s ]ws

)
dt.

Let us compute now the second variation formula. Here we will suppose that
the variation γ depends on two parameters s and s̃: γ = γs,s̃, with s, s̃ ∈ (−r, r).
We shall compute

d2

dsds̃
Fp(γs,s̃)|s=0,s̃=0

in the special case when γs,s̃|s=0,s̃=0 is a geodesic of UA. For brevity, we shall omit
the subindices s, s̃ of the fields v, V, w, W , etc. Let us compute first the derivative
of the second term in (2.1):

d

ds̃
|s̃=0

∫ 1

0

τ

(
d

dt
[vp−1]w

)
dt.

Note that

d

ds̃

d

dt
vp−1 =

d

dt

d

ds̃
vp−1 =

d

dt

∑
k+l=p−2

vk

(
d

ds̃
v

)
vl.

Let us denote W̃ = d
ds̃γ, which is a tangent field along γ, and accordingly w̃ = γ∗W̃ .

In general, if Z is a tangent field along γ, by (1.2),

d

dt
Z = γ∗DZ

dt
+

1
2
[z, v] (z = γ∗Z).

In particular,

d

ds̃
v =

d

ds̃
γ∗ d

dt
γ =

(
d

ds̃
γ∗
)

d

dt
γ + γ∗ d2

ds̃dt
γ

= W̃ ∗V + γ∗ d

dt
W̃ = (γw̃)∗V + γ∗ d

dt
(γw̃) = w̃∗v + vw̃ +

d

dt
w̃.

Note that w̃∗ = −w̃. Using that d
dtw̃ = γ∗ DW̃

dt − 1
2 [v, w̃] (from 1.2), it follows that3

d

ds̃
v = [v, w̃] +

d

dt
w̃ =

1
2
[v, w̃] + γ∗DW̃

dt
. (2.2)

In the computation of d
dt

∑
k+l=p−2 vk( d

ds̃v)vl, we only need to consider the terms
vk( d

dt(
d
ds̃v))vl. Indeed, the other terms involve derivatives of v with respect to t,

which vanish at s = 0, s̃ = 0, because γs=0, s̃=0(t) is a geodesic, and therefore
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vs=0,s̃=0(t) is constant (recall the observation at the end of the first section). It
follows that

d

ds̃

d

dt
vp−1|s=0,s̃=0 =

∑
k+l=p−2

vk

(
d

dt

d

ds̃
v

)
vl.

Moreover, by (2.2),

d

dt

d

ds̃
v =

d

dt

(
1
2
[v, w̃] + γ∗DW̃

dt

)
.

Now v is constant with respect to t at s = 0, s̃ = 0. Therefore

1
2

d

dt
[v, w̃] =

1
2

[
v,

d

dt
w̃

]
=

1
2

[
v, γ∗DW̃

dt

]
− 1

4
[v, [v, w̃]].

Denote by Z the tangent field DW̃
dt . Then the remainder derivative

d

dt

(
γ∗DW̃

dt

)
=

d

dt
z = γ∗DZ

dt
− 1

2
[v, z].

It follows that

d

dt

d

ds̃
v = γ∗D2W̃

dt
− 1

4
[v, [v, w̃]].

Let us remark the ocurrence of the Jacobi operator (1.4) in this computation.1

Therefore we arrive at the following formula for the first term in the second
variation formula:

d

ds̃

∣∣∣∣
s+0,s̃=0

∫ 1

0

τ

([
d

dt
vp−1

]
w

)
dt

=
∫ 1

0

τ


 ∑

k+l=p−2

vk

(
γ∗D2W̃

dt2
− 1

4
[[w̃, v], v]

)
vlw


dt

=
∫ 1

0

τ


 ∑

k+l=p−2

vk(γ∗J(W̃ )vlw


dt.

Let us proceed now with the computation of the derivative of the first term
in (2.1)

d

ds̃

∣∣∣∣
s=0,s̃=0

τ(vp−1w)|t=1
t=0.

We shall make a further assumption, namely that γs,s̃(0) = 1. The geometric mean-
ing of this assumption is that the variation γ (putting s = s̃) consists of a family of3

curves joining 1 to the points of δ = γs(1), which is a variation of a given geodesic
γ0,0(t).5
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This assumption implies that ws(0) = 0. Recall also the expression (2.2) previ-
ously obtained for d

ds̃v,

d

ds̃
v = γ∗DW̃

dt
+

1
2
[v, w̃].

In the cases of d
ds̃w (i.e. w = v in (2.2)) gives

d

ds̃
w = γ∗DW̃

ds̃
+

1
2
[w, w̃].

Then

d

ds̃

∣∣∣∣
s=0,s̃=0

τ(vp−1)|t=1
t=0 = τ


 ∑

k+l=p−2

vkγ∗DW̃

dt
vlw



∣∣∣∣∣∣
t=1

t=0

+
1
2
τ


 ∑

k+l=p−2

vk[v, w̃]vlw



∣∣∣∣∣∣
t=1

t=0

+ τ

(
vp−1

(
γ∗DW̃

ds̃
+

1
2
[w, w̃]

))∣∣∣∣∣
t=1

t=0

.

Note that elementary computations show that τ(
∑

k+l=p−2 vk[v, w̃]vlw) =1

τ(vp−1[w, w̃]).
Let us summarize the computation of the second variation, with the given3

assumptions, putting s = s̃, which implies W = W̃ , and therefore the commu-
tants [w, w̃] vanish.5

Theorem 2.2. Suppose that γs(t), t ∈ [0, 1], s ∈ (−r, r) is a variation of a geodesic
γ0 of UA, with γs(0) = 1 for all s. Then

d2

ds2

∣∣∣∣
s=0

Fp(γs) = τ


 ∑

k+l=p−2

vkγ∗DW

dt
vlw




t=1

+
∫ 1

0

τ


 ∑

k+l=p−2

vk

(
γ∗D2W

dt2
− 1

4
[[w, v], v]

)
vlw


dt

+ τ

(
vp−1γ∗DW

ds̃

)∣∣∣∣
t=1

= τ


 ∑

k+l=p−2

vkγ∗DW

dt
vlw



∣∣∣∣∣∣
t=1

+
∫ 1

0

τ


 ∑

k+l=p−2

vkγ∗J(W )vlw


dt

+ τ

(
vp−1γ∗DW

ds̃

)∣∣∣∣
t=1

.
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Proof. At the extreme t = 0, W and w vanish.1

Corollary 2.1. If additionally γs(t) consists of a variation of the geodesic γ0 by
geodesics, and furthermore, at t = 1, γs(1) is a geodesic of UA, then

d2

ds2

∣∣∣∣
s=0

Fp(γs) = τ


 ∑

k+l=p−2

vkγ∗DW

dt
vlw



∣∣∣∣∣∣
t=1

.

Proof. In this case, W is a Jacobi field (in the parameter t), i.e. J(W ) = 0, and
the fact γs(1) is a geodesic implies that DW

ds = 0.3

Remark 2.1. In Sec. 4, we shall apply this formula above to the case of the
variation (of geodesics by geodesics) given as follows. Fix v, z ∈ Aah such that5

the unitaries 1, ev and evez lie within distance less than 2. Let γs(t) be the unique
geodesic (of the parameter t ∈ [0, 1] joining 1 and evesz, for s ∈ [0, 1], or equivalently,7

γs(t) = etωs , where ωs = log(evesz). One has that for each fixed s0, γs0 is a geodesic,
and therefore γs(t) can be regarded as a variation of this geodesic γs0 . Therefore9

the above computation of the derivative holds for s0 as well.

3. The Hessian of the Power p of the p-Norm11

Let us denote by Ep(x) = τ((x∗x)n) = ‖x‖p
p. In what follows, the Hessian form

of this map will play a crucial role. We shall restrict to Aah, therefore Ep(x) =13

(−1)nτ(xp). It is straightforward to verify that (dEp)x(y) = (−1)npτ(xp−1y). The
second differential equals15

Hx(y, z) := (d2Ep)x(y, z) = (−1)npτ


 ∑

k+l=p−2

xkyxlz


, x, y, z ∈ Aah. (3.1)

Note that the the second variation formula can be expressed in terms of H . In17

[9], Mata-Lorenzo and Recht studied the sign of H , and showed that it is positive
semidefinite. Let us transcribe Proposition 3.1 from [9], adapted to our context and19

notation.

Proposition 3.1. The form Hx : Aah × Aah → R is positive semidefinite.
Moreover, it can be given the form

Hx(y) = Hx(y, y) = p‖|y||x|n−1‖2
2 + n

∑
l+m=n−2

‖|x|l(xy + yx)|x|m‖2
2.

We shall use this formula later.21

Let us prove now that the covariant derivative along a geodesic is compatible
with the Hessian form.23
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Proposition 3.2. Let γ(t) = etv with v ∈ Aah, and let X and Y be tangent vector
fields along γ, with x = γ∗X and y = γ∗Y as before. Then

d

dt
Hv(x, y) = Hv

(
γ∗DX

dt
, y

)
+ Hv

(
x, γ∗ DY

dt

)
.

Proof. Recall from (1.2) that ẋ = γ∗ DX
dt + 1

2 [x, γ∗γ̇], where γ∗γ̇ = v, and analo-
gously for Y . Then

(−1)n

p

d

dt
Hv(x, y) = τ


 ∑

k+l=p−2

vk

(
γ∗DX

dt
+

1
2
[x, v])vl

)
y




+ τ


 ∑

k+l=p−2

vkxvl

(
γ∗DY

dt
+

1
2
[y, v]

)

=
(−1)n

p

{
Hv

(
γ∗DX

dt
, y

)
+ Hv

(
x,

DY

dt

)

+
1
2
τ


 ∑

k+l=p−2

vk[x, v]vly + vkxvl[y, v]




.

Note that
∑

k+l=p−2 vk[x, v]vl = xvp−1 − vp−1x, and analogously for y. Then the
last term above equals

1
2
(τ(xvp−1y − vp−1xy + yvp−1x − vp−1yx)) = 0,

which finishes the proof.1

Remark 3.1. In particular, if X = Y , we may combine this result with the formula
obtained in Corollary 2.1 (and Remark 2.4) to obtain, for a Jacobi field X along a
geodesic γ satisfying the hypothesis of Corollary 2.1, the following expression

d2

ds2
Fp(γs)|s=0 =

1
2

d

dt
Hv(x, x)|t=1.

Let us compute now the second derivative,

d2

dt2
Hv(x),

for the case when X = γx is a Jacobi field along the geodesic γ(t) = etv. Recall the
Jacobi equation from (1.4):

γ∗D2X

dt2
=

1
4
[v, [v, x]].
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Then, from (3.2) we have

d2

dt2
Hv(x) = 2

d

dt
Hv

(
γ∗DX

dt
, x

)

= 2
{

Hv

(
γ∗D2X

dt
, x

)
+ Hv

(
γ∗DX

dt
, γ∗DX

dt

)}
.

The first term equals

Hv

(
γ∗D2X

dt
, x

)
= (−1)n p

4
τ


 ∑

k+l=p−2

vk[v, [v, x]]vlx


 = (−1)n p

4
τ([vp−1, [v, x]]x)

= (−1)n p

2
τ(vpx2 − vp−1xvx).

The second term, after straightforward computations (using the formula for the
covariant derivative), equals

Hv

(
γ∗DX

dt
, γ∗DX

dt

)
= (−1)npτ


 ∑

k+l=p−2

vk

(
ẋ +

1
2
[v, x]

)
vl

(
ẋ +

1
2
[v, x]

)

= (−1)np


τ


 ∑

k+l=p−2

vkẋvlẋ +
∑

k+l=p−2

vkẋvl[v, x]




− 1
2
τ(vpx2 − vp−1xvx)

}
.

Therefore we obtain1

d2

dt2
Hv(x, x) = (−1)n2p


τ


 ∑

k+l=p−2

vkẋvlẋ


+ τ


 ∑

k+l=p−2

vkẋvl[v, x]




. (3.2)

We can further simplify this expression. Let us write the Jacobi equation in terms3

of x and its deivatives:

Lemma 3.1. If X is a Jacobi field along γ(t) = etv, then x = γ∗X satifies

ẍ + [v, ẋ] = 0.

Proof. Note that DX
dt = γ(ẋ − 1

2 [x, v]), therefore if z = ẋ − 1
2 [x, v] and Z = γz,

one has
D2X

dt2
=

DZ

dt
= γ

(
ż − 1

2
[z, v]

)
= γ

(
ẍ − 1

2
[ẋ, v] − 1

2

[
ẋ − 1

2
[x, v], v

])

= γ

(
ẍ − [ẋ, v] +

1
4
[[x, v], v]

)
.
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Therefore the equation γ∗ D2X
dt2 = 1

4 [[x, v], v] translates into

ẍ − [ẋ, v] +
1
4
[[x, v], v] =

1
4
[[x, v], v],

or equivalently

ẍ − [ẋ, v] = 0.1

Remark 3.2. This version of the Jacobi equation can be integrated. The solu-
tion of

ẍ + [v, ẋ] = 0, with x(0) = 0 and ẋ(0) = ξ0

is given by

ẋ(t) = e−tvξ0e
tv

and

x(t) =
∫ t

0

e−svξ0e
svds.

Therefore,

[v, x] =
[
v,

∫ t

0

e−svξ0e
svds

]
=
∫ 1

0

e−sv[v, ξ0]esvds.

Therefore we obtain

Proposition 3.3. Let X = γx be a Jacobi field along γ(t) = etv (v ∈ Aah). Then

d2

dt2
Hv(x, x) = (−1)n2p


τ


 ∑

k+l=p−2

vkẋvlξ0




.

Proof. In the expression (3.2)

d2

dt2
Hv(x, x) = (−1)n2p


τ


 ∑

k+l=p−2

vkẋvl(ẋ + [v, x])




,

note that d
dt (ẋ + [v, x]) = ẍ + [v, ẋ] = 0, i.e. ẋ + [v, x] is constant. At t = 0, this

equals ξ0. Therefore

d2

dt2
Hv(x, x) = (−1)n2p


τ


 ∑

k+l=p−2

vkẋvlξ0




.3

4. Convexity Properties of the Geodesic Distance

Let us continue with the notations of the preceeding paragraph. The formula at5

(3.3) can be written

d2

dt2
Hv(x, x) = 2Hv(ẋ, ξ0). (4.1)7
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Let us denote by S(r) = SHv (r) the sphere of radius r of the form Hv:

S(r) = {a ∈ Aah : Hv(a) = Hv(a, a) = r2}.
In fact, since Hv may be degenerate, S perhaps should be called more properly a
cylinder. Note that the derivative (of the left translation) of the Jacobi field x can
be regarded as a displacement in the sphere S(Hv(ξ0)1/2), starting at the point ξ0

at t = 0. Indeed, recall that ẋ(0) = ξ0, and

ẋ(t) = e−tvξ0e
tv,

so that

Hv(ẋ) = Hv(e−tvξ0e
tv) = Hv(ξ0),

because τ(vke−tvξ0e
tvvle−tvξ0e

tv) = τ(e−tvvkξ0v
lξ0e

tv) = τ(vkξ0v
lξ0).1

We wish to prove that d2

dt2 Hv(x, x) ≥ 0 for all t up to a critical value, wich
we also wish to estimate. If Hv(ξ0) = 0, the Cauchy–Schwarz inequality applied3

to the non negative form Hv implies that Hv(ẋ, ξ0) ≡ 0 for all t, and therefore,
d2

dt2 Hv(x, x) ≡ 0. Thus we need only to consider the case Hv(ξ0) > 0.5

In the next propostion, we shall use the following elementary geometric fact.
Let Q be a postive semidefinite quadratic form on a vector space X , and denote
by SQ

R the sphere of radius R of this form, SQ
R = {x ∈ X : Q(x) = R2}. It is in

fact a cylinder, if Q(z) = 0 and x ∈ SQ
R , then the line {x + tz : t ∈ R} ⊂ SQ

R .
Suppose that two elements x0, x1 ∈ SQ

R satisfy 0 < Q(x0, x1) < R2. Then the
geodesic distance dQ(x0, x1) between these points, measured with the form Q, is
given by

dQ(x0, x1) = R arccos(Q(x0, x1)/R2).

Proposition 4.1. With the current notations,

d2

dt2
Hv(x, x) ≥ 0

for all

0 ≤ t ≤ π

2
Hv(ξ0)1/2

Hv([ξ0, v])1/2
,

if Hv([ξ0, v])1/2 �= 0. If Hv([ξ0, v])1/2 = 0, then d2

dt2 Hv(x, x) is a positive constant.

Proof. By the equality at the beginning of this section, it suffices to examine the
sign of Hv(ẋ, ξ0). Suppose first that Hv([v, ξ0]) = 0. By the aforementioned reason,
it follows that

0 = Hv(e−tv[v, ξ0]etv) = Hv([v, e−tvξ0e
tv]) = Hv([v, ẋ]).

Then, since Hv is non negative,
d

dt
Hv(ẋ, ξ0) = Hv(ẍ, ξ0) = Hv(−[v, ẋ], ξ0) = 0.

Thus Hv(ẋ, ξ0) is constant, and its value at t = 0 is Hv(ξ0) > 0.7
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Suppose now Hv([v, ξ0]) > 0. If we regard ẋ as displacement in S(Hv(ξ0))1/2,
the quantity Hv(ẋ, v) which is positive at t = 0, where it takes the value Hv(ξ0) > 0.
It will remain positive as long as ẋ reaches the Hv-orthogonal of ξ0 in the sphere
S(Hv(ξ0)1/2). To reach this point, ẋ should travel at least the distance π

2 times the
radius Hv(ξ0)1/2 of the sphere (the length measured with the form Hv). The arc
length of ẋ up to time t is measured by∫ t

0

Hv(ẍ)1/2dl =
∫ t

0

Hv([ẋ, v])1/2dl =
∫ t

0

Hv([ξ0, v])1/2dl = tHv([ξ0, v])1/2,

because [ẋ, v] = [e−lvξ0e
lv, v] = [ξ0, e

−lvvelv] = [ξ0, v]. It follows that Hv(ẋ, ξ0) ≥ 0
for all t such that

tHv([ξ0, v])1/2 ≤ π

2
Hv(ξ0)1/2,

which finishes the proof.1

Remark 4.1. Note that

Hv([ξ0, v])1/2

Hv(ξ0)1/2
≤ sup

{
Hv([z, v])1/2

Hv(z)1/2
: z ∈ Aah, Hv(z) �= 0

}
= ‖[, v]‖Hv ,

where ‖[, v]‖Hv denotes the norm of the commutator operator [, v] acting in Aah

endowed with the norm induced by the form Hv.3

In particular, the result above implies that d2

dt2 Hv(x, x) ≥ 0 for all 0 ≤ t ≤
‖[, v]‖−1

Hv
(with the convention that this property holds for all t ≥ 0 if ‖[, v]‖Hv = 0).5

Note that this bound ‖[, v]‖−1
Hv

depends solely on v. However, it is difficult to
compute. Let us provide a bound for t (ensuring d2

dt2 Hv(x, x) ≥ 0) in terms of the7

norm ‖v‖.

Lemma 4.1. Let a, b ∈ Aah. Then

Ha([b, a]) ≤ 4‖a‖2Ha(b).

Proof. Let us recall (3.1), the alternative expression for the quadratic form Hv

from [9]

Hx(y) = Hx(y, y) = p‖|y||x|n−1‖2
2 + n

∑
l+m=n−2

‖|x|l(xy + yx)|x|m‖2
2.

Consider the first term. In our case x = a and y = [b, a]:

p‖|[b, a]||a|n−1‖2
2 = p‖|[b, a]|an−1‖2

2.

Note that if x, y ∈ A, ‖|x|y‖2 = ‖xy‖2. Indeed, we can imbed A in a finite von
Neumann algebra M, with the trace τ extended to a trace (eventually non normal),
and perform in M the polar decomposition x = u|x|, where u can be chosen unitary
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because M is finite. Then ‖|x|y‖2 = ‖u∗xy‖2 = ‖xy‖2. Analogously ‖y|x|‖2 =
‖yx‖2. Then

p‖[b, a]vn−1‖2
2 ≤ p(‖ban‖2 + ‖aban−1‖2)2.

It is elementary that if x, y ∈ A, ‖yx‖2 ≤ ‖y‖2‖x‖ and ‖xy‖2 ≤ ‖x‖‖y‖2. Then

p‖|[b, a]||a|n−1‖2
2 ≤ 4p‖a‖2‖ban−1‖2

2 = 4p‖a‖2‖|b||a|n−1‖2
2,

which is the corresponding first term in the expression of Ha(b), times ‖a‖2.1

Let us consider now the second term

n
∑

l+m=n−2

‖|a|l(a[a, b] + [a, b]a)|a|m‖2
2 = n

∑
l+m=n−2

‖al(a[a, b] + [a, b]a)am‖2
2.

Note that

‖al(a[a, b] + [a, b]a)ak‖2 = ‖al(a(ab + ba) − (ab + ba)ak‖2

≤ ‖al+1(ab + ba)ak‖2 + ‖al(ab + ba)ak+1‖2

≤ ‖a‖‖al(ab + bs)sk‖2 + ‖al(ab + ba)ak‖2‖a‖
= 2‖a‖‖al(ab + bs)ak‖2.

Therefore

n
∑

l+m=n−2

‖|a|l(a[a, b] + [a, b]a)|a|m‖2
2 ≤ 4‖a‖2

∑
l+m=n−2

‖|a|l(ab + ab)|a|m‖2
2.

The proof follows.

We can rephrase the last proposition, in terms of ‖v‖:3

Corollary 4.1. With the current notations,

d2

dt2
Hv(x, x) ≥ 0

for all

0 ≤ t ≤ π

4‖v‖ .

Proof. Use the above inequality with a = v and b = ξ0.

We can now prove our main result.5

Theorem 4.1. Let u0, u1 and u2 in UA, such that ‖ui−uj‖ < 1
2

√
2 −√

2 = r. Let
δ(t) = u1e

tz be the minimal geodesic joining u1 and u2. Then f(s) = dp(u0, δ(s))p7

(dp = geodesic distance induced by the p-norm) is a convex function (s ∈ [0, 1]).
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Proof. Since the metric is invariant for left translation, we may suppose u0 = 1
without loss of generality. Note that ‖1 − δ(s)‖ < 2r < 2 for all s ∈ [0, 1]. Indeed,
‖1 − δ(s)‖ ≤ ‖1 − u1‖ + ‖u1 − δ(s)‖ < r + ‖1 − esv‖, and

‖1 − esv‖ = r(1 − esv) = sup{
√

2 − 2 cos(sx) : ix ∈ sp(v)}
≤ sup{

√
2 − 2 cos(x) : ix ∈ sp(v)}

= r(1 − ev) = ‖1 − u2‖ < r.

Therefore, for each s ∈ [0, 1] there exists a unique elemement ws ∈ Aah such that
ews = δ(s). Moreover, by the same computation above, the inequality

2r =
√

2 −
√

2 > ‖1 − δ(s)‖ = ‖1 − ews‖
implies that ‖ws‖ ≤ π

4 .1

Put γs(t) = etws , t ∈ [0, 1]. Note that ws is a smooth function of the parameter
s. Therefore γs(t) is a variation of geodesics by geodesics, more precisely, for each
s0 in [0, 1], Xs0 := d

ds |s0γs is a Jacobi field along the geodesic γs0 , vanishing at
t = 0 and with the property that γs(1) = δ(s) is also a geodesic. In other words,
for each s0 ∈ [0, 1], this field satisfies the hypothesis of Corollary 2.1. Moreover, for
each s, γs is has minimal length among curves of unitaries joining 1 and δ(s) [2].
Therefore

f(s) = d(1, δ(s))p = length(γs)p = Fp(γs).

Then, writing xs0 = γ∗
s0

Xs0 , the formula of Remark 3.1 applies and we obtain

f̈(s0) =
d2

ds2

∣∣∣∣
s0

Fp(γs) =
1
2

d

dt
Hws0

(xs0)|t=1.

Consider g(t) = Hws0
(xs0). Since γs(0) = 1 for all s, xs0 vanishes at t = 0, and

therefore g(0) = 0. Moreover,

g̈ =
d2

dt2
Hws0

(xs0 ) ≥ 0 for all t ∈
[
0,

π

4‖ws0‖
]
,

and since ‖ws0‖ ≤ π
4 , it follows that this interval includes t = 1. It follows that

ġ ≥ 0 for such t, and in particular

ġ(1) = f̈(s0) ≥ 0.

5. The Taylor Expansion of the p-th Power of the Distance
Function3

In this section, we study the behaviour near the origin of the convex function

f(s) = dp(u0, δ(s))p

of the previous section. Recall that p = 2n. Our goal is to study the convex
behaviour of this function with more detail. Let us establish first a few facts.5
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Lemma 5.1. Fix 0 < α < π/2. If ‖v‖ ≤ α/2 then

f ′′(0) ≤ Hv(ξ0) ≤ f ′′(0)
cos(α)

.

In particular, f ′′(0) = 0, if and only if Hv(ξ0) = 0.1

Proof. As in the previous section, let x(t) =
∫ 1

0
e−sξ0ξ0e

svds be the solution of the
Jacobi equation with x(0) = 0 and ẋ(0) = ξ0. Then,

f ′′(0) = Hv(ẋ, x)|t=1 = Hv

(
e−vξ0e

v,

∫ 1

0

e−svξ0e
svds

)

= Hv

(
ξ0,

∫ 1

0

e(1−s)vξ0e
(s−1)vds

)
.

Changing variables l = s − 1, one has

f ′′(0) = Hv

(
ξ0,

∫ 1

0

e−lvξ0e
lvdl

)
=
∫ 1

0

Hv(ξ0, e
−lvξ0e

lv)dl =
∫ 1

0

Hv(ξ0, ẋ(l))dl.

By the Cauchy-Schwarz inequality,

|Hv(ξ0, e
−lvξ0e

lv)| ≤ Hv(ξ0)1/2Hv(e−lvξ0e
lv)1/2 = Hv(ξ0),

and thus

f ′′(0) ≤
∫ 1

0

|Hv(ξ0, e
−lvξ0e

lv)|dl ≤ Hv(ξ0).

This proves the first inequality. The other inequality is trivial if Hv(ξ0) = 0. Thus
we may suppose Hv(ξ0) > 0.3

As in Proposition 4.1, we can regard ẋ as a curve in the sphere of the form Hv

with radius Hv(ξ0)1/2, joining ξ0 and ẋ. The length of this curve (measured with the
form Hv), up to time t is tHv([ξ0, v])1/2. We may also suppose that Hv([ξ0, v]) > 0.
Otherwise, if Hv([ξ0, v]) = 0, reasoning as in Proposition 4.1, Hv(ξ0, ẋ) is constant
and equal to its value Hv(ξ0). Thus by the integral above

f ′′(0) =
∫ 1

0

Hv(ξ0, ẋ(l))dl = Hv(ξ0),

and the inequality Hv(ξ0) ≤ f ′′(0)
cos(α) holds trivially. Suppose therefore that

Hv([ξ0, v]) > 0. The geodesic distance between ξ0 and ẋ (in the sphere of the form
Hv) is arccos(Hv(ξ0,ẋ)

Hv(ξ0)
). Recall from Lemma 4.1 that Hv([ξ0, v]) ≤ 4‖v‖2Hv(ξ0).

Therefore, if t ≤ α
2‖v‖ , then

t ≤ α
Hv(ξ0)1/2

Hv([ξ0, v])1/2
.

Equivalently, tHv([ξ0, v])1/2 ≤ αHv(ξ0)1/2. The left-hand side quantity in this
inequality is the length of the path ẋ in the sphere of Hv up to time t, thus it
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majorizes the geodesic distance between its endpoints in this sphere, i.e.

Hv(ξ0)1/2 arccos
(

Hv(ξ0, ẋ)
Hv(ξ0)

)
≤ αHv(ξ0)1/2,

i.e. Hv(ξ0, ẋ) ≥ cos(α)Hv(ξ0). Recall that this inequality is valid for all 0 ≤ t ≤ α
2‖v‖ .

Therefore, if α
2‖v‖ ≥ 1, the inequality is valid for all t ∈ [0, 1]. Using this inequality

in the integral expression of f ′′(0), one obtains

f ′′(0) =
∫ 1

0

Hv(ξ0, ẋ(l))dl ≥ cos(α)Hv(ξ0),

which completes the proof.1

Consider as before the variation γs(t) = etws , where ws(t) = log(evesz). Let us
compute ξ0 = ẋ(0) in terms of z and v.3

Lemma 5.2. With the above notations,

ξ0 = z +
1
2
[v, z] +

1
12

[v, [v, z]].

Proof. Recall that x(t) = e−tv d
dsetws |s=0. Therefore

ẋ(t) = −ve−tv d

ds
etws |s=0 + etv d

dt

d

ds
etws |s=0.

Note that d
dt

d
dsetws = d

ds
d
dte

tws = d
ds(wse

tws). At t = 0, one has that d
dsetws |t=0 = 0.

Therefore

ξ0 =
d

ds
ws|s=0.

According to the classic Baker–Campbell–Hausdorff formula (see for instance [12]),

ws = log(evesz) =
∑
n≥1

Cn(v, sz),

where

C1(v, sz) = v + sz,

C2(v, sz) =
1
2
[v, sz],

C3(v, sz) =
1
12

[v − sz, [v, sz]],

and the next terms involve monomials with a factor sk for k ≥ 2. The linear
coefficient (considering this expansion as a series in the powers of s), is

ξ0 = z +
1
2
[v, z] +

1
12

[v, [v, z]].
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For the next result, we make the assumption that any self-adjoint element of A1

can be approximated (in norm) by self-adjoint elements with finite spectrum.

Lemma 5.3. Let a, b ∈ Ah, then for any k ≥ 1,

‖ab‖2 ≤ ‖b‖1−1/k
2 ‖akb‖1/k

2 .

Proof. Suppose first that the spectrum of a is finite, a =
∑N

i=1 λipi, with pi

pairwise orthogonal projections. Then ‖akb‖2
2 = τ(akb2ak) =

∑N
i=1 λ2k

i Ri, where
Ri = τ(pib

2pi) ≥ 0 (also note that
∑N

i=1 Ri = ‖b‖2
2). For a general real N -tuple

α = (α1, . . . , αN ), and q ≥ 2, define the weighted norm mq by

mq(α) =

(∑N
i=1 |αi|qRi∑N

i=1 Ri

)1/q

.

Note that m2(α) = ‖ab‖2/‖b‖2. Therefore, by inequality 2.9.1 in [7], m2(λ) ≤
m2k(λ), that is, (‖ab‖2

‖b‖2

)2k

≤ ‖akb‖2
2

‖b‖2
2

,

and therefore ‖ab‖2 ≤ ‖b‖1−1/k
2 ‖akb‖1/k

2 . For an arbitrary self-adjoint element a,3

the proof follows by an elementary approximation argument.

Lemma 5.4. Suppose that n ≥ 2 (p ≥ 4). Let v, z ∈ Aah, and consider the vari-
ation γs(t) = etws and the element ξ0 as above. Then for v of sufficiently small
norm, there exists a constant K = K(‖v‖, ‖z‖) depending on the (operator) norms
‖v‖ and ‖z‖ such that

‖zv‖2 ≤ K‖z‖1−1/(n−1)
2 Hv(ξ0)1/(p−2).

Proof. As above, ξ0 = ξ0 = z + 1
2 [v, z] + 1

12 [v, [v, z]]. Recall that Hv is a positive
semidefinite real bilinear form. Then

Hv(ξ0) = Hv

(
z +

1
2
[v, z] +

1
12

[v, [v, z]]
)

≥ Hv(z) + 2Hv

(
z,

1
2
[v, z]

)

+ 2Hv

(
z,

1
12

[v, [v, z]]
)

+ 2Hv

(
1
2
[v, z],

1
12

[v, [v, z]]
)

.

By the Cauchy–Schwarz inequality for Hv,

Hv(ξ0) ≥ Hv(z) − Hv(z)1/2Hv([v, z])1/2

− 1
6
Hv(z)1/2Hv([v, [v, z])1/2 − 1

12
Hv([v, z])1/2Hv([v, [v, z]])1/2.

Recall now the inequality in Lemma 4.1:

Ha([b, a])1/2 ≤ 2‖a‖Ha(b)1/2.
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Then Hv([v, z])1/2 ≤ 2‖v‖Hv(z)1/2 and succesively Hv([v, [v, z]])1/2 ≤1

4‖v‖2Hv(z)1/2. Thus

Hv(ξ0) ≥ Hv(z)
(

1 − 2‖v‖ − 2
3
‖v‖2 − 2

3
‖v‖3

)
. (5.1)

3

One may choose ‖v‖ small in order to adjust the constant M‖v‖ = 1 − 2‖v‖ −
2
3‖v‖2 − 2

3‖v‖3 to be as close to 1 as wished. Recall now the expression for the
quadratic form H in 3.1:

Hx(y) = p‖|y||x|n−1‖2
2 + n

∑
l+m=n−2

‖|x|l(xy + yx)|x|m‖2
2.

In particular,

Hv(z) ≥ 2n‖|z||v|n−1‖2
2. (5.2)5

In a finite algebra, it is apparent that if z, v ∈ Aah, ‖zv‖2 = ‖|z||v|‖2. Let us use
now Lemma 5.3:

‖zv‖2 = ‖|z||v|‖2 ≤ ‖z‖1−1/(n−1)
2 ‖vn−1z‖1/(n−1)

2 .

Combining these inequalities,

‖zv‖2 ≤ ‖z‖1−1/(n−1)
2

1
(2nM‖v‖)1/(p−2)

Hv(ξ0)1/(p−2),

which concludes the proof.

Let us return to the convex function

f(s) = dp(1, δ(s))p = τ([log(evesz)]p).

By the Baker–Campbell–Hausdorff formula,

f(s) = τ




∑

n≥0

Cn(v, sz)




p


= τ

([
v + s

(
z +

1
2
vz − 1

2
zv +

1
12

v2z − 1
6
vzv +

1
12

zv2

)

+ s2

(
1
12

vz2 +
1
12

z2v − 1
6
zvz +

1
24

v2z2 − 1
12

vzvz − 1
24

z2v2 +
1
12

zvzv

)

+ · · ·
]p)

. (5.3)
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Remark 5.1. The Taylor series of f(s) can be arranged as follows,

f(s) = (−1)nτ(vp) + sp(−1)nτ(zp) +
∞∑

k=1

Qk(v, z)sk

= |τ(vp)| + sp|τ(zp)| +
∞∑

k=1

Qk(v, z)sk,

where Qk(v, z) is a series of monomials in v and z, such that all terms contain either1

the product vz or vz. This is apparent from 5.3.

Theorem 5.1. Again suppose n ≥ 2. There exist constants C = C(‖v‖, ‖z‖) > 0,

R > 0, such that if ‖v‖ < R, ‖z‖ < R, then for k ≥ 1

|Qk(v, z)| ≤ C‖z‖1−1/(n−1)
2 f ′′(0)1/(p−2)

In particular, if f ′′(0) = 0, then Qk(v, z) = 0 for k ≥ 1.3

Proof. The series log(exey) =
∑

k≥1 Ck(x, y) has an alternate expression given by
Dinkin (see for instance [10])

log(exey) =
∑
k≥1

(−1)k−1

k

∑ xr1ys1 · · ·xrkysk

r1!s1! · · · rk!sk!
,

where the second sum is taken over all pairs of k-tuples (r1, . . . , rk) and (s1, . . . , sk)
such that ri + si > 0. This series can be majorized by (see [3])

∑
k≥1

1
k

∑ ‖x‖r1‖y‖s1 · · · ‖x‖rk‖y‖sk

r1!s1! · · · rk!sk!
≤
∑
k≥1

(e‖x‖+‖y‖ − 1)k

k
,

which converges if ‖x‖+ ‖y‖ < log(2). By the remark above, each monomial in the
expression of Qk(v, z) has at least a factor vz or zv. If, for instance, one of these
terms is of the form A(v, z)vzB(v, z), then

‖A(v, z)vzB(v, z)‖2 ≤ ‖A(v, z)‖‖B(v, z)‖‖vz‖2,

with an analogous expression if a factor zv appears (note that ‖vz‖2 = ‖zv‖2

because z, v ∈ Aah). The expressions Qk(v, z) are the traces of the series of such
monomials, thus |Qk(v, z)| can be bounded by the sum of the 2-norms of these
monomials, and therefore

|Qk(v, z)| ≤ ‖vz‖2S(‖v‖, ‖z‖),
where S is a series of non-negative terms, which are obtained from the terms of the
series ∑

k≥1

(e‖x‖+‖y‖ − 1)k

k
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after factoring out ‖v‖‖z‖. Therefore it is convergent if ‖v‖ + ‖z‖ < log(2). Thus1

there exists constants R > 0, M > 0 such that if ‖v‖ < R and ‖z‖ < R, then
|Qk(v, z)| ≤ M‖vz‖2. The theorem follows using Lemmas 5.1 and 5.4.3

Remark 5.2. Note that if one restricts to k ≥ 3, the series S(‖v‖, ‖z‖) vanishes
at the origin. Indeed, after taking the factor zv or vz, at least z remains in every5

term of the series of log(evesz).

Remark 5.3. The bound R on the norms of v and z can be chosen to be 1
6 . Indeed,7

this ensures that:

(1) The unitaries u0 = 1, u1 = ev and u2 = ez verify ‖ui − uj‖ ≤ 1
2

√
2 −√

2.9

Indeed, ‖ev − 1‖ = 2 sin(‖v‖
2 ) which is less than half 1

2

√
2 −√

2 for ‖v‖ < 1
6 , and

analogously for z. Thus ‖ez − ev‖ ≤ ‖ez − 1‖ + ‖1 − ev‖ < 1
2

√
2 −√

2. Therefore11

the the map f is convex by virtue of Theorem 4.1.
(2) In Lemma 5.4 M‖v‖ = 1 − 2‖v‖ − 2

3‖v‖2 − 2
3‖v‖3 > 0.13

(3) Also ‖v‖ + ‖z‖ < 1
3 < log(2).

15

Let us prove now the following convexity condition, which we shall call
p-convexity.17

Theorem 5.2. Let v, z ∈ Aah with ‖v‖ < 1/6 and ‖z‖ < 1/6. Then there exists
a positive constant ε = ε(‖zv‖2, ‖z‖2) such that the function f(s) = dp(1, δ(s))p

(δ(s) = evesz) verifies

1
sp

{f(s) − f(0) − f ′(0)s} ≥ |τ(zp)|
for all s with |s| < ε. If zv = 0, this inequality holds for all s ∈ R.

Proof. Recall the Taylor expansion of f .

f(s) − f(0) − f ′(0)s =
f ′′(0)

2
s2 + (−1)nspτ(zp) +

∑
k≥3

Qk(v, z)sk.

If f ′′(0) = 0, by 5.1, Qk(v, z) = 0 and thus f(s) = τ(vp) + spτ(zp), and the result
follows. If f ′′(0) > 0, and again by 5.1, there exists constant C > 0 (note that we
have fixed ‖v‖, ‖z‖) such that

p∑
k=3

Qk(v, z)sk ≥ −C‖z‖1−1/(n−1)f ′′(0)1/(p−2)

p∑
k=3

|s|k.

Thus, taking |s| < 1/2,

1
sp

{f(s) − f(0) − f ′(0)s} ≥ (−1)nτ(zp) +
f ′′(0)
2sp−2

− C

2|s|p−3
f ′′(0)1/(p−2)

= (−1)p/2τ(zp) +
f ′′(0)1/(p−2)

sp−2

{
f ′′(0)1−1/(p−2) − C

2
‖z‖1−1/(n−1)

2 |s|
}

.
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Therefore to prove our result, it suffices to show that

f ′′(0)1−1/(p−2) − C

2
‖z‖1−1/(n−1)

2 |s| ≥ 0

if |s| < ε, for a given ε > 0. This ε clearly exists, it only remains to see that it can
be chosen to depend on ‖zv‖2 and ‖z‖2. Suppose first that zv �= 0. Recall from
(5.1) that if ‖v‖ ≤ α < π/2, then f ′′(0) ≥ Hv(ξ0) cos(α). Here we choose α = 1/6.
Combining inequalities 5.1 and 5.2 in the proof of Lemma (5.4), one obtains

Hv(ξ0) ≥ p‖zvn−1‖2
2M‖v‖.

Therefore, in our case (‖v‖ ≤ 1/6),

f ′′(0) ≥ cos(1/6)M1/6 p‖zvn−1‖2
2.

Next recall that (Lemma (5.3))

‖zvn−1‖1/(n−1)
2 ≥ ‖zv‖2

‖z‖1−1/(n−1)
2

.

Thus there is a constant D > 0 such that

f ′′(0) ≥ D
‖zv‖n−1

2

‖z‖n−2
2

.

Take

ε =
2
C

(
D
‖zv‖n−1

2

‖z‖n−2
2

)1−1/(p−2)
1

‖z‖1−1/(n−1)
2

.

If |s| < ε, then a straightforward use of the above inequalities proves that

f ′′(0)1−1/(p−2) − C

2
‖z‖1−1/(n−1)

2 |s| ≥ 0.

If zv = 0, f(s) = (−1)nτ(vp) + sp(−1)nτ(zp), and the inequality holds1

for all s.
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