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Abstract

We give a Riemannian structure to the set Σ of positive invertible unitized Hilbert–Schmidt operators, by means of the trace
inner product. This metric makes of Σ a nonpositively curved, simply connected and metrically complete Hilbert manifold. The
manifold Σ is a universal model for symmetric spaces of the noncompact type: any such space can be isometrically embedded
into Σ . We give an intrinsic algebraic characterization of convex closed submanifolds M . We study the group of isometries of
such submanifolds: we prove that GM , the Banach–Lie group generated by M , acts isometrically and transitively on M . Moreover,
GM admits a polar decomposition relative to M , namely GM � M × K as Hilbert manifolds (here K is the isotropy of p = 1
for the action Ig :p �→ gpg∗), and also GM/K � M so M is an homogeneous space. We obtain several decomposition theorems
by means of geodesically convex submanifolds M . These decompositions are obtained via a nonlinear but analytic orthogonal
projection ΠM :Σ → M , a map which is a contraction for the geodesic distance. As a byproduct, we prove the isomorphism
NM � Σ (here NM stands for the normal bundle of a convex closed submanifold M). Writing down the factorizations for fixed
ea , we obtain ea = exevex with ex ∈ M and v orthogonal to M at p = 1. As a corollary we obtain decompositions for the full
group of invertible elements G � M × exp(T1M⊥) × K .
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1. Introduction

The aim of this paper is to relate the algebraic and spectral properties of the Banach algebra of unitized Hilbert–
Schmidt operators, with the metric and geometrical properties of an underlying manifold Σ . This is a paper on applied
nonpositively curved geometry because we first show how the familiar properties of the operator algebra translate into
geometrical notions, and then we use the tools of geometry in order to prove new results concerning the operator
algebra.
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In this paper we study the cone of positive invertible Hilbert–Schmidt operators (extended by the scalar operators)
on a separable infinite dimensional Hilbert space H . The metric in the tangent space at the identity is given by the trace
of the algebra. The local structure induced by the metric is smooth and quadratic; it can be situated in the context of the
theory of infinite dimensional Riemann–Hilbert manifolds of nonpositive curvature (cf. Cartan–Hadamard manifolds,
as introduced by Lang [18], McAlpin [21], Grossman [14] and others). It is then a paper on Riemannian geometry.
On the other hand, since the manifold Σ is clearly not locally compact, some of the standard results for Hadamard
manifolds require a different approach. The geometry is then related to the geometry of the metric spaces in the sense
of Aleksandrov [5]. It turns out that the notion of convexity (together with the fact that Σ is a simply connected and
globally nonpositively curved geodesic length space) plays a key role in our constructions. It is then a paper on metric
geometry.

Through the years, several authors have studied the relationship of geometry and algebra in sets of positive opera-
tors, with different approaches that led to a variety of results. In his 1955’s paper [22], G.D. Mostow gave a Riemannian
structure to the set M+

n of positive invertible matrices; the induced metric makes of M+
n a nonpositively curved sym-

metric space. Mostow showed that the algebraic concept behind the notion of convexity is that of a Lie triple system,
which is basically the real part of a given involutive Lie algebra g. The geometry of bounded positive operators in an
infinite dimensional Hilbert space was studied by G. Corach, H. Porta and L. Recht [10,12,24] among others, using
functional analysis techniques. This area of research is currently very active (see [8,9] for a list of references).

1.1. Main results

In this paper we study the geometry of a Hilbert manifold Σ which is modeled on the operator algebra HC of
unitized Hilbert–Schmidt operators. In Section 2 we introduce the objects involved and prove some elementary results.
The manifold Σ is the set of positive invertible operators of HC. Let H•

C
be the classical Banach–Lie group of

invertible (unitized) Hilbert–Schmidt operators [16]. The manifold Σ has a natural H•
C

-invariant metric 〈x, y〉p =
〈xp−1,p−1y〉2, which makes it nonpositively curved (we define 〈α + a,β + b〉2 = αβ + tr(b∗a) whenever α,β ∈ C

and a, b are Hilbert–Schmidt operators). Let ex and exp(x) stand for the usual analytic exponential, i.e., exp(x) =∑
n�0

xn

n! . This map is injective when restricted to HR, the set of self-adjoint operators. Let ln(p) stand for its real
analytic inverse. We have exp(HR) = Σ ⊂ HR, and the exponential map induces a diffeomorphism onto its image,
so we identify the tangent space at any point of the manifold Σ with the set of self-adjoint operators HR, namely
TpΣ �HR for any p ∈ Σ . In Section 3 we prove

Theorem A. For p,q ∈ Σ , the geodesic obtained from Euler’s equation by solving Dirichlet’s problem is the smooth
curve γpq(t) = p1/2(p−1/2qp−1/2)tp1/2, hence

Expp(v) = p
1
2 exp(p− 1

2 v p− 1
2 )p

1
2

is the Riemannian exponential of Σ , for any v ∈ TpΣ . Both Expp :TpΣ → Σ and its differential map
d(Expp)v :TpΣ → TExpp(v)Σ are Cω-isomorphisms for any p ∈ Σ , v ∈ TpΣ . The curve γpq is the shortest piecewise
smooth path joining p to q , hence

dist(p, q) = ∥∥ln(p
1
2 q−1p

1
2 )

∥∥
2

is the distance in Σ induced by the Riemannian metric. The metric space (Σ,dist) is complete, and it is globally
nonpositively curved.

The curve obtained via Calderón’s method of complex interpolation [7] between the quadratic norms ‖ · ‖p and
‖ · ‖q is exactly the short geodesic in Σ joining p to q (the proof of [1] can be adapted almost verbatim).

In [14], N. Grossman proves that the inequality

(1)
∥∥d(Expp)v(w)

∥∥
p

� ‖w‖Expp(v)

leads to the minimality of geodesics in a simply connected, complete Hilbert manifold. This approach is also carried
out by McAlpin [21]. The following operator inequality involving the differential of the usual exponential map

(2)
∥∥e−x/2 d expx(y)e−x/2

∥∥ � ‖y‖2
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is the translation to our context of the inequality (1) above. The convexity of Jacobi fields can be deduced from the
nonpositiveness of the sectional curvature, hence the proof of Eq. (2) stems in our context from the Cauchy–Schwarz
inequality for the trace inner product. We follow the exposition of Lang [19] on this subject. On the other hand,
(2) can be proved with a direct computation [6]. With this approach the metric completeness of the tangent spaces is not
relevant: in Theorem 3.1 of [2], the authors prove the minimizing property of the geodesics in a non complete manifold.
The inequality above, in our context, can be also interpreted as the Hyperbolic Cosine Law (see Corollary 3.12)

a2 � b2 + c2 − 2bc cos(α).

Here a, b, c are the lengths of the sides of any geodesic triangle in Σ , and α is the angle opposite to a. From this
inequality also follows that the sum of the inner angles of any geodesic triangle in Σ is bounded by π .

If A is a set of operators, we use A+ to denote the set of positive operators of A; note that (H•
C
)+ = Σ . In Section

4 we show that a submanifold M ⊂ Σ is geodesically convex if and only if its tangent space at the identity m is a Lie
triple system. Clearly any such submanifold is nonpositively curved, and Theorem 4.18 states:

Theorem B. For any geodesically convex, closed submanifold M = exp(m) ⊂ Σ there exists a connected Banach–Lie
group GM = 〈exp(m⊕[m,m])〉 ⊂H•

C
which acts isometrically and transitively on M . Moreover, the polar decompo-

sition of the elements of GM reduces to M in the sense that G+
M = M . Let K be the isotropy of 1 for the action; then

K is a connected Banach–Lie subgroup of GM and there is an isomorphism GM � M × K . In particular any convex
submanifold M of Σ is an homogeneous space for a suitable Banach–Lie group, which is an analytical subgroup of
H•

C
. The submanifold M is flat if and only if M ≡ GM is an abelian Banach–Lie subgroup of H•

C
.

The existence of smooth polar decompositions for the involutive Banach–Lie groups can be obtained from the
general results of Neeb [23, Theorem 5.1]. Neeb introduces the notion of seminegative curvature (SNC) on Banach–
Finsler manifolds M , given by the condition of inequality (1) above, plus the condition that d(Expp)v should be
invertible for any v ∈ TpM (the metric of M should be invariant under parallel transport along geodesics). Neeb
proves (Theorem 1.10 of [23]) that in a connected, geodesically complete manifold with SNC, the exponential map
Expp :TpM → M is a covering map and M is metrically complete, a result which extends that of Grossman and
McAlpin mentioned above to the Banach–Finsler context.

The manifold Σ can be decomposed by means of any convex closed submanifold M . Let NM be the normal
bundle of M . In Section 5 we prove

Theorem C. For any convex closed submanifold M ⊂ Σ there is a nonlinear, real analytic projection ΠM :Σ → M ,
which is contractive for the geodesic distance

dist
(
ΠM(p),ΠM(q)

)
� dist(p, q) for any p,q ∈ Σ.

The point ΠM(p) is the (unique) point of M closest to p. It can also be viewed as the unique point in M such that
there exists a geodesic through p orthogonal to M at ΠM(p). The exponential map (p, v) �→ Expp(v) induces an
analytic Riemannian isomorphism NM � Σ .

Since ΠM(p) is the point in M closest to p, one can prove the existence of such a point using a metric argument
valid in any nonpositively curved geodesic length space [17]. We choose to give a differential-geometry argument
here.

In Section 6 we exhibit a decomposition for the submanifold M = Δ of positive diagonal operators, which is a
maximal abelian subalgebra of HC. This decomposition theorem (Theorem 6.2) takes the form of a factorization
ea = devd , where v has null diagonal and d is an invertible diagonal operator. We stress that there is no known
algorithm that allows to compute d explicitly (not even if we reduce the problem to 3×3 matrices, that can be thought
of as a particular case of the general theory). As a corollary to the decomposition theorems we obtain

Theorem D. Any invertible operator g ∈ H•
C

admits a unique polar decomposition relative to a fixed closed convex
submanifold M = exp(m). Namely g = exevu where x ∈ m, v ∈ m⊥ and u ∈ U(HC) is a unitary operator. The map
g �→ (ex, ev, u) is an analytic bijection which gives the isomorphism

H•
C

� M × exp(m⊥) × U(HC).
Please cite this article in press as: G. Larotonda, Nonpositive curvature: A geometrical approach to Hilbert–Schmidt operators, Differential
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This isomorphism generalizes the decomposition of M+
n given in [11].

In Section 7 we show that the manifold Σ can be decomposed by means of a foliation {Σλ}λ>0 of totally geodesic
submanifolds, namely

Σ =
⋃̇
λ>0

Σλ =
⋃̇
λ>0

{a + λ ∈ Σ, a = a∗ a Hilbert–Schmidt operator}.

There is a Riemannian isomorphism Σ � Σ1 ×R>0 induced by the projection ΠΣ1 of Theorem C above. As an appli-
cation, we show a decomposition relative to the algebra M+

n of positive invertible n×n matrices: fix an n-dimensional
subspace S ⊂ H , let PS be the orthogonal projection to S and QS = 1 −PS the orthogonal projection to S⊥. Let B(S)

stand for the algebra of bounded linear operators of S. Let R ∈ B(S)+ � M+
n , and consider the set

v =
{(

0 Y ∗
Y X

)
: X = X∗ ∈ B(S⊥) a Hilbert–Schmidt operator, Y ∈ B(S,S⊥)

}
.

Let U(HC) be the Banach–Lie subgroup of unitary operators in H•
C

.

Theorem E. For any g ∈ H•
C

there is a unique factorization g = λrevu where λ ∈ R>0, u ∈ U(HC) is a unitary
operator, r = RPS + QS and v ∈ v. In particular

H•
C

� M+
n × exp(v) × R>0 × U(HC).

The manifold Σ can be regarded as a universal model for the symmetric spaces of the noncompact type, namely

Theorem F. For any finite dimensional real symmetric manifold M of the noncompact type (i.e., with no Euclidean
de Rham factor, simply connected and with nonpositive sectional curvature), there is an embedding M ↪→ Σ which is
a diffeomorphism between M and a closed geodesically convex submanifold of Σ . If we pull back the inner product
on Σ to M , this inner product is a positive constant multiple of the inner product of M on each irreducible de Rham
factor.

The proof of the theorem is straightforward fixing an orthonormal basis of H (see Section 7.1) and recalling the
well known result [13] that for any such space M there is an almost isometric embedding of M into GL(g)+, where g

is the Lie algebra of the Lie group I0(M) (the connected component of the identity of the group of isometries of M).

2. Background and definitions

Let B(H) be the set of bounded operators acting on a complex, infinite dimensional and separable Hilbert space H ,
and let HS be the bilateral ideal of Hilbert–Schmidt operators of B(H). Recall that HS is a Banach algebra (without
unit) when given the norm ‖a‖2 = tr(a∗a)1/2 (see [26] for a detailed exposition on trace-class ideals). We will use
HSh to denote the closed subspace of self-adjoint Hilbert–Schmidt operators. In B(H) we define

HC = {a + λ: a ∈ HS, λ ∈ C},
the complex linear subalgebra consisting of Hilbert–Schmidt perturbations of scalar multiples of the identity (the
closure of this algebra in the operator norm is the set of compact perturbations of scalar multiples of the identity).
There is a natural Hilbert space structure for this subspace (where scalar operators are orthogonal to Hilbert–Schmidt
operators) which is given by the inner product

〈a + λ,b + β〉2 = tr(ab∗) + λβ.

The algebra HC is complete with this norm. The model space that we are interested in is the real part of HC,

HR = {a + λ: a∗ = a, a ∈ HS, λ ∈ R},
which inherits the structure of (real) Banach space, and with the same inner product, becomes a real Hilbert space.
Please cite this article in press as: G. Larotonda, Nonpositive curvature: A geometrical approach to Hilbert–Schmidt operators, Differential
Geometry and its Applications (2007), doi:10.1016/j.difgeo.2007.06.016



ARTICLE IN PRESS DIFGEO:605
JID:DIFGEO AID:605 /FLA [m3SC+; v 1.73; Prn:26/07/2007; 13:08] P.5 (1-22)

G. Larotonda / Differential Geometry and its Applications ••• (••••) •••–••• 5
Remark 2.1. By virtue of trace properties, 〈xy, y∗x∗〉2 = 〈yx, x∗y∗〉2 for any x, y ∈ HC, and also 〈zx, yz〉2 =
〈xz, zy〉2 for x, y ∈ HC and z ∈HR.

Let Σ := {A > 0: A ∈ HR} be the subset of positive invertible operators in HR. It is clear that Σ is an open set of
HR (for instance, using the lower semi continuity of the spectrum).

Remark 2.2. For p ∈ Σ , we identify TpΣ with HR, and endow this manifold with a (real) Riemannian metric by
means of the formula

〈x, y〉p := 〈p−1x, yp−1〉2 = 〈xp−1,p−1y〉2.

Throughout, let ‖x‖p := 〈x, x〉1/2
p . Equivalently, ‖x‖p = ‖p−1/2xp−1/2‖2.

Lemma 2.3. The covariant derivative in Σ (for the metric introduced in Remark 2.2) is given by

(3){∇XY }p = {
X(Y)

}
p

− 1

2
(Xpp−1 Yp + Yp p−1 Xp).

Here X(Y) denotes derivation of the vector field Y in the direction of X performed in the linear space HR.

Proof. Note that ∇ is clearly symmetric and verifies all the formal identities of a connection; the proof that it is the
Levi-Civita connection relays on the compatibility condition between the connection and the metric, d

dt
〈X,Y 〉γ =

〈∇γ̇ X,Y 〉γ + 〈X,∇γ̇ Y 〉γ (see for instance [19, Chapter VIII, Theorem 4.1]). Here γ is a smooth curve in Σ and
X,Y are tangent vector fields along γ . This identity is straightforward from the definitions and the properties of the
trace. �

Let rα = eα ln(r) (here r ∈ Σ,α ∈ R). The exponential is given by the usual series; note that any positive invertible
operator has a real analytic logarithm, which is the inverse of the exponential in the Banach algebra. Note that aba > 0
whenever a, b > 0 and also rα > 0 whenever r > 0 and α ∈ R.

Euler’s equation ∇γ̇ γ̇ = 0 for the covariant derivative introduced above reads γ̈ = γ̇ γ −1γ̇ , and it is not hard to
see that the (unique) solution of this equation with γ (0) = p, γ (1) = q is given by the smooth curve

(4)γpq(t) = p
1
2 (p− 1

2 qp− 1
2 )tp

1
2 .

Remark 2.4. We will use Expp :TpΣ → Σ to denote the exponential map of Σ . Differentiating at t = 0 the curve
above, we obtain γ̇pq(0) = p1/2 ln(p−1/2qp−1/2)p1/2, hence

Exp−1
p (q) = p

1
2 ln(p− 1

2 qp− 1
2 )p

1
2 and Expp(v) = p

1
2 exp(p− 1

2 vp− 1
2 )p

1
2 .

Note that by the construction above the map Expp :TpΣ → Σ is surjective (for given q ∈ Σ take v = p1/2 ln(p−1/2 q×
p−1/2)p1/2, then Expp(v) = q). Rearranging the exponential series we get the expressions Expp(v) = pep−1v =
evp−1

p.

Lemma 2.5. The metric in Σ is invariant under the action of the group of invertible elements: if g is an invertible
operator in HC, then Ig(p) = gpg∗ is an isometry of Σ .

Proof. First note that for any ψ ∈ H we have 〈gpg∗ψ,ψ〉 = 〈pg∗ψ,g∗ψ〉 = 〈pη,η〉 > 0 assuming p > 0 and g

invertible, so Ig maps Σ into itself. Also note that d(Ig)r (x) = gxg∗ for any x ∈ TrΣ , hence

‖gxg∗‖2
grg∗ = 〈

gxg∗(g∗)−1r−1g−1, (g∗)−1r−1g−1gxg∗〉
2 = 〈

gxr−1g−1, (g∗)−1r−1xg∗〉
2

= 〈xr−1, r−1x〉2 = ‖x‖2
r

where the third equality in the above equation follows from Remark 2.1. �

Please cite this article in press as: G. Larotonda, Nonpositive curvature: A geometrical approach to Hilbert–Schmidt operators, Differential
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3. Local and global structure

3.1. Curvature

We start showing that curvature in this manifold is a measure of noncommutativity, and then give a few definitions,
which are necessary because of the infinite dimensional setting. Let [ , ] stand for the usual commutator of operators,
[x, y] = xy − yx.

Proposition 3.1. The curvature tensor for the manifold Σ is given by:

(5)Rp(x, y)z = −1

4
p
[[p−1x,p−1y],p−1z

]
.

Proof. This follows from the usual definition R(x, y) = ∇x∇y − ∇y∇x − ∇[x,y]. The formula for ∇ was given in
Lemma 2.3. �
Definition 3.2. A Riemannian submanifold M ⊂ Σ is flat at p ∈ M if the sectional curvature vanishes for any
2-subspace of TpM . The manifold M is flat if it is flat at any p ∈ M . The manifold M is geodesic at p ∈ M if
geodesics of the ambient space starting at p with initial velocity in TpM are also geodesics of M . The manifold M is
a totally geodesic manifold if it is geodesic at any p ∈ M . Equivalently, M is totally geodesic if any geodesic of M is
also a geodesic of Σ .

Proposition 3.3. The manifold Σ has nonpositive sectional curvature.

Proof. Let x, y ∈ TpΣ . Let x = p−1/2xp−1/2, y = p−1/2yp−1/2. We may assume that x, y are orthonormal at p.
A straightforward computation shows that

Sp(x, y) = 〈
Rp(x, y)y, x

〉
p

= −1

4

{〈xy2, x〉2 − 2〈yxy, x〉2 + 〈y2x, x〉2
}
.

Since x, y ∈ HR, x = λ + a and y = β + b for λ,β ∈ R and a, b ∈ HS. The equation reduces to

(6)Sp(x, y) = −1

2

{
tr(a2b2) − tr

(
(ab)2)}.

Note that [z,w] = tr(w∗z) is an inner product on HS, so we have the Cauchy–Schwarz inequality tr(w∗z) �
tr1/2(w∗w) tr1/2(z∗z). Putting w = ba, z = ab, we obtain

tr
(
(ab)2) = tr(abab) = tr

(
(ba)∗ab

)
� tr

1
2 (abba) tr

1
2 (baab) = tr(a2b2). �

Proposition 3.4. Let M ⊂ Σ be a submanifold. Assume that M is flat and geodesic at p ∈ M . If x, y ∈ TpM , then
p−1/2xp−1/2 commutes with p−1/2yp−1/2.

Proof. Since M is geodesic at p, the curvature tensor is the restriction of the curvature tensor of Σ , so in Eq. (6)
above the right-hand term must be zero if M is flat at p. But the Cauchy–Schwarz inequality is an equality only if the
vectors are linearly dependent; in the notation of the previous theorem, we have ab = z = αw = αba for some α ∈ R;
replacing this in the above equation we obtain α = 1, namely ab = ba. Recalling the definitions for a and b we obtain
the assertion.

3.2. Convexity of Jacobi fields

Let J (t) be a Jacobi field along a geodesic γ of Σ , i.e. J is a solution of the differential equation

(7)D2
t J + Rγ (J, γ̇ )γ̇ = 0
Please cite this article in press as: G. Larotonda, Nonpositive curvature: A geometrical approach to Hilbert–Schmidt operators, Differential
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where Dt = ∇γ̇ is the covariant derivative along γ . We may assume that J (t) is nonvanishing, hence

‖J‖3
γ

d2

dt2
〈J,J 〉

1
2
γ = −〈DtJ,J 〉2

γ + 〈J,J 〉γ 〈DtJ,DtJ 〉γ − 〈J,J 〉γ
〈
Rγ (J, γ̇ )γ̇ , J

〉
γ
.

The third term is clearly positive and the first two terms add up to a nonnegative number by the Cauchy–Schwarz
inequality: 〈DtJ,J 〉2

γ � 〈DtJ,DtJ 〉γ 〈J,J 〉γ . In other words, the smooth function t �→ 〈J,J 〉1/2
γ = ‖J‖γ is convex,

exactly as in the finite dimensional setting.

3.3. The exponential map

We present two theorems that, in this infinite dimensional setting, stem from McAlpin’s PhD thesis (for a proof see
[21] or Theorem 3.7 of Chapter IX in [19]). First, if one identifies the Riemannian exponential with a suitable Jacobi
lift, one obtains

Theorem 3.5. The map Expp :TpΣ → Σ has an expansive differential:∥∥d(Expp)v(w)
∥∥

Expp(v)
� ‖w‖p.

This result implies that the differential of the exponential map is injective and has closed range. Playing with the
Hilbert structure of the tangent bundle and using the well-known identity for operators Ker(A)⊥ = Ran(A∗), it can be
proved that this map is surjective, moreover

Corollary 3.6. The differential of the Riemannian exponential d(Expp)v :TpΣ → TExpp(v)Σ is a linear isomorphism
for any v ∈ TpΣ . Hence, Expp :TpM → Σ is a Cω-diffeomorphism.

The last assertion is due to the fact that the map Expp :TpΣ → Σ is a bijection (see Remark 2.4 above).

3.4. The shortest path and the geodesic distance

The following inequality is the key to the proof of the fact that geodesics are minimizing. It was proved by R. Bhatia
[6] for matrices, and his proof can be translated almost verbatim to the context of operator algebras with a trace, see
[2]. However since the Riemannian metric in Σ is complete, the inequality can be easily deduced from the fact that
the norm of a Jacobi field is a convex map (in Theorem 3.5 put p = 1, v = x and w = y):

Corollary 3.7. If d expx denotes the differential at x of the usual exponential map, then for any x, y ∈ HR∥∥d expx(y)
∥∥

ex = ∥∥e− x
2 d expx(y)e− x

2
∥∥

2 � ‖y‖2.

As usual, one measures length of curves in Σ using the norms in each tangent space,

(8)L(α) =
1∫

0

∥∥α̇(t)
∥∥

α(t)
dt.

We define the distance between two points p,q ∈ Σ as the infimum of the lengths of piecewise smooth curves in Σ

joining p to q ,

dist(p, q) = inf
{
L(α): α ⊂ Σ, α(0) = p, α(1) = q

}
.

Recall (Remark 2.4 and the paragraph above it) that for any pair of elements p,q ∈ Σ , we have the smooth curve
γpq ⊂ Σ, γpq(t) = p1/2(p−1/2qp−1/2)tp1/2 joining p to q , which is the unique solution of Euler’s equation in Σ .
Computing the derivative, we get∥∥γ̇pq(t)

∥∥ ≡ ∥∥ln(p
1
2 q−1p

1
2 )

∥∥ = L(γpq).
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The minimality of these (unique) geodesics joining two points can be deduced from general considerations [14], we
present here a direct proof.

Theorem 3.8. Let p,q ∈ Σ . Then the geodesic γpq is the shortest curve joining p and q in Σ , if the length of curves
is measured with the metric defined above (8).

Proof. Let α be a smooth curve in Σ with α(0) = p and α(1) = q . We must compare the length of α with the length
of γpq . Since the invertible group acts isometrically, it preserves the lengths of curves. Thus we may act with p−1/2,
and suppose that both curves start at 1, or equivalently that p = 1. Therefore γ1q(t) := γ (t) = etx , with x = lnq . The
length of γ is then ‖x‖2. The proof follows easily from the inequality of Corollary 3.7. Indeed, since α is a smooth
curve in Σ , it can be written as α(t) = eβ(t), with β = lnα. Then β is a smooth curve of self-adjoint operators with
β(0) = 0 and β(1) = x. Moreover,

L(γ ) = ‖x‖2 = ‖x − 0‖2 =
∥∥∥∥∥

1∫
0

β̇(t) dt

∥∥∥∥∥
2

�
1∫

0

∥∥β̇(t)
∥∥

2 dt.

On the other hand, by the mentioned inequality,∥∥β̇(t)
∥∥

2 �
∥∥e− β(t)

2 d expβ(t)

(
β̇(t)

)
e− β(t)

2
∥∥

2 = ∥∥d expβ(t)

(
β̇(t)

)∥∥
eβ(t) = ∥∥α̇(t)

∥∥
α(t)

. �
Remark 3.9. The geodesic distance induced by the metric is given by

dist(p, q) = ∥∥ln(p
1
2 q−1p

1
2 )

∥∥
2.

Hence the unique geodesic joining p to q is also the shortest path joining p to q . This means that (Σ,dist) is a (not
locally compact) geodesic length space in the sense of Aleksandrov and Gromov [5]. These curves look formally
equal to the geodesics between positive definite n × n matrices, when this space is regarded as a symmetric space.

Corollary 3.10. If γ , δ are geodesics, the map f : R → R, t �→ dist(γ (t), δ(t)) is convex.

Proof. The distance between the points γ (t) and δ(t) is given by the geodesic αt (s), which is obtained as the s

variable ranges in a geodesic square h(s, t) with vertices {γ (t0), δ(t0), γ (t1), δ(t1)} (the starting and ending points
of γ and δ). Taking the partial derivative along the direction of s gives a Jacobi field J (s, t) along the geodesic
βs(t) = h(s, t) and it also gives the speed of αt . Hence

f (t) =
1∫

0

∥∥∥∥∂αt

∂
(s)

∥∥∥∥
αt (s)

ds =
1∫

0

∥∥J (s, t)
∥∥

h(s,t)
ds.

This equation states that f (t) can be written as the limit of a convex combination of convex functions ui(t) =
‖J (si, t)‖h(si ,t), so f must be convex itself. �

In a recent paper (Corollary 8.7 of [20]), the authors prove this property of convexity of the geodesic distance in a
general setting concerning nonpositively curved symmetric spaces given by a quotient of Banach–Lie groups.

Lemma 3.11. For any x, y ∈ HR we have

(9)dist(ex, ey) = ∥∥ln(ex/2e−yex/2)
∥∥

2 � ‖x − y‖2.

Proof. Take γ (t) = etx , δ(t) = ety and f as in the previous corollary; we may assume that x, y ∈ HSh. Note that
f (0) = 0, hence f (t)/t � f (1) for any 0 < t � 1; hence limt→0+ f (t)/t � f (1). Now

f (t)/t = 1∥∥ln(etx/2e−tyetx/2)
∥∥

2 = tr

([
1

ln(etx/2e−tyetx/2)

]2) 1
2

,

Please cite this article in press as: G. Larotonda, Nonpositive curvature: A geometrical approach to Hilbert–Schmidt operators, Differential
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and

lim
t→0+

1

t
ln(etx/2e−tyetx/2) = d

dt

∣∣∣∣
t=0

ln(etx/2e−tyetx/2) = d ln1(x − y) = x − y. �
Corollary 3.12. The inner angles of any geodesic triangle in Σ add up to at most π .

Proof. Using the invariance of the metric for the action of the group of invertible operators, and squaring both sides
of inequality (9) in Lemma 3.11, we obtain the Hyperbolic Cosine Law:

(10)l2
i � l2

i+1 + l2
i−1 − 2li+1li−1 cos(αi).

Here li (i = 1,2,3) are the sides of any geodesic triangle and αi is the angle opposite to li . These inequalities put
together show that one can construct a comparison Euclidean triangle in the affine plane with sides li . For this triangle
with angles βi (opposite to the side li ) we have l2

i = l2
i+1 + l2

i−1 − 2li+1li−1 cos(βi). This equation together with
inequality (10) imply that the angle βi is bigger than αi for i = 1,2,3. Adding the three angles we have α1 +α2 +α3 �
β1 + β2 + β3 = π . �
Proposition 3.13. The metric space (Σ,d) is complete with the distance induced by the minimizing geodesics.

Proof. Consider a Cauchy sequence {pn} ⊂ Σ . Again by virtue of inequality (9) of Lemma 3.11, xn = ln(pn) is a
Cauchy sequence in HR. Since Hilbert–Schmidt operators are complete with the trace norm, there is a vector x ∈HR

such that xn → x in the trace norm. Since the inverse map, the exponential map, the product and the logarithm are all
analytic maps with respect to the trace norm, dist(pn, ex) = ‖ ln(ex/2e−xnex/2)‖2 → 0 when n → ∞. �
4. Geodesically convex submanifolds

Definition 4.1. A set M ⊂ Σ is geodesically convex if for any two given points p,q ∈ M , the unique geodesic of Σ

joining p to q lies entirely in M . A Riemannian submanifold M ⊂ Σ is complete at p ∈ M if ExpM
p is defined in the

whole tangent space and maps onto M . The manifold M is complete if it is complete at any point.

Remark 4.2. The manifold Σ is complete; moreover, Expp is a Cω (analytic) isomorphism of HR with Σ for each
p ∈ Σ . Other notions of completeness are touchy because, as C.J. Atkin shows in [3] and [4], the Hopf–Rinow
Theorem does not necessarily hold in infinite dimensional Banach manifolds.

These previous notions are strongly related; it is not hard to see that for any Riemannian submanifold M of Σ , M

is geodesically convex if and only if M is complete and totally geodesic. On the other hand, it should be clear from
the definitions that whenever M is a convex submanifold of Σ , M is nonpositively curved.

4.1. An intrinsic characterization of convexity

From now on the term convex stands for the longer geodesically convex. As before [ , ] denotes the usual commu-
tator of operators in B(H). To deal with convex sets the following definition will be useful; assume m ⊂ HR is a real
linear space.

Definition 4.3. We say that m is a Lie triple system if [[a, b], c] ∈ m for any a, b, c ∈ m. Equivalently, [x, [x, y]] ∈ m

whenever x, y ∈ m.

Note that whenever a, b, c are self-adjoint operators, d = [a, [b, c]] is also a self-adjoint operator. So, for any
involutive Lie subalgebra of operators a ⊂ HC (in particular: for any associative Banach subalgebra), m = Re(a) is a
Lie triple system in HR.

Assume M ⊂ Σ is a submanifold such that 1 ∈ M , and M is geodesic at p = 1. Then T1M is a Lie triple sys-
tem, because the curvature tensor at p = 1 is the restriction to T1M of the curvature tensor of Σ , and R1(x, y)z =

Please cite this article in press as: G. Larotonda, Nonpositive curvature: A geometrical approach to Hilbert–Schmidt operators, Differential
Geometry and its Applications (2007), doi:10.1016/j.difgeo.2007.06.016
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− 1
4 [[x, y], z]. In particular, if M is geodesically convex, T1M must be a Lie triple system. This weak condition on the

tangent space turns out to be strong enough to obtain convexity:

Theorem 4.4. (See Mostow–de la Harpe [16,22].) Assume m ⊂ HR is a closed subspace, put M = exp(m) ⊂ Σ with
the induced topology and Riemannian metric. Assume further that m is a Lie triple system. Then for any p,q ∈ M it
holds true that qpq ∈ M .

Proof. As P. de la Harpe pointed out, the proof of G.D. Mostow for matrices in [22] can be translated to Hilbert–
Schmidt operators without any modification: we give a sketch of the proof here. Assume p = ex , q = ey , and consider
the curve eα(t) = etyexety . Then it can be proved that α̇(t) = G(α(t)) with G a Lipschitz map that sends m into m (this
is nontrivial). Since α(0) = x ∈ m and G is a Lipschitz map by the uniqueness of the solutions of ordinary differential
equations we have α ⊂ m. Hence eα(1) = qpq ∈ M and the claim follows. �
Corollary 4.5. Assume M = exp(m) ⊂ Σ , and m is as in the above theorem. Then M is a closed convex submanifold.

Proof. Take p,q ∈ M . Then p = ex , q = ey with x, y ∈ m. If we put r = e−x/2eye−x/2, then r ∈ M because e−x/2

and ey are in M . Moreover, z = ln(r) ∈ m. But the unique geodesic of Σ joining p to q is γ (t) = ex/2etzex/2, hence
γ ⊂ M . �
Corollary 4.6. Assume m ⊂ HR is a closed, commutative associative Banach subalgebra of HC. Then the manifold
M = exp(m) ⊂ Σ is a closed, convex and flat Riemannian submanifold. Moreover, M is an open subset of m and an
abelian Banach–Lie group.

Proof. The first assertion follows from the fact that m is a Lie triple system. Curvature is given by commutators,
hence M is flat. Since m is a closed subalgebra, ex = ∑

xn

n! ∈ m for any x ∈ m, so M ⊂ m. That M is open follows
from the fact that exp is a Cω isomorphism (Corollary 3.6).

If M is flat and geodesic at p = 1, T1M = m is abelian (by Proposition 3.4), therefore

Corollary 4.7. Assume M = exp(m) is closed and flat. If M is geodesic at p = 1, then M is a convex submanifold.
Moreover, M is an abelian Banach–Lie group and an open subset of m.

We adopt the usual definition of a symmetric space [15]:

Definition 4.8. A Riemann–Hilbert manifold M is called a globally symmetric space if each point p ∈ M is an isolated
fixed point of an involutive isometry sp :M → M . The map sp is called the geodesic symmetry.

Theorem 4.9. Assume M = exp(m) is closed and convex. Then M is a symmetric space; the geodesic symmetry at
p ∈ M is given by sp(q) = pq−1p for any q ∈ M . In particular, Σ is a symmetric space.

Proof. Observe that, for p = ex , q = ey , sp(q) = exe−yex ; this shows that sp maps M into M . To prove that sp is an

isometry, for any vector v ∈ m consider the geodesic αv of M such that α(0) = q and α̇(0) = v. Then α(t) = qet q−1v

and

d(sp)q(v) = d

dt

∣∣∣∣
t=0

(sp ◦ αv) = −pq−1vq−1p.

Since M has the induced metric, ‖pq−1vq−1p‖2
pq−1p

= ‖v‖2
q by Lemma 2.5 (with g = pq−1). In particular, dpsp =

−id, so p is an isolated fixed point of sp for any p ∈ M . �
Theorem 4.4 and its corollaries imply that Σ (as any symmetric space) contains plenty of convex sets; in particular
Please cite this article in press as: G. Larotonda, Nonpositive curvature: A geometrical approach to Hilbert–Schmidt operators, Differential
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Remark 4.10. We can embed isometrically any k-dimensional plane in Σ as a convex closed submanifold: take an
orthonormal set of k commuting operators (for instance, fix an orthonormal basis {ei}i∈M of H and take pi = ei ⊗ ei ,
i = 1, . . . , k), and consider the exponential of the linear span of this set. In the language of symmetric spaces, we are
saying that rank(Σ) = +∞.

Let I (M) be the group of isometries of a submanifold M .

Theorem 4.11. If the submanifold M = exp(m) is closed and convex, then I (M) acts transitively on M .

Proof. Take p = ex , q = ey two points in M , v = p ln(p−1q) and γ (t) = pet p−1v the geodesic joining p to q . Note
that q = γ (1) = pep−1v = evp−1

p. Consider the curve of isometries ϕt = sγ (t/2) ◦ sp . Then

ϕ1(p) = e
1
2 ve−x

exe−x e
1
2 ve−x

ex = eve−x

ex = q. �
Remark 4.12. Assume M ⊂ Σ is closed and convex, and 1 ∈ M . Let I (M) be the group of isometries of M . Then,
since any isometry ϕ is uniquely determined by its value at 1 ∈ M and its differential dϕ1, the set I (M) can be
naturally embedded in a Banach space: take ϕ ∈ I (M) and consider

ϕ (q) = ϕ(1)−
1
2 ϕ(q) ϕ(1)−

1
2 .

Note that dϕ1 is a unitary operator of T1M = m (with the natural Hilbert-space structure), so there is an inclusion
J : I (M) ↪→ M × U(B(m)) given by the map ϕ �→ (ϕ(1), dϕ1). On the other hand, for a given pair (p,u) ∈ M ×
U(B(m)), put ϕ(ex) = p1/2 exp(u(x))p1/2(x ∈ m). It is not hard to see that ϕ is an isometry of M which maps 1 to p,
such that dϕ1 = u. Hence we may identify I (M) � M × U(B(m)).

Remark 4.13. If M = exp(m) is closed and convex, it is geodesic at any p = ex ∈ M , so

TpM = Exp−1
p (M) = {

p
1
2 ln(p− 1

2 q p− 1
2 )p

1
2 : q ∈ M

}
(see Remark 2.4). Since p1/2 = ex/2 ∈ m, using Theorem 4.4 we obtain the identification TpM = p1/2(T1M)p1/2 =
p1/2 mp1/2. It also follows easily that an operator v ∈ HR is orthogonal to M at p (that is, v ∈ TpM⊥) if and only if

〈p− 1
2 zp− 1

2 , v〉2 = 〈p− 1
2 v p− 1

2 , z〉2 = 0 for any z ∈ m.

In particular, T1M
⊥ = m⊥ = {v ∈ HR: 〈v, z〉2 = 0 for any z ∈ m}. Note that, when m is a closed commutative asso-

ciative subalgebra of operators, y �→ p1/2yp1/2 is a linear isomorphism of m; in this case TpM = m = T1M for any
p ∈ M . This last assertion also follows easily from Corollary 4.6, and clearly TpM⊥ = T1M

⊥ = m⊥ in this case.

Remark 4.14. Assume M ⊂ Σ is a convex submanifold. If the curve γ is the geodesic joining p to q , then the
isometry ϕt = sγ (t/2) ◦ sp translates along γ , namely

ϕt

(
γ (s)

) = pe
t
2 p−1vp−1pesp−1vp−1pe

t
2 p−1v = pe

t
2 p−1vesp−1ve

t
2 p−1v = pe(s+t)p−1v = γ (s + t).

In particular, ϕ1(p) = q . Now take any tangent vector w ∈ Tγ (s)M , and let

w(t) = (dϕt )γ (s)(w) = e
t
2 vp−1

we
t
2 p−1v.

It follows from a straightforward computation using Eq. (3) of Section 2 that w(t) is the parallel translation of w from
γ (s) to γ (s + t); namely ∇γ̇ w ≡ 0. We conclude that the linear map (dϕt )γ (s) :Tγ (s)M → Tγ (s+t)M gives parallel

translation along γ , i.e. (dϕt )γ (s) = P t+s
s (γ ). In particular, since q = γ (1) = p1/2ep−1/2vp1/2

p1/2, the map

P
q
p :w �→ p

1
2 (p− 1

2 qp− 1
2 )

1
2 p− 1

2 wp− 1
2 (p− 1

2 qp− 1
2 )

1
2 p

1
2

gives parallel translation from TpM to TqM . See also Theorem 4.18.
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4.1.1. Examples of convex sets
1. For any subspace s ⊂HR, ms = {x ∈HR: [x, y] = 0 ∀y ∈ s} is a Lie triple system.
2. In particular, for any y ∈HR, my = {x ∈HR: [x, y] = 0} is a Lie triple system.
3. The family of operators in HR which act as endomorphisms of a closed subspace S ⊂ H form a Lie triple system

in HR.
4. Any norm closed commutative associative subalgebra of HR, closed under the usual involution of operators, is a

Lie triple system. In particular
(a) The diagonal operators (see Section 6). This is a maximal abelian closed subspace of HR, hence the manifold

Δ (which is the exponential of this set) is a maximal flat submanifold of Σ .
(b) The scalar manifold Λ = {λ1: λ ∈ R>0} ⊂ Σ is the exponential of the Lie triple system R 1 ⊂HR.
(c) For fixed a ∈ HSh, the real part of the closed algebra generated by a, which is the closure in the 2-norm of

the set of polynomials in a, is a Lie triple system.
5. The real part of any Banach–Lie subalgebra of HC is a Lie triple system (in particular: the real part of any

associative Banach subalgebra).

4.2. Convex manifolds as homogeneous manifolds

The results of this section are related to those of Sections 3 and 7 of Chapter IV in [15]. See also Theorem 5.5 in
[23] for a proof of the existence of smooth polar decompositions in the (broader) Banach–Finsler context.

Definition 4.15. Let H•
C

be the group of invertible elements in HC. This group has a natural structure of manifold as
an open set of the associative Banach algebra HC; it is a Banach–Lie group with Banach–Lie algebra HC.

Let U(HC) stand for the unitary elements of the involutive Banach algebra HC, namely the set of u ∈ H•
C

such that
u∗ = u−1. It is a real Banach–Lie subgroup of H•

C
with Lie algebra iHR.

Let G be a connected abstract subgroup of H•
C

. We say that G is a self-adjoint subgroup of H•
C

if g∗ ∈ G whenever
g ∈ G (for short, G∗ = G). Note that a connected Banach–Lie group G is self-adjoint if and only if g∗ = g, where g

denotes the Banach–Lie algebra of G.
If a ⊂ HC is a linear space over R, let [a,a] = spanR{[a, b]: a, b ∈ a}, where the bar denotes closure in the norm

of the Banach algebra HC.
If A ⊂H•

C
is a set, 〈A〉 will denote the abstract subgroup generated by A (the group whose elements are the inverses

and the finite products of elements in A).
Let |x| = (xx∗)1/2 = exp( 1

2 ln(xx∗)) for x ∈ HC. Since HC is an involutive Banach algebra, |x| ∈ Σ ⊂ H•
C

if
x ∈ HC.

Remark 4.16. The group HC
•, having the homotopy type of the inductive limit of the groups GL(n,C) (see [16,

Section II.6]) is connected; moreover, there is a homotopy class equivalence

H•
C

� S1 × S1 × SU(∞).

Here SU(∞) stands for the inductive limit of the groups SU(n,C).

Proposition 4.17. Let g ⊂ HC be a closed real Banach–Lie subalgebra. Then G = 〈exp(g)〉 admits a topology and a
smooth structure such that G is a connected real Banach–Lie group and g = T1G is the Banach–Lie algebra of G.
The inclusion G ↪→H•

C
is a smooth immersion and the exponential map of G is given by the usual exponential of HC.

The topology on G might be strictly finer than the topology of H•
C

.

Proof. Since HC is a Hilbert space, the Banach–Lie subalgebra admits a supplement. By Theorem 5.4 of Chap-

ter VI in [19], there exists an integral manifold H
j

↪→ H•
C

for the subbundle {gg}g∈H•
C

. The manifold H is
connected, and a Banach–Lie group with dj1(T1H) = g. Since j is a smooth homomorphism of Banach–Lie
groups, we have j ◦ ExpH = exp◦dj1. The other assertions follow from this identity because G = 〈exp(g)〉 =
〈j ◦ ExpH (T1H)〉 = j (H). �
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Theorem 4.18. Let G = 〈exp(g)〉 ⊂ H•
C

be a connected self-adjoint Banach–Lie group with Banach–Lie algebra
g ⊂ HC. Let P be the analytic map g �→ gg∗, P : G → G. Let k = ker(dP1), m = Ran(dP1). Let MG = exp(m),
K = G ∩ U(HC) = P −1(1). Then

1. The set m is a closed Lie triple system in HR. We have [m,m] ⊂ k, [m, k] ⊂ m, [k, k] ⊂ k and g = m ⊕ k. In
particular, k is a Banach–Lie subalgebra of g (and of iHR also).

2. P(G) = MG, and MG is a geodesically convex submanifold of Σ .
3. For any g = |g|ug ∈ G (polar decomposition), we have |g| ∈ MG and ug ∈ K .
4. Let g ∈ G, p ∈ MG, Ig(p) = gpg∗. Then Ig ∈ I (MG). If g = p1/2(p−1/2qp−1/2)1/2p−1/2 ∈ G, then Ig(p) = q ,

namely G acts isometrically and transitively on MG.
5. Let u ∈ K and x ∈ m (resp. m⊥). Then Iu(x) = uxu∗ ∈ m (resp. m⊥). If p,q ∈ MG then Ip maps TqMG (resp.

TqMG
⊥) isometrically onto TIp(q)MG (resp. TIp(q)MG

⊥).
6. The group K is a Banach–Lie subgroup of G with Lie algebra k.
7. G � MG × K as Hilbert manifolds. In particular K is connected and G/K � MG.

Proof. 1. Note that dP1(x) = x + x∗, hence k = {x ∈ g: x∗ = −x} which is certainly a closed Lie algebra. Note also
that m = {x ∈ g: x∗ = x} is a Lie triple system; it is closed because x �→ x∗ is an isometric automorphism of HC.
Since [x, y] = xy − yx is self-adjoint whenever x is self-adjoint and y is skew-adjoint, the other assertions are clear.

2. Clearly P(G) ⊇ exp(m) because ex = P(ex/2). On the other hand, since g splits, there exist neighborhoods
of zero Um ⊂ m and Uk ⊂ k such that the map xm + yk �→ exmeyk is an isomorphism from Um ⊕ Uk onto an open
neighborhood V of 1 ∈ G. Then 〈V 〉 is open (and closed) in G and so is all of G. Hence, for any g ∈ G, g =
(ex1 ey1)α1 · · · (exneyn)αn for self-adjoint xi ∈ Um, skew-adjoint yi ∈ Uk, and αi = ±1. Now exeyex ∈ exp(m) whenever
x, y ∈ m (Theorem 4.4), and inspection of the expression for P(g) = gg∗ shows that P(g) lies in exp(m) if eyexe−y ∈
exp(m) whenever x ∈ m and y ∈ k. Equivalently, we have to show that Ad(ey) maps m into m; since Ad(ey) = ead(y),
it suffices to show that ad(y) : x �→ [y, x] maps m into m, and this follows from the previous assertion. The set
MG = exp(m) is a convex submanifold because m is a closed Lie triple system (Corollary 4.5).

3. If g ∈ G, then gg∗ = ex0 for some x0 ∈ m. This implies that |g| = ex0/2 ∈ MG ⊂ G. Now we have ug = |g|−1g ∈
G, and clearly ug ∈ K .

4. If p ∈ MG, then p = P(go) = gog
∗
o for some go ∈ G. Then, if g ∈ G, Ig(p) = ggog

∗
og∗ = P(ggo) ∈ MG. Note

that Ig is an isometry of MG, because MG has the induced metric, so Lemma 2.5 applies.
5. If x ∈ m and u ∈ K , then ex ∈ MG hence uexu∗ = exp(Iu(ex)) ∈ MG. Hence uxu∗ = ln(uexu∗) ∈ m. Since

〈Iu(y), x〉2 = 〈y, Iu∗(x)〉2 (see Remark 2.1), we obtain the proof of the assertion concerning m⊥.
Clearly Ip maps TqMG isometrically onto TIp(q)MG. Assume now w ∈ TqMG

⊥ = q1/2m⊥q1/2 (see Remark 4.13).
If u = (pqp)1/2p−1q−1/2, then u ∈ G and uu∗ = 1, hence w0 = u(q−1/2wq−1/2)u∗ ∈ m⊥ by the previous assertion.
Then Ip(w) = pwp = (pqp)1/2w0(pqp)1/2 ∈ TIp(q)MG

⊥.
6. The previous items show that P : G → MG is surjective. Now dPg : g.g → Tgg∗MG is given by g.x �→

Ig(x + x∗). Clearly this map has split kernel gk. Let g = |g|ug as above. For z ∈ Tgg∗MG we have, by Remark 4.13,
z = (gg∗)1/2w(gg∗)1/2 = I|g|(w) for some w ∈ m. Let x = Iu∗

g
(w/2), then x ∈ m ⊂ g and dPg(gx) = z. Hence the

group K = P −1(1) is a submanifold of G because P :G → MG is a submersion (Proposition 2.3 of Chapter II in
[19]).

7. The map T :MG × K → G given by T (p,u) = pu is clearly smooth and it is a bijection by the statements
above. The inverse is given by g �→ (|g|, |g|−1g); since |g| = exp( 1

2 ln(gg∗)), the map T is a diffeomorphism. �
Remark 4.19. For M = exp(m) a convex closed manifold in Σ , consider gM = m⊕[m,m]. Then gM is a Banach–Lie
subalgebra of HC due to the formal identity[[x, y], [z,w]] + [

z,
[
w, [x, y]]] + [

w,
[[x, y], z]] = 0

and the fact that m is a Lie triple system. Let GM = 〈exp(gM)〉. Then GM is a connected Banach–Lie group with
Banach–Lie algebra gM (Proposition 4.17). Since (a + [b, c])∗ = a + [c, b] for any a, b, c ∈ m, then M ⊂ GM and
G∗

M = GM . It is also clear that k = [m,m] (k as in Theorem 4.18). The elements of M are indeed the positive elements
of GM , and the elements of the stabilizer of 1 are the unitary operators of GM . Note that GM is a submanifold of H•

C

if and only if K is a submanifold of U(HC).
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When m is a commutative associative subalgebra, we have gM = m and also GM = M ⊂ m is an open set (in
particular GM is a submanifold of H•

C
). In any case m = Z(m) ⊕ Z(m)⊥ = m0 ⊕ m1 (here Z(m) denotes the set

{x ∈ m: [x, y] = 0 ∀y ∈ m}), and M = exp(m0) exp(m1) � M0 × M1 where Mi are convex and closed, hence GM �
M0 × GM1 . Since 〈x, [a, [b, c]]〉2 = 〈c, [b, [a, x]]〉2 for any a, b, c, x ∈ m, it is easy to see that Z(m) = [m, [m,m]]⊥.

The results above assert that, for a given convex submanifold M = exp(m), we have MGM
= M . On the other hand,

for a given connected involutive Banach–Lie subgroup G, we have GMG
⊂ G, though in general [m,m] can be strictly

smaller than k, so the other inclusion does not necessarily hold. The equality holds iff k is semi-simple, i.e. [k, k] = k

(equivalently, if Z(k) = 0).

It is a well-known result (see [16, p. 42]) that [HS,HS] = HS and [HSh,HSh] = iHSh. Therefore taking m = HSh,
we get k = iHSh, and then gM = HS. This implies GΣ/R = H•

C
/C×1. Clearly P(GΣ) = P(H•

C
) = Σ , because any

positive invertible operator has an invertible square root. On the other hand it is clear that the isotropy group K

equals U(HC) (the unitary group of HC). So there is an analytic isomorphism given by polar decomposition: Σ �
H•

C
/U(HC). The manifold of positive invertible operators Σ is an homogeneous manifold for the group of invertible

operators H•
C

, which acts isometrically and transitively on Σ . This last statement is well known, and Theorem 4.18
can be read as a natural generalization.

5. Projecting to closed convex submanifolds

We refer the reader to [19] for the first and second variation formulas.

Proposition 5.1. Let M be a convex subset of Σ , and let p ∈ Σ . Then there is at most one normal geodesic γ

of Σ joining p and M such that L(γ ) = dist(p,M). In other words, there is at most one point q ∈ M such that
dist(p, q) = dist(p,M).

Proof. Suppose there are two such points, q and r ∈ M , joined by a geodesic γ3 ∈ M , such that L(γ1) = dist(p, q) =
L(γ2) = dist(p, r) = d(p,M). We construct a proper variation of γ ≡ γ1, which we call Γs . The construction follows
the figure below, where σ(s, t) := σs(t) is the geodesic joining p with γ3(s).

Γ (s, t) =
{

σ(s, t) 0 � t � 1,

γ3 (s(2 − t)) 1 � t � 2,

γ (t) = Γ (0, t) =
{

γ1(t) if 0 � t � 1,

q if 1 � t � 2,
so that γ̇ (t) =

{
γ̇1(t) if 0 � t � 1,

0 if 1 � t � 2.

Also note that the variation vector field (which is a Jacobi field for γ ) is given by

V (t) = ∂Γ

∂s
(t,0) =

{
∂σ
∂s

(t,0) 0 � t � 1,

(2 − t)γ̇3(0) 1 � t � 2.
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If Δiγ̇ denotes the jump of the tangent vector field to γ at ti , namely γ̇ (t+i ) − γ̇ (t−i ), and Γ is a proper variation of
γ , then the first variation formula for the curve γ : [0,2] → Σ reads

‖γ̇ ‖γ

d

ds

∣∣∣∣
s=0+

L(Γs) = −
2∫

0

〈
V (t),Dt γ̇ (t)

〉
γ (t)

dt −
k−1∑
i=1

〈
V (ti),Δiγ̇

〉
γ (ti )

.

In this case, Dt γ̇ is zero in the whole interval [0,2], because γ consists (piecewise) of geodesics. The jump points are
t0 = 0, t1 = 1 and t2 = 2, so the formula reduces to

〈
γ̇3(0), γ̇1(1)

〉
q

= d

ds

∣∣∣∣
s=0+

L(Γs)‖γ̇ ‖γ .

Recall that γ3 ⊂ M , and that γ1 is minimizing. Then the right-hand term is nonnegative, which proves that the angle
between γ1 and γ3 at q is bigger that π/2. With a similar argument, we deduce that the same holds for the angle
between γ2 and γ3 at r . Hence, the sum of the three inner angles of this geodesic triangle is at least π . Since the sum
cannot exceed π (see Corollary 3.12), it follows that the angle subtended at p must be zero, which proves that γ1 and
γ2 are the same geodesic, and uniqueness follows. �

Next we consider the problem of existence of the minimizing geodesic.

Proposition 5.2. Let M be a convex submanifold of Σ , and p a point of Σ not in M . Then the existence of a geodesic
β joining p with M such that L(β) = dist(p,M) is equivalent to the existence of a geodesic γ joining p with M with
the property that γ is orthogonal to M .

Proof. In fact, the existence of such a geodesic β is equivalent to the existence of a point q ∈ M such that dist(p,M) =
dist(p, q). We will show that if q ∈ M is a point such that γqp is orthogonal to M at q , then dist(q,p) = dist(M,p).
The other implication follows from the uniqueness theorem above. Consider the geodesic triangle generated by p,q

and d , where d is any point in M different from q . Since γqp is orthogonal to TqM , it is orthogonal to γqd . Then, by
virtue of the Hyperbolic Cosine Law (Eq. (10) in Section 3), dist(d,p)2 = L(γdp)2 � L(γqp)2 +L(γqd)2 > L(γqp)2 =
dist(q,p)2. �

This last proposition raises the following question: is the normal bundle NM of M diffeomorphic to Σ , via the
exponential map?

Lemma 5.3. Let M be a convex and closed submanifold. Let E :NM → Σ be the map (q, v) �→ Expq(v). For ε > 0,
put NMε = {(p, v) ∈ NM: ‖v‖p < ε} and Ωε = E(NMε). Then E is injective and there exists ε > 0 such that
E :NMε → Ωε is a Cω-diffeomorphism. The set Ωε is an open neighborhood of M in Σ .

Proof. Let us prove first that E is injective. Assume there exist p,q ∈ M , v ∈ TpM⊥, w ∈ TqM⊥ with Expp(v) =
Expq(w). Naming r to this point, consider the geodesic triangle in Σ spanned by p,q ∈ M and r ∈ Σ . The geodesic
which joins p to r is clearly γ1(t) = Expp(tv), which is orthogonal to M at p, and the same is true for γ2(t) =
Expq(tw), which joins q to r . Hence p = q and v = w because of Corollary 3.12.

We may assume that 1 ∈ M . Since E(q, v) = qeq−1v , the differential of E at (1,0) ∈ NM is the identity map
because T1M ⊕ T1M

⊥ = T1Σ and d exp0 = id. The inverse mapping theorem ([19], Theorem 5.2 of Chapter I) gives
Cω-diffeomorphic neighborhoods U0 = {(q, v) ∈ NM: dist(q,1) < ε, ‖v‖q < ε} ⊂ NMε and Ω0 = E(U0) ⊂ Σ

respectively. For given (p, v) ∈ NMε , consider the isometry of M given by Ĩp :x �→ p1/2xp1/2, and note that Ĩp(1) =
p. If (q,w) ∈ U0, then clearly Ĩp(q) ∈ M . Moreover, Ĩp(w) ∈ T

Ĩp(q)
M⊥ by Theorem 4.18, hence Up = (Ĩp × Ĩp)(U0)

is an open neighborhood of (p, v) in NMε diffeomorphic to U0. Now E |Up :Up → E(Up) is a diffeomorphism,

because a straightforward computation shows that E|Up = Ĩp ◦ E ◦ (Ĩp × Ĩp)−1. �
Remark 5.4. Clearly E(NM) ⊂ Σ is the set of points p ∈ Σ with the following property: there is a point q ∈ M such
that dist(q,p) = dist(M,p). Note that the map ΠM :E(NM) → M , which assigns to p ∈ E(NM) the unique point
Please cite this article in press as: G. Larotonda, Nonpositive curvature: A geometrical approach to Hilbert–Schmidt operators, Differential
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q ∈ M such that dist(q,p) = dist(M,p), is surjective. This map is obtained via a geodesic that joins p and M , and
this geodesic is orthogonal to M , therefore we call ΠM(p) the foot of the perpendicular from M to p.

Lemma 5.5. Let p,q ∈ E(NM), and ΠM(p) �= ΠM(q). If γp is a geodesic that joins ΠM(p) to p and γq is a geodesic
that joins ΠM(q) to q , put f (t) = dist(γp(t), γq(t)). Then the map f : R�0 → R�0 is increasing.

Proof. Since f is a convex function (Corollary 3.10), it suffices to show that f ′(0+) � 0.
Take a variation σ(t, s), where σt (s) is the geodesic joining γp(t) to γq(t). Then σ(t,0) = γp(t), σ(t,1) = γq(t),

and σ(0, s) = γ (s) is the geodesic joining ΠM(p) to ΠM(q) (which is contained in M by virtue of the convexity).
Note also that σ(1, s) is the geodesic joining p to q . This construction is shown in the figure below.

Note that f (t) = L(σt ). Put V = d
dt

∣∣
t=0 σ . We apply the first variation formula to obtain

‖γ̇ ‖γ

d

dt

∣∣∣∣
t=0+

L(σt ) = −
1∫

0

〈
V (s),Dsγ̇ (s)

〉
γ (s)

ds + 〈
V (1), γ̇ (1)

〉
ΠM(p)

− 〈
V (0), γ̇ (0)

〉
ΠM(q)

.

The fact that γ is a geodesic reduces the formula to

‖γ̇ ‖γ f ′(0+) = −〈
V (1),−γ̇ (1)

〉
ΠM(p)

+ 〈−V (0), γ̇ (0)
〉
ΠM(q)

.

Note also that V (0) = γ̇p(0), V (1) = γ̇q (0). Recalling that the angles at M are right angles, we obtain f ′(0+) = 0. �
Theorem 5.6. The map ΠM is a contraction, namely dist(ΠM(p),ΠM(q)) � dist(p, q).

Proof. We may assume again that p,q /∈ M , and that ΠM(p) �= ΠM(q). In the notation of the lemma above, note that
f (0) = d(ΠM(p),ΠM(q)) and f (1) = dist(p, q); since f is increasing, the assertion is proved. �

We want to prove that E(NM) = Σ . We will do this by proving that it is both open and closed in Σ . The following
argument is similar to the one used by H. Porta and L. Recht in [25].

Lemma 5.7. For λ ∈ [1,+∞), put ηλ :E(NM) → E(NM), ηλ(Expp(v)) = Expp(λv). Let Ωε be as in Lemma 5.3.
Then E(NM) = ⋃

λ�1ηλ(Ωε), and each ηλ :Ωε → Σ is a Cω diffeomorphism onto its open image.

Proof. Clearly
⋃

λ�1 ηλ(Ωε) ⊂ E(NM). Let us prove the other inclusion. First, if r = Expp(v) with ‖v‖p < ε then

r ∈ Ωε = η1(Ωε). Let us consider the case where ‖v‖p � ε; then r = Expp(v) = Expp(λw) with λ = 2‖v‖p

ε
and

w = ε
2‖v‖p

v, so r ∈ ηλ(Ωε) because ‖w‖p = ε/2 < ε and λ � 1.
Assume that there exist r1, r2 ∈ Ωε and λ � 1 such that ηλ(r1) = ηλ(r2). That is, assume there exist p,q ∈ M ,

v ∈ TpM⊥, w ∈ TqM⊥ with ‖v‖p < ε, ‖w‖q < ε and Expp(λv) = Expq(λw), namely E(p,λv) = E(q,λw). Since
E is injective by Lemma 5.3, we have p = q and v = w. This argument proves that the maps ηλ are injective.
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Geometry and its Applications (2007), doi:10.1016/j.difgeo.2007.06.016



ARTICLE IN PRESS DIFGEO:605
JID:DIFGEO AID:605 /FLA [m3SC+; v 1.73; Prn:26/07/2007; 13:08] P.17 (1-22)

G. Larotonda / Differential Geometry and its Applications ••• (••••) •••–••• 17
Next we show that, for any λ � 1 and r ∈ Ωε , d(ηλ)r :TrΣ → Tηλ(r)Σ is a linear isomorphism, and this will prove
the final assertion. Take α ⊂ Ωε a geodesic such that α(0) = r and α̇(0) = x. Since α is a geodesic, we have that
dist(α(t), r) = t‖α̇(0)‖r for t � 0 (see Section 3.4). Put β = ηλ ◦α. Then β(0) = ηλ(r) and β̇(0) = d(ηλ)r (x). Clearly
dist(β(t), ηλ(r)) � Lt

0(β) = ∫ t

0 ‖β̇(s)‖β(s) ds. On the other hand, dist(ηλ(α(t)), ηλ(r)) � dist(α(t), r) = t‖x‖r where
the inequality is due to Lemma 5.5, because λ � 1. If we put together these two inequalities and divide by t , we get

1

t

t∫
0

∥∥β̇(s)
∥∥

β(s)
ds � ‖x‖r .

Taking limit for t → 0+ gives ‖d(ηλ)r (x)‖ηλ(r) � ‖x‖r . Now put Aλ = Ĩ−1
ηλ(r) ◦ d(ηλ)r ◦ Ĩr , where Ĩp :v �→ p1/2vp1/2

are linear isomorphisms (see Lemma 2.5). If we consider Aλ :T1Σ → T1Σ = HR, the last inequality says that
‖Aλ(x)‖2 � ‖x‖2 for any x ∈ HR.

Clearly η1 = idΩε and d(η1)r = idTrΣ . Since the map (λ, r) �→ ηλ(r) is analytic from R〉0 × Ωε to Σ , there
is an open neighborhood of 1 ∈ R such that Aλ is an isomorphism. Assume Aλ is invertible for λ ∈ [1,m): then
‖A−1

λ ‖B(HR) � 1 for any λ ∈ [1,m). Since Am = limλ→m− Aλ (in the operator norm of B(HR)) and ‖AmA−1
λ − 1‖ �

‖Am − Aλ‖ < 1 if λ is close enough to m, it follows that AmA−1
λ is invertible, thus Am is invertible. Since the maps

Ĩp are isomorphisms, d(ηλ)r is an isomorphism for any λ � 1, and any r ∈ Ωε .

Corollary 5.8. The set E(NM) is open in Σ .

Theorem 5.9. Let M be a convex closed submanifold of Σ . Then for every point p ∈ Σ , there is a unique normal
geodesic γp joining p to M such that L(γp) = dist(p,M). This geodesic is orthogonal to M , and if ΠM :Σ → M is
the map that assigns to p the end-point of γp , then ΠM is a contraction for the geodesic distance.

Proof. The theorem will follow if we prove that E(NM) = Σ . Since Σ is connected and E(NM) is open, it suf-
fices to prove that E(NM) is also closed. Let p ∈ E(NM). There exist points qn ∈ M , vn ∈ TqnM

⊥ such that
p = limn pn = limn Expqn

(vn). Observe that qn = ΠM(pn), so dist(qn, qm) � dist(pn,pm). Since {pn} converges
to p, it is a Cauchy sequence. It follows that {qn} is also a Cauchy sequence. Since M is closed (and there-
fore complete), there exists q ∈ M such that q = limn qn. We assert that dist(p, q) = dist(p,M). First note that
dist(p, qn) � dist(p,pn) + dist(pn, qn) and dist(pn, qn) = dist(pn,M), so dist(p, qn) � dist(p,pn) + dist(pn,M).
Taking limits gives dist(p, q) � dist(p,M). �

Note that Σ decomposes as a direct product: with the contraction ΠM , we can decompose Σ by picking, for
fixed p,

1. the unique point q = ΠM(p) such that dist(p, q) = dist(p,M);
2. a vector vp normal to TqM such that the geodesic in Σ with initial velocity vp starting at q passes through p;

note that vp = Exp−1
ΠM(p)(p), and also ‖vp‖q = dist(p,M).

Since the exponential map is analytic on both of its variables, we get

Theorem 5.10. The map p �→ (ΠM(p), vp) is the inverse of the map (q, vq) �→ Expq(vq), and gives a real-analytic
isomorphism between the manifolds Σ and NM .

Theorem 5.11. Fix a closed convex submanifold M of Σ . Let a ∈ Σ . Then there exist unique operators c ∈ Σ , v ∈HR

such that c ∈ M , v ∈ TcM
⊥, and a = cec−1v .

Using the tools of Section 4, we can write the factorization theorem in terms of intrinsic operator equations (see
[22] for the finite dimensional analogue):
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Theorem 5.12. Assume m ⊂ HR is a Lie triple system. Then for any operator a ∈ HR, there exist unique op-
erators x ∈ m and v ∈ m⊥ such that the following decomposition holds: ea = exevex . The map da :HR → R,
da(y) = ‖ ln(ea/2e−yea/2)‖2 has the operator 2x as its unique minimizer in m.

As a corollary, we obtain a polar decomposition relative to a convex submanifold.

Theorem 5.13. Assume M = exp(m) ⊂ Σ is a closed convex submanifold. Then for any g ∈ H•
C

there is a unique
factorization of the form g = exevu where x ∈ m, v ∈ m⊥ and u ∈ U(HC) is a unitary operator. The map g �→
(ex, ev, u) is an analytic bijection which gives an isomorphism

H•
C

� M × exp(m⊥) × U(HC).

Proof. Since gg∗ ∈ Σ , we can write gg∗ = exe2vex with x ∈ m and v ∈ m⊥. If u = (exev)−1g = e−ve−xg we have
uu∗ = e−ve−xgg∗e−xe−v = 1 and also u∗u = g∗e−xe−ve−ve−xg = 1. Hence u is a unitary operator and g = exevu.
This factorization is unique because if g = ex1 ev1u1 = ex2 ev2u2, then gg∗ = ex1e2v1 ex1 = ex2e2v2ex2 , so x1 = x2,
v1 = v2 and then u1 = u2. �
6. Projecting to the manifold of diagonal operators

Lemma 6.1. Let α,β ∈ R and a, b ∈ HSh. Then

Expα+a(β + b) = αeβ/α + k

where k is a self-adjoint Hilbert–Schmidt operator.

Proof. It is a straightforward computation:

(α + a)e(α+a)−1(β+b) = (α + a)
[
1 + (α + a)−1(β + b) + · · ·]

= (α + a)

[
1 + β/α + 1

2
(β/α)2 + · · · + k

]
. �

We need some remarks before we proceed. Fix an orthonormal basis {ei}i∈N of H .

1. Consider the diagonal manifold Δ ⊂ Σ :

Δ = {d + α > 0: α ∈ R, d is a diagonal Hilbert–Schmidt operator}.
It is closed and geodesically convex. This is due to the fact that the diagonal operators form a closed commutative
associative subalgebra.

2. If d0 ∈ Δ, then Td0Δ = {α + d; α ∈ R, d ∈ HS is diagonal and real} = T1Δ (see Remark 4.13).
3. Consider the map A �→ AD = the diagonal part of A. Then

(a) For Hilbert–Schmidt operators we have AD = ∑
i piApi where convergence is in the 2-norm (and hence in

the operator norm); here pi = ei ⊗ ei = 〈ei, ·〉ei is the orthogonal projection onto the real line generated by ei .
(b) (AD)D = AD and tr(ADA) = tr((AD)2).
(c) tr(ADB) = tr(AB) if B is diagonal.

4. The scalar manifold Λ = {λ1: λ ∈ R>0} is convex and closed in Σ , with tangent space at any λ ∈ Λ given by
R1 ⊂HR.

5. A vector v = μ + u is contained in Td0Δ
⊥ if and only if μ = 0 and uD = 0. This follows from Remark 4.13, the

fact that μ + uD ∈ Td0Δ, and Remark (3) of this list. In other words for any d0 ∈ Δ,

Td0Δ
⊥ = T1Δ

⊥ = {v ∈ HSh: v is codiagonal} =: Γ.

Theorem 6.2. Let a ∈ HSh. Then there exist λ ∈ R>0, d ∈ Δ and x ∈ HSh such that:

a + λ = (d + λ)e(d+λ)−1v = (d + λ)
1
2 e(d+λ)

− 1
2 v(d+λ)

− 1
2

(d + λ)
1
2 .
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Moreover, for fixed λ, d and v are unique and a +λ �→ (d, v) (which maps Σ → NΔ) is a real analytic isomorphism
between manifolds.

Proof. Let λ = ‖a‖∞ + ε, for any ε > 0. Then p = a + λ ∈ Σ . Let ΠΔ(p) = d + α, where D ∈ Δ. Now pick the
unique v ∈ Td+αΔ⊥ such that Expd+α(v) = p, this operator v has the desired form because of remark (5) above. As
a consequence of Lemma 6.1 α = λ, for in this case β = 0. �

This theorem can be rephrased saying that, given a self-adjoint Hilbert–Schmidt operator a, for any λ ∈ R>0 such
that a + λ > 0, one has a unique factorization a + λ = DewD where D = (λ + d)1/2 > 0 is a diagonal operator and
w = D−1vD−1 ∈ Γ is a self-adjoint operator with null diagonal. The normal bundle clearly splits in this case, so

Proposition 6.3. Consider the submanifolds Δ, exp(Γ ) ⊂ Σ . Then the projection map ΠΔ induces a diffeomorphism
Σ � Δ × exp(Γ ).

Corollary 6.4. For any g ∈ H•
C

, there is a unique factorization g = dewu, where d is a positive invertible diagonal
operator of HC, w is a self-adjoint operator with null diagonal in HC and u is a unitary operator of HC.

Proof. The previous results together with Theorem 5.13. �
7. A foliation of codimension one

In this section we describe a foliation of the total manifold, and show how to translate the results from previous
sections to a particular leaf (the submanifold Σ1) in order to show an application concerning (finite dimensional)
matrix algebras. Recall that we write HSh for the self-adjoint Hilbert–Schmidt operators. Fix λ ∈ R>0. Let

Σλ = {a + λ ∈ Σ, a ∈ HSh}.
Observe that Σλ ∩ Σβ = ∅ when λ �= β , since a + λ = b + β implies a − b = β − λ. In this way, we can decompose
the total space by means of these leaves, Σ = ˙⋃

λ>0Σλ.

Proposition 7.1. The leaves Σλ are geodesically convex closed submanifolds.

Proof. We consider the projection to the convex scalar manifold Λ (see remark (4) above). The fact that the projection
ΠΛ is a contraction (therefore a continuous map) implies that Σλ is closed; one must only observe that Σλ = Π−1

Λ (λ).
To show that Σλ is geodesically convex we recall that, by virtue of Lemma 6.1, for any real λ > 0 and any p ∈ Σλ,
there is an identification via the inverse exponential map at p, TpΣλ = HSh. �
Remark 7.2. Take δ+c ∈ Ta+λΣλ

⊥. Since Ta+λΣλ can be identified with HSh, the equality 〈δ+c, d〉a+λ = 0 ∀d ∈ HSh

is equivalent to

tr
[
(a + λ)−1[(δ + c)(a + λ)−1 − δ/λ

]
d
] = 0 ∀d ∈ HSh.

Equivalently, Ta+λΣ
⊥
λ = span(a + λ); shortly TpΣ⊥

λ = span(p) for any p ∈ Σλ.

Proposition 7.3. Fix real α,λ > 0. Let Πα,λ = ΠΣλ |Σα :Σα → Σλ. Then

1. Πα,λ(p) = λ
α
p, so Πα,λ(p) commutes with p.

2. Πα,λ is an isometric bijection between Σα and Σλ, with inverse Πλ,α .
3. Πα,λ gives parallel translation along vertical geodesics joining both leaves (that is, geodesics orthogonal to both

leaves).

Proof. Notice that for a point b + α ∈ Σα to be the endpoint of the geodesic γ , starting at a + λ ∈ Σλ, such that
L(γ ) = dist(b + α,Σλ), we must have

b + α = Expa+λ(x + c) = Expa+λ

(
k.(a + λ)

) = ek(a + λ)
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Fig. 1. The geodesics γ and δ are minimizing, the geodesic β is not.

where k ∈ R comes from Remark 7.2 above, since x + c ∈ Ta+λΣλ
⊥. From Lemma 6.1, we deduce that k = ln(α

λ
),

and a = λ
α
b. So, b +α = α

λ
(a +λ) and also γ (t) = (a +λ)(α

λ
)t . Now it is clear that Πλ(b +α) = λ

α
(b +α) commutes

with b + α. To prove that Π is isometric, observe that

dist
(
Πα,λ(p),Πα,λ(q)

) =
∥∥∥∥ ln

((
λ

α
p

)− 1
2
(

λ

α
q

)(
λ

α
p

)− 1
2
) ∥∥∥∥

2
= ∥∥ln(p− 1

2 qp− 1
2 )

∥∥
2 = dist(p, q).

That Π gives parallel translation along γ follows from the formula for Π given in the first item of this proposition
and the formula for the parallel translation given in Remark 4.14.

The normal bundle in the case of M = Σ1 can be thought of as a direct product:

Proposition 7.4. The map T : Σ → Σ1 ×Λ , which assigns a+α �→ ( 1
α
(a+α),α) is bijective and isometric (Σ1 and

Λ have the induced submanifold metric). In other words, there is a Riemannian isomorphism Σ � Σ1 × Λ.

Proposition 7.5. The leaves Σα , Σλ are also parallel in the following sense: any minimizing geodesic joining a point
in one of them with its projection in the other is orthogonal to both of them. See Fig. 1.

For any b + α ∈ Σα we have dist(b + α,Σλ) = dist(Σα,Σλ) = | ln(α
λ
)|. In particular, the distance between α,λ in

the scalar manifold Λ is given by the Haar measure of the open interval (α,β) on the multiplicative group R>0.

Proof. It is a straightforward computation that follows from the previous results; the last statement was observed by
E. Vesentini in another context [27]. �

Since Σ is a symmetric space, curvature is preserved when we parallel-translate bidimensional planes. Note also
that vertical planes (i.e., planes generated by a vector v ∈ HSh = TλΣλ and λ) are commuting sets of operators.

Proposition 7.6. Let p ∈ Σλ. Then the sectional curvature of vertical 2-planes is zero.

Proof. It follows from the formula for the curvature given in Section 3.1. �
7.1. The embedding of M+

n in Σ1

Let M+
n be the set of positive invertible n × n matrices (see the introduction of this paper). First note that we can

embed M+
n ↪→ Σ1 for any n ∈ N: fix an orthonormal basis {en}n∈N of H , let pij = ei ⊗ ej , and identify the set Mn of

real n × n matrices with the set

T =
{

n∑
i,j=1

aij pij : aij = aji ∈ R

}
⊂ HSh.
Please cite this article in press as: G. Larotonda, Nonpositive curvature: A geometrical approach to Hilbert–Schmidt operators, Differential
Geometry and its Applications (2007), doi:10.1016/j.difgeo.2007.06.016



ARTICLE IN PRESS DIFGEO:605
JID:DIFGEO AID:605 /FLA [m3SC+; v 1.73; Prn:26/07/2007; 13:08] P.21 (1-22)

G. Larotonda / Differential Geometry and its Applications ••• (••••) •••–••• 21
We identify the manifold M+
n with P = {eT : T ∈ T } ⊂ Σ1 and the tangent space at each eT ∈ P is T . The set P is

closed and convex in Σ1 by Corollary 4.5. Let us call S = span(e1, . . . , en), S⊥ = span(en+1, en+2, . . .). The operator
PS is the orthogonal projection to S and QS = 1 − PS is the orthogonal projection to S⊥. Using matrix blocks, for
any operator A ∈ B(S), we identify

T =
{(

A 0
0 0

)}
and P =

{(
eA 0
0 1

)}
.

Remark 7.7. There is a direct sum decomposition of HSh = T ⊕ J where operators in J ∈ J are such that
PSJPS = 0. A straightforward computation using the matrix-block representation shows that 〈a, b〉2 = 0 for any
a ∈ T , b ∈ J , which says T ⊥ = J (here we consider HSh as the total space). So the manifolds exp(J ) and
P = exp(T ) are orthogonal at 1, the unique intersection point. In the notation of Theorem 4.18, it is also clear that
P = MG � G/K , where

G =
(

GL(n,C) 0
0 1

)
and K =

(
U(n,C) 0

0 1

)
.

Theorem 7.8. Let P � M+
n ⊂ Σ1 with the above identification. Then for any positive invertible operator eb ∈ Σ1,

(b ∈ HSh) there is a unique factorization of the form

eb =
(

eA 0
0 1

)
exp

{(
e−A 0
0 1

)(
0 Y ∗
Y X

)}
where if a =

(
A 0
0 0

)
∈ T

then ea = eAPS + QS ∈ P � M+
n , X∗ = X is a Hilbert–Schmidt operator acting on the Hilbert space S⊥, and

Y ∈ B(S,S⊥).

An equivalent expression for the factorization is

eb =
(

eA/2 0
0 1

)
exp

{(
0 e−A/2Y ∗
Y e−A/2 X

)}(
eA/2 0
0 1

)
.

Proof. From previous theorems and the observations we made, we know that eb = ea/2Cea/2, where

C = exp

{(
e−A/2 0
0 1

)(
V11 V ∗

21
V21 V22

)(
e−A/2 0
0 1

)}

for some A ∈ B(S) and some v ∈ HSh. That V11 = 0 follows from the fact (see Remark 7.7) that T ⊥ = J , and
v ∈ TeaP⊥ if and only if tr(e−ABe−AV11) = 0 for any B ∈ T . �
Remark 7.9. For any b ∈ HSh, the operator

ea = eAPS + P
S

⊥ =
(

eA 0
0 1

)
= exp

(
A 0
0 0

)

is the ‘first block’ n × n matrix which is closest to eb in Σ , and with a slight abuse of notation for the traces of B(S)

and B(S⊥), we have

dist(P, eb) = dist(ea, eb) =
√

‖Y e−A/2‖2
2 + ‖X‖2

2.

Corollary 7.10. For any g ∈ H•
C

there is a unique factorization g = λrevu, where λ ∈ R>0, u ∈ U(HC) is a unitary
operator,

r =
(

R 0
0 1

)
, v =

(
0 Y ∗
Y X

)

with R ∈ B(S)+ � M+
n , X = X∗ ∈ B(S⊥) a Hilbert–Schmidt, and Y ∈ B(S,S⊥).
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Proof. We use the notation of Remark 7.7. Note that, by Theorem 5.13, g = rexu with u ∈ U(HC), r ∈ P = exp(T )

and x ∈ T ⊥. But T ⊥ = J ⊕ R1 if we consider HR as the total space, and eα+a = eαea if α ∈ R. �
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