

Available online at www.sciencedirect.com

Journal of Algebra 302 (2006) 848-861

JOURNAL OF Algebra

www.elsevier.com/locate/jalgebra

Stone duality for Dedekind σ -complete ℓ -groups with order-unit $\stackrel{\text{\tiny{}^{\diamond}}}{\to}$

Roberto Cignoli^a, Daniele Mundici^{b,*}

^a Instituto Argentino de Matemática, CONICET, Saavedra 15, Piso 3, C1083ACA Buenos Aires, Argentina ^b Department of Mathematics "Ulisse Dini", University of Florence, Viale Morgagni 67/A, 50134 Florence, Italy

Received 4 March 2005

Available online 30 June 2006

Communicated by Michel Broué

Abstract

Building on the Goodearl-Handelman-Lawrence functional representation theorem, we provide a purely topological representation (specifically, a categorical duality) for a large class of Dedekind σ -complete ℓ -groups G with order-unit u, including all G where u has a finite index of nilpotence. Our duality is a far-reaching generalization of the well-known Stone duality between σ -complete boolean algebras and basically disconnected compact Hausdorff spaces.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Lattice-ordered abelian group; Dedekind σ -complete group; Basically disconnected space; Stone duality; Regular biregular ring; Bounded index of nilpotence; σ -Complete MV-algebra

1. Introduction

In this paper by an ℓ -group we understand a lattice-ordered *abelian* group. An *order-unit*¹ of an ℓ -group G is an element $u \in G$ such that for every $a \in G$ there is an $n_a \in \mathbb{N}$ satisfying

$$-n_a u \leqslant a \leqslant n_a u. \tag{1.1}$$

0021-8693/\$ – see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2006.05.029

^{*} Partially supported by Project of Scientific and Technological Cooperation between Argentina and Italy, on "Many-valued Logic", Code 33I.

Corresponding author.

E-mail addresses: cignoli@dm.uba.ar (R. Cignoli), mundici@math.unifi.it (D. Mundici).

¹ "Unité forte" in [1].

Following [4], we say that an ℓ -group G is *Dedekind* σ -complete (or a $\sigma \ell$ -group for short), if every non-empty countable subset of G which is bounded above in G has a supremum in G.

As shown in [6, Section II, 13-14] the class of Dedekind σ -complete ℓ -groups with order-unit arises via the Grothendieck functor K_0 from an interesting class of \aleph_0 -continuous regular rings.

Further, in [8, Theorem 3.9] a categorical equivalence Γ is established between lattice-ordered abelian groups with order-unit, and MV-algebras. In particular, by [8, Theorem 2.5] Dedekind σ -complete ℓ -groups with order-unit correspond via Γ to σ -complete MV-algebras: the latter are an interesting generalization of σ -complete boolean algebras (see, e.g., [9] and references therein).

Let \mathbb{DED} denote the category whose objects are Dedekind σ -complete ℓ -groups with a distinguished order-unit, and whose morphisms are the unit preserving ℓ -group homomorphisms that also preserve all denumerable infima and suprema.

A fundamental representation theorem by Goodearl, Handelman and Lawrence (Theorem 2.3 below) shows that, up to isomorphism, every object $(G, u) \in \mathbb{DED}$ is an ℓ -group of continuous real-valued functions over the space $X = \partial_e S(G, u)$ of extremal states of G, the constant function 1 being the order-unit u. The space X can be equivalently characterized as the (Stone) maximal ideal space of the boolean algebra of characteristic elements of G (see [4, 8.14]).

Letting (G, u) be so represented, for each $x \in X$ let us denote by G(x) the set of possible values of functions in G at x. In symbols,

$$G(x) = \left\{ f(x) \colon f \in G \right\} = G/x.$$

It is well known [6, 1.4.7] that G(x) either coincides with the set of all real numbers, or else for some integer $n_x \ge 1$ (called the rank of x), G(x) coincides with the set of integer multiples of $1/n_x$. In this latter case x is said to be *discrete*. Assuming the finite ranks n_x to be bounded by some fixed n only depending on (G, u), we obtain the subcategory $\mathbb{BFR} \subseteq \mathbb{DED}$ of Dedekind σ -complete ℓ -groups with order unit of *bounded finite rank*.

The class of objects of BFR strictly includes all Dedekind σ -complete ℓ -groups (G, u) with order unit *of finite index*. By [5, Theorem 4.4] (also see the main result in [3]) any such (G, u) arises as $(K_0(R), [R])$ for some regular, biregular ring with bounded index (of nilpotence).²

In Theorem 4.2 below we establish an adjunction between \mathbb{DED}^{op} and a category \mathbb{W} consisting of basically disconnected (always compact Hausdorff) spaces equipped with a system of closed sets satisfying very simple axioms (see Definitions 3.1 and 3.6 below). By restriction, this adjunction gives a duality between \mathbb{BFR} and the full subcategory of \mathbb{W} whose objects are basically disconnected compact Hausdorff spaces equipped with a *finite* system of closed sets satisfying the mentioned conditions.

For the very particular subcategory of \mathbb{BFR} obtained when the rank of G(x) is constantly equal to 1, our duality amounts to composition of the Γ functor with the Stone duality between σ -complete boolean algebras and basically disconnected spaces [10, Sections 8 and 22].

We refer to [1,4] for background on ℓ -groups, and to [7] for all the notions and results from category theory used in the paper.

Notation. Throughout this paper, \mathbb{R} will denote the set of real numbers as well as the additive group of the real numbers with the usual order (and topology). \mathbb{Z} will denote the set of integers

² Satisfying suitable additional continuity properties.

and \mathbb{N} the set of natural numbers $\mathbb{N} = \{1, 2, ...\}$. We denote by $\frac{1}{n}\mathbb{Z}$ the subset of \mathbb{R} given by the integer multiples of $\frac{1}{n}$. When the space X is clear from the context, \overline{S} denotes the closure of S in X, and int(S) denotes its interior.

2. Dedekind σ -complete ℓ -groups with order-unit

Given a compact Hausdorff space X, we denote by $Cont(X, \mathbb{R})$ the ℓ -group of real-valued continuous functions on X, with the pointwise operations. All the sub- ℓ -groups of $Cont(X, \mathbb{R})$ considered in this paper have the constant function 1 as a distinguished order-unit.

Given an ℓ -group G with order-unit u, we denote by $\mathcal{X}(G, u)$ the set of all ℓ -group homomorphisms $\chi: G \to \mathbb{R}$ such that $\chi(u) = 1$. It is well known that the map $\chi \mapsto \text{Ker}(\chi) = \{a \in G: \chi(a) = 0\}$ is a bijective correspondence between $\mathcal{X}(G, u)$ and the set of maximal ℓ -ideals of G. Thus in particular, $\mathcal{X}(G, u)$ is non-empty. From (1.1) it follows that $\mathcal{X}(G, u)$ is a closed subspace of the product $\prod_{a \in G} [-n_a, n_a]$, where the segments $[-n_a, n_a]$ are endowed with the usual topology inherited from \mathbb{R} . Consequently $\mathcal{X}(G, u)$ with the restriction topology is a compact Hausdorff space. Its topology is said to be the *natural topology* of $\mathcal{X}(G, u)$. For each $a \in G$ let the function $\hat{a}: \mathcal{X}(G, u) \to \mathbb{R}$ be defined by

$$\hat{a}(\chi) = \chi(a). \tag{2.2}$$

Then the map $a \mapsto \hat{a}$ is an ℓ -group isomorphism of G into $Cont(\mathcal{X}(G, u), \mathbb{R})$ sending u to the constant function 1.

A sub- ℓ -group *G* of Cont(*X*, \mathbb{R}) is said to be *separating* if for any two distinct points $x, y \in X$, there is $c \in G$ such that $c(x) \neq c(y)$. Given a compact Hausdorff space *X* and a separating sub- ℓ -group *G* of Cont(*X*, \mathbb{R}) containing the constant function 1, let the evaluation map $v: X \to \mathcal{X}(G, 1)$ be defined for each $x \in X$ and each $c \in G$ by the stipulation

$$\upsilon(x)(c) = c(x). \tag{2.3}$$

It is well known that the correspondence $x \mapsto \{c \in G: c(x) = 0\}$ is a bijection from X onto $\mathcal{X}(G, 1)$ (see, for instance, [2, pp. 351–352]). From this it follows easily that v is a homeomorphism of X onto $\mathcal{X}(G, 1)$.

In what follows we will only consider $\sigma\ell$ -groups with order-unit, and (G, u) will always denote a $\sigma\ell$ -group G with a distinguished order-unit u. By a sub- $\sigma\ell$ -group S of a $\sigma\ell$ -group G we understand a sub- ℓ -group S of G having the following property: whenever a denumerable subset of S has a supremum s in G then s belongs to S.

Let X be a compact Hausdorff space. From [4, Corollary 9.3] it follows that the ℓ -group Cont(X, \mathbb{R}) is Dedekind σ -complete if and only if X is *basically disconnected*, i.e., the closure of every open F_{σ} -set in X is open.³

Notation. When dealing with sequences $\{c_i\}$ in $Cont(X, \mathbb{R})$, for X a basically disconnected compact Hausdorff space, we shall denote by $\bigvee_{i \in \mathbb{N}} c_i$ their supremum in $Cont(X, \mathbb{R})$, and by $\bigwedge_{i \in \mathbb{N}} c_i$ their infimum in $Cont(X, \mathbb{R})$. As is well known, $\bigvee_{i \in \mathbb{N}} c_i$ need not coincide with the pointwise supremum of the c_i 's, and $\bigwedge_{i \in \mathbb{N}} c_i$ need no coincide with their pointwise infimum.

 $^{^3}$ As is well known, basically disconnected compact Hausdorff spaces are precisely the dual (Stone) spaces of σ -complete boolean algebras.

By [6, 1.4.3–1.4.6], $\mathcal{X}(G, u)$ coincides with the set $\partial_e S(G, u)$ of extremal states of (G, u),

$$\mathcal{X}(G, u) = \partial_{e} S(G, u). \tag{2.4}$$

To maintain the notation of [4], we shall write $\partial_e S(G, u)$ instead of $\mathcal{X}(G, u)$ whenever G is a $\sigma \ell$ -group. By [4, 8.11, 9.9, 9.10] the space $\partial_e S(G, u)$ with its natural topology is a basically disconnected compact Hausdorff space.

Given a natural number *n* and $\chi \in \partial_e S(G, u)$ we say that χ *is of rank n*, and we write rank $(\chi) = n$, if $\chi(G) = \frac{1}{n}\mathbb{Z}$. If there is at least one χ of rank *n* we denote by $F_n(G, u)$ (abbreviated $F_n(G)$ if there is no danger of confusion) the set of points $\chi \in \partial_e S(G, u)$ such that rank (χ) is a divisor of *n*. If no such point exists, then by definition $F_n(G, u) = \emptyset$.

Let $\text{Disc}(G, u) = \bigcup_{n \in \mathbb{N}} F_n(G, u)$. Then the elements of Disc(G, u) are said to be *discrete*. If $\chi \in \partial_e S(G, u) \setminus \text{Disc}(G, u)$, then χ is said to have *infinite rank*, and we write $\text{rank}(\chi) = \infty$. The *numerical spectrum* NumSpec(G, u) is defined by NumSpec $(G, u) = \{n \in \mathbb{N}: F_n(G, u) \neq \emptyset\}$, ordered by divisibility. If NumSpec(G, u) is finite we say that (G, u) has *bounded finite ranks*; we do not exclude the case NumSpec $(G, u) = \emptyset$, i.e., as proved in [6, 1.4.7], $\chi(G) = \mathbb{R}$ for all $\chi \in \partial_e S(G, u)$.

Remark 2.1. The set NumSpec(*G*, *u*) inherits the divisibility order of the natural numbers, but not necessarily the divisibility lattice structure: as a matter of fact, it may happen that two elements of NumSpec(*G*, *u*) have neither meet, nor join in NumSpec(*G*, *u*), or that they have a meet in NumSpec(*G*, *u*) different for their greatest common divisor, or a join different from their least common multiple. Trivial examples *G* of these situations are easily given by direct products $G = \frac{1}{n_1}\mathbb{Z} \times \frac{1}{n_2}\mathbb{Z} \times \frac{1}{n_3}\mathbb{Z}$ for suitably chosen natural numbers n_1, n_2 and n_3 .

Definition 2.2. For *S* a subset of $\partial_e S(G, u)$, a function $f \in \text{Cont}(\partial_e S(G, u), \mathbb{R})$ is said to be *compatible with S* (for short, *S-compatible*), if for each $\chi \in S$, $f(\chi) \in \chi(G)$.

The following theorem of Goodearl, Handelman and Lawrence [6, Proposition 1.4.7, Theorem 1.9.4], [4, 9.12–9.15] plays a fundamental role in the theory of $\sigma \ell$ -groups with order-unit:

Theorem 2.3. Let G be a $\sigma\ell$ -group with order-unit u. Then the map $a \mapsto \hat{a}$ given by (2.2) defines an embedding $\eta_{(G,u)}: G \to \text{Cont}(\partial_e S(G, u), \mathbb{R})$ that preserves denumerable infima and suprema.

The image $\eta_{(G,u)}(G)$ is the sub- $\sigma\ell$ -group \hat{G} of $Cont(\partial_e S(G, u), \mathbb{R})$ given by all real-valued continuous functions on $\partial_e S(G, u)$ that are simultaneously $F_n(G)$ -compatible for all $n \in \mathbb{N}$.

Remark 2.4. For each $n \in \mathbb{N}$ the set $F_n(G)$ is closed. Indeed, if $F_n(G) \neq \emptyset$, then $F_n(G) = \bigcap_{a \in G} \hat{a}^{-1}(\frac{1}{n}\mathbb{Z})$. One now recalls that each function \hat{a} is continuous and that $\frac{1}{n}\mathbb{Z}$ is a closed subset of \mathbb{R} .

Our next aim is to establish a topological characterization of the sets $F_n(G)$. To this purpose we give the following definition.

Definition 2.5. Let *X* be a basically disconnected compact Hausdorff space. We say that a set $F \subseteq X$ is *special* if for each denumerable sequence $\{C_i\}_{i \in \mathbb{N}}$ of clopen subsets of $X \setminus F$, $\bigcup_{i \in \mathbb{N}} C_i \cap F = \emptyset$.⁴

Lemma 2.6. Let G be a $\sigma\ell$ -group with order-unit u. Fix $n \in \mathbb{N}$. Then $F_n(G)$ is a special closed set.

Proof. Write for short $X = \partial_e S(G, u)$ and $F_n = F_n(G, u)$. We have already noted that F_n is closed. Trivially, \emptyset is a special closed set. So suppose $F_n \neq \emptyset$, and let $\{C_j\}_{j \in \mathbb{N}}$ be a sequence of clopen sets in $X \setminus F_n$ such that there is $\zeta \in \bigcup_{j \in \mathbb{N}} C_j \cap F_n$ (absurdum hypothesis). Without loss of generality we can suppose that the C_j are pairwise disjoint.

By hypothesis for each $j \in \mathbb{N}$ and $\chi \in C_j$, rank (χ) is not a divisor of n. Whenever $r \in \mathbb{N}$ is not a divisor of n the rational number

$$d_r = \inf_{p \in \mathbb{Z}} \left\{ \left| \frac{1}{r} - \frac{p}{n} \right| \right\} = \min_{p \in \mathbb{Z}} \left\{ \left| \frac{1}{r} - \frac{p}{n} \right| \right\}$$

is > 0. Define $K \subseteq \mathbb{N}$ and d, e in \mathbb{Q} by

$$K = \{r \in \mathbb{N}: r \leq 10n \text{ and } r \text{ does not divide } n\},\$$
$$d = \min\{d_r\}_{r \in K}, \qquad e = \min\left\{\frac{d}{3}, \frac{1}{10n}\right\}.$$

Claim. Fix $j \in \mathbb{N}$. Then there is a clopen neighborhood $U_{\chi} \subseteq C_j$ of χ and an element $a_{\chi} \in G$ such that $\widehat{a_{\chi}}(U_{\chi}) \cap [\frac{p}{n} - e, \frac{p}{n} + e] = \emptyset$ for all $p \in \mathbb{Z}$.

To prove the claim, note that in case rank(χ) = $r \leq 10n$, by the definition of rank and Theorem 2.3, there is $a_{\chi} \in G$ such that $\widehat{a_{\chi}}(\chi) = \frac{1}{r}$. We choose the clopen $U_{\chi} \ni \chi$ such that $U_{\chi} \subseteq C_{j}$ and

$$\widehat{a_{\chi}}(U_{\chi}) \subseteq \left[\frac{1}{r} - \frac{d}{3}, \frac{1}{r} + \frac{d}{3}\right].$$

In case rank(χ) = ∞ , we let $a_{\chi} \in G$ satisfy $\widehat{a_{\chi}} = \frac{1}{2n}$, and choose the clopen $U_{\chi} \ni \chi$ in such a way that $U_{\chi} \subseteq C_j$ and

$$\widehat{a_{\chi}}(U_{\chi}) \subseteq \left[\frac{1}{2n} - \frac{1}{10n}, \frac{1}{2n} + \frac{1}{10n}\right].$$

Finally, in case rank(χ) = r > 10n, by taking a suitable multiple of an element $c \in G$ with $\hat{c}(\chi) = \frac{1}{r}$, we can obtain an element $a_{\chi} \in G$ and a clopen $U_{\chi} \ni \chi$ such that $U_{\chi} \subseteq C_j$ and

$$\widehat{a_{\chi}}(U_{\chi}) \subseteq \left[\frac{1}{2n} - \frac{1}{10n}, \frac{1}{2n} + \frac{1}{10n}\right].$$

⁴ Compare with [10, §21.6].

This completes the proof of the claim.

Since C_j is compact, there are finitely many elements $\chi(j1), \ldots, \chi(jz_j)$ in C_j together with a cover of C_j by clopens $U_{\chi(j1)}, \ldots, U_{\chi(jz_j)}$, and elements $a_{\chi(j1)}, \ldots, a_{\chi(jz_j)}$ in G such that for all $t = 1, \ldots, z_j$,

$$\widehat{a_{\chi(jt)}}(U_{\chi(jt)}) \cap \left[\frac{p}{n} - e, \frac{p}{n} + e\right] = \emptyset \quad \text{for all } p \in \mathbb{Z}.$$
(2.5)

We now modify the sets $U_{\chi(jt)}$ and the elements $a_{\chi(jt)}$ as follows: we first cut down $U_{\chi(jt)}$ to $U'_{\chi(jt)} \subseteq U_{\chi(jt)}$ so that $U'_{\chi(j1)}, \ldots, U'_{\chi(jz_j)}$ form a clopen partition of C_j . Since the C_j are pairwise disjoint then so are the sets $U'_{\chi(jt)}$ for $j \in \mathbb{N}$ and $1 \leq t \leq z_j$. Second, we replace each $a_{\chi(jt)}$ by the element $a'_{\chi(jt)}$ coinciding with $a_{\chi(jt)}$ over $U'_{\chi(jt)}$ and vanishing outside $U'_{\chi(jt)}$. We now define $a \in G$ by

$$a = \bigvee \{a'_{\chi(jt)}: j \in \mathbb{N}, t = 1, \dots, z_j\}.$$

By definition of F_n we have:

There is
$$q \in \mathbb{Z}$$
 such that $\hat{a}(\zeta) = \frac{q}{n}$. (2.6)

By definition of the $U'_{\chi(it)}$ we can write

$$\overline{\bigcup_{j\in\mathbb{N}} (U'_{\chi(j1)}\cup\cdots\cup U'_{\chi(jz_j)})} = \overline{\bigcup_{j\in\mathbb{N}} C_j} \ni \zeta,$$

whence for every clopen neighborhood W of ζ there is $j \in \mathbb{N}$ and $t \in \{1, ..., z_j\}$ such that $W \cap U'_{\chi(it)} \neq \emptyset$. By (2.6), there is a clopen $V \ni \zeta$ such that

$$\hat{a}(V) \subseteq \left[\frac{q}{n} - \frac{e}{3}, \frac{q}{n} + \frac{e}{3}\right]$$

Let \bar{j}, \bar{t} be such that $V \cap U'_{\chi(\bar{t}\bar{t})} \neq \emptyset$. By (2.5) we can now refine the inequality $a \ge a'_{\chi(\bar{t}\bar{t})}$ to

$$\hat{a} > \widehat{a'_{\chi(\bar{j}\bar{t})}}$$
 over $V \cap U'_{\chi(\bar{j}\bar{t})}$. (2.7)

Let f be the real-valued continuous function over X that coincides with \hat{a} outside $V \cap U'_{\chi(\bar{j}\bar{t})}$ and coincides with $\widehat{a'_{\chi(\bar{j}\bar{t})}}$ over $V \cap U'_{\chi(\bar{j}\bar{t})}$. By (2.7), $f < \hat{a}$. By construction, f is an upper bound of the sequence $\{\widehat{a'_{\chi(jt)}}: j \in \mathbb{N}, t \in \{1, ..., z_j\}\}$. By Theorem 2.3 there is $b \in G$ such that $\hat{b} = f$. Now b is an upper bound in G of the sequence $\{a'_{\chi(jt)}: j \in \mathbb{N}, t \in \{1, ..., z_j\}\}$, and is strictly smaller than a, which is impossible. \Box For a converse of the foregoing proposition, fix $n \in \mathbb{N}$. Let X be an arbitrary basically disconnected compact Hausdorff space. For any closed subset F of X define $\Theta(F)$ by

$$\Theta(F) = \Theta_{X,n}(F) = \left\{ f \in \operatorname{Cont}(X, \mathbb{R}) \colon \forall x \in F, \ f(x) \in \frac{1}{n} \mathbb{Z} \right\}.$$

Direct inspection shows that $\Theta(F)$ is a sub- ℓ -group of the $\sigma\ell$ -group Cont (X, \mathbb{R}) . The next lemma shows that when F is special, $\Theta(F)$ is a sub- $\sigma\ell$ -group of Cont (X, \mathbb{R}) .

Lemma 2.7. Let X be a basically disconnected compact Hausdorff space. Let n be a fixed but otherwise arbitrary natural number. Let F be a closed subset of X. If F is special, then for every sequence $\{f_i\}_{i\in\mathbb{N}}$ of functions in $\Theta_{X,n}(F)$ such that $f = \bigvee_{i\in\mathbb{N}} f_i$ exists, we have $f \in \Theta_{X,n}(F)$.

Proof. Write $\Theta(F)$ instead of $\Theta_{X,n}(F)$. Suppose that *F* is a closed subset of *X* and that there is a sequence $\{f_i\}_{i \in \mathbb{N}}$ of functions in $\Theta(F)$ with $f = \bigvee_{i \in \mathbb{N}} f_i$ and $f \notin \Theta(F)$. We will show that *F* is not special. By hypothesis there is $z \in F$ such that f(z) is not an integer multiple of $\frac{1}{n}$. Since $\frac{1}{n}\mathbb{Z}$ is a closed subset of \mathbb{R} , there is $\varepsilon > 0$ such that the interval $[f(z) - \varepsilon, f(z) + \varepsilon]$ is disjoint from $\frac{1}{n}\mathbb{Z}$. For each integer $k \ge 3$, defining

$$I_k = \bigcup_{p \in \mathbb{Z}} \left[\frac{p}{n} + \frac{1}{kn}, \frac{p+1}{n} - \frac{1}{kn} \right].$$

we get an increasing sequence of closed subsets of \mathbb{R} whose union coincides with the complement of $\frac{1}{n}\mathbb{Z}$ in \mathbb{R} . For each $i \in \mathbb{Z}$ and each integer $k \ge 3$, let

$$C_{ik} = \overline{f_i^{-1}(\operatorname{int}(I_k))}.$$

Since $\operatorname{int}(I_k)$ is an open F_{σ} in \mathbb{R} , from the compactness of X and the continuity of f_i it follows that $f_i^{-1}(\operatorname{int}(I_k))$ is an open F_{σ} in X, and C_{ik} is clopen in X. Moreover, $C_{ik} \subseteq f_i^{-1}(I_k) \subseteq X \setminus F$. Let

$$U = \bigcup_{i \in \mathbb{N}, k \geqslant 3} C_{ik}$$

To complete the proof it suffices to settle the following

Claim. $F \cap U \neq \emptyset$.

By way of contradiction suppose $F \cap U = \emptyset$. Since U is the closure of an F_{σ} and X is basically disconnected, then U is an open subset of X containing all points $x \in X$ such that $f_i(x) \notin \frac{1}{n}\mathbb{Z}$ for some $i \in \mathbb{N}$. Thus there is a clopen subset $C \subseteq X$ such that $z \in C \subseteq X \setminus U$ and $f(C) \subseteq [f(z) - \varepsilon, f(z) + \varepsilon]$. From $f_i(x) \leq f(x)$ and $[f(z) - \varepsilon, f(z) + \varepsilon] \cap \frac{1}{n}\mathbb{Z} = \emptyset$, we obtain that for all $x \in C$ and $i \in \mathbb{N}$, $f_i(x) < f(z) - \varepsilon$. The function $g: X \to \mathbb{R}$ taking constantly the value $f(z) - \varepsilon$ over C, and the value 1 over $X \setminus C$ is continuous. Therefore, the function $g \wedge f$ is a continuous upper bound of the sequence $\{f_i\}_{i \in \mathbb{N}}$ and is strictly smaller than f, which contradicts the hypothesis $f = \bigvee_{i \in \mathbb{N}} f_i$. \Box

3. The category ₩

As the reader will recall, $\mathbb{D}\mathbb{E}\mathbb{D}$ denotes the category whose objects are Dedekind σ -complete ℓ -groups with a distinguished order-unit, and whose morphisms are the unit preserving ℓ -group homomorphisms that also preserve all denumerable infima and suprema. The full subcategory of $\mathbb{D}\mathbb{E}\mathbb{D}$ whose objects are the $\sigma\ell$ -groups of bounded finite rank will be denoted by $\mathbb{B}\mathbb{F}\mathbb{R}$.

Our duality is in terms of a category \mathbb{W} whose objects are given by the following definition (morphisms will be defined in 3.6 below):

Definition 3.1. *Objects* of \mathbb{W} are triples $\langle X, S, \varphi \rangle$ such that X is a basically disconnected compact Hausdorff space, S is a (possibly empty) set of natural numbers and φ is a one–one map from S into the set of subsets of X satisfying the following three conditions:

(A1) For each $n \in S$, $\varphi(n)$ is a non-empty special closed subset of X;

(A2) For each $n \in S$, $\varphi(n) \supseteq \bigcup \{\varphi(j) : j \in S, j < n, j \text{ divides } n\};$

(A3) For all $m, n \in S$,

$$\varphi(m) \cap \varphi(n) = \bigcup \{ \varphi(j) \colon j \in S, j \text{ is a common divisor of } m \text{ and } n \}.$$

Notation. For each object (X, S, φ) in \mathbb{W} , and $n \in S$, let $\varphi(n)'$ be defined by

$$\varphi(n)' = \varphi(n) \setminus \bigcup \{ \varphi(i) \colon n > i \in S \text{ and } i \text{ divides } n \}.$$

With this notation, (A2) can be equivalently restated as

(A2') $\varphi(n)' \neq \emptyset$ for all $n \in S$.

Lemma 3.2. Let $\langle X, S, \varphi \rangle$ be an object in \mathbb{W} . For all m, n in $S, \varphi(m) \subseteq \varphi(n)$ if and only if m is a divisor of n.

Proof. The "if" part follows at once from (A2). To prove the "only if" part, suppose *m* is not a divisor of *n*. Then by (A3) $\varphi(m) \cap \varphi(n)$ is the union of $\varphi(j)$ for $j \in S$ and *j* a common divisor of *m* and *n*. By hypothesis $j \neq m$. Thus j < m, and $\varphi(m) \cap \varphi(n) \subseteq \bigcup \{\varphi(j): j \in S, j \text{ divides } m, j < m\}$. By (A2), this union is properly contained in $\varphi(m)$. Hence $\varphi(m) \nsubseteq \varphi(n)$, as required. \Box

Lemma 3.3. Let $\langle X, S, \varphi \rangle$ be an object in \mathbb{W} . For each $x \in \bigcup_{n \in S} \varphi(n)$ there is $n_x \in S$ with $x \in \varphi(n_x)$ having the additional property that for every $m \in S$, $x \in \varphi(m)$ if and only if n_x divides m. In other words, n_x is the minimum $n \in S$ such that $x \in \varphi(n)$.

Proof. Let n_x be minimal (with respect to the divisibility order) in the set $\{n \in S: x \in \varphi(n)\}$. If $x \in \varphi(m)$ then $x \in \varphi(n_x) \cap \varphi(m)$, and by (A3), there is a common divisor d of n_x and of m such that $x \in \varphi(d)$. By definition of n_x we have $n_x = d$, whence n_x divides m. \Box

Definition 3.4. Let $\langle X, S, \varphi \rangle$ be an object in \mathbb{W} and let $x \in X$. In the light of Lemma 3.3, we define the *virtual rank*

of x as the minimum $n \in S$ such that $x \in \varphi(n)$ in case $x \in \bigcup_{n \in S} \varphi(n)$, and we set $vrank(x) = \infty$ otherwise.

Remark 3.5. For each $n \in S$, $\varphi(n)' = \{x \in X : \operatorname{vrank}(x) = n\}$. Hence (A2) asserts that for each $n \in S$ there is at least one $x \in X$ such that $\operatorname{vrank}(x) = n$.

Given basically disconnected spaces X, Y, we say that a function $f: X \to Y$ is σ -continuous if it is continuous, and for each sequence $(U_n: n \in \mathbb{N})$ of clopen subsets of Y, we have the identity

$$\operatorname{int}\left(\bigcap_{n\in\mathbb{N}}f^{-1}(U_n)\right) = f^{-1}\left(\operatorname{int}\left(\bigcap_{n\in\mathbb{N}}U_n\right)\right).$$
(3.8)

As a matter of fact, $f: X \to Y$ is σ -continuous if and only if it induces a σ -homomorphism from the dual σ -boolean algebra of Y into the dual σ -boolean algebra of X (cf. [10, §22]). Notice that homeomorphisms between basically disconnected compact Hausdorff spaces are σ -continuous functions.

We can now complete the definition of the category \mathbb{W} :

Definition 3.6. Whenever $\langle X, S, \varphi \rangle$ and $\langle Y, T, \psi \rangle$ are objects in \mathbb{W} , by a *morphism* $\langle X, S, \varphi \rangle \rightarrow \langle Y, T, \psi \rangle$ we understand a σ -continuous function $f: X \rightarrow Y$ such that for every $x \in X$, if vrank $(x) < \infty$, then vrank(f(x)) divides vrank(x).

Lemma 3.7. Objects $\langle X, S, \varphi \rangle$ and $\langle Y, T, \psi \rangle$ are isomorphic in the category \mathbb{W} if and only if S = T and there is a homeomorphism f from X onto Y such that $\operatorname{vrank}(f(x)) = \operatorname{vrank}(x)$ for all $x \in X$.

Proof. For the non-trivial direction, suppose that $f: \langle X, S, \varphi \rangle \to \langle Y, T, \psi \rangle$ is an isomorphism in \mathbb{W} . Then the inverse function $f^{-1}: Y \to X$ is also a morphism in \mathbb{W} . Hence f is a homeomorphism from X onto Y. Let $n \in S$. By Remark 3.5 there is $x \in X$ such that $\operatorname{vrank}(x) = n$. If m = $\operatorname{rank}(f(x))$ then $m \in T$ and m divides n. Since f^{-1} is a morphism, $n = \operatorname{vrank}(f^{-1}(f(x)))$ is a divisor of $\operatorname{vrank}(f(x)) = m$. It follows that m = n. Hence $S \subseteq T$ and $\operatorname{vrank}(f(x)) = \operatorname{vrank}(x)$ for all $x \in \bigcup_{n \in S} \varphi(n)$. The proof is completed by interchanging the roles of f and f^{-1} . \Box

Our duality for the category \mathbb{BFR} is given in terms of the following category:

Definition 3.8. We let \mathbb{W}_{fin} be the full subcategory of \mathbb{W} whose objects are all triples $\langle X, S, \varphi \rangle$ with *S finite*.

Below in Theorem 5.3 we will prove that \mathbb{BFR}^{op} is equivalent to \mathbb{W}_{fin} . But first we shall construct an adjunction between \mathbb{DED}^{op} and \mathbb{W} .

4. An adjunction between DED^{op} and W

Given an object (G, u) of \mathbb{DED} , let

$$\mathsf{F}(G, u) = \langle \partial_{\mathsf{e}} S(G, u), \operatorname{NumSpec}(G, u), \varphi \rangle,$$

where $\varphi(n) = F_n(G)$ for all $n \in \text{NumSpec}(G, u)$. From Lemma 2.6 and the definition of φ it follows that F(G, u) is an object of \mathbb{W} .

For any morphism $(G, u) \xrightarrow{h} (H, v)$ in \mathbb{DED} let

$$h^*: \partial_{\mathbf{e}}S(H, v) \to \partial_{\mathbf{e}}S(G, u)$$

be defined by

$$h^*(\chi) = \chi \circ h \tag{4.9}$$

for all $\chi \in \partial_e S(H, v)$. Then h^* is continuous and $\chi(h(G)) \subseteq \chi(H)$. Thus, in order to prove that h^* is a morphism in \mathbb{W} we have only to check that it is σ -continuous, i.e., that condition (3.8) is satisfied by h^* . In what follows, for any subset E of a set L, we shall denote by char(E): $L \to \{0, 1\}$ the characteristic function of E in L. Let $(U_n: n \in \mathbb{N})$ be a sequence of clopen subsets of $\partial_e S(G, u)$, and let $U = \operatorname{int}(\bigcap_{n \in \mathbb{N}} U_n)$. We have the identity $\bigwedge_{n \in \mathbb{N}} \operatorname{char}(U_n) = \operatorname{char}(U)$ in $\operatorname{Cont}(\partial_e S(G, u), \mathbb{R})$. Trivially, all functions $\operatorname{char}(U_n)$, as well as char(U), are $F_n(G)$ -compatible for each $n \in \operatorname{NumSpec}(G, u)$. Thus by Theorem 2.3 there are elements b_n and b in G such that $\widehat{b_n} = \operatorname{char}(U_n)$, for all $n \in \mathbb{N}$, $\widehat{b} = \operatorname{char}(U)$, and $\bigwedge b_n = b$. It follows that $h(b) = \bigwedge_{n \in \mathbb{N}} h(b_n)$ in H. Recalling (2.2) and (4.9), for each $n \in \mathbb{N}$ we have the identities $\widehat{h(b_n)} = \widehat{b_n} \circ h^* = \operatorname{char}(h^{*-1}(U_n))$. Since by Theorem 2.3 the map $a \mapsto \widehat{a}$ preserves all denumerable infima we can write

$$\widehat{h(b)} = \bigwedge_{n \in \mathbb{N}} \operatorname{char}(h^{*-1}(U_n)) = \operatorname{char}\left(\operatorname{int}\left(\bigcap_{n \in \mathbb{N}} h^{*-1}(U_n)\right)\right).$$

Similarly, $\widehat{h(b)} = \hat{b} \circ h^* = \operatorname{char}(h^{*-1}(U))$, whence

$$h^{*-1}\left(\operatorname{int}\left(\bigcap_{n\in\mathbb{N}}U_n\right)\right) = \operatorname{int}\left(\bigcap_{n\in\mathbb{N}}h^{*-1}(U_n)\right).$$

We conclude that h^* is σ -continuous, and consequently, h^* is a morphism in \mathbb{W} .

Setting $F(h) = h^*$ we have a contravariant functor F from \mathbb{DED} into \mathbb{W} .

Conversely, given an object $\langle X, S, \varphi \rangle$ in \mathbb{W} let

$$G(\langle X, S, \varphi \rangle) = \left\{ c \in \operatorname{Cont}(X, \mathbb{R}) \colon \forall x \in \bigcup_{n \in S} \varphi(n), \ c(x) \in \frac{1}{\operatorname{vrank}(x)} \mathbb{Z} \right\}.$$

Let $n \in S$. Lemma 3.3 implies that $c(x) \in \frac{1}{n}\mathbb{Z}$ for each $x \in \varphi(n)$, and by (A1), $\varphi(n)$ is a special closed set. Hence from Lemma 2.7 it follows that $G(\langle X, S, \varphi \rangle)$ is a sub- $\sigma\ell$ -group of Cont (X, \mathbb{R}) containing Cont (X, \mathbb{Z}) . Defining now $G(\langle X, S, \varphi \rangle) = (G(\langle X, S, \varphi \rangle), u)$, with u the constant function 1 over X, we obtain an object in \mathbb{DED} .

Let $\langle Y, T, \psi \rangle \xrightarrow{f} \langle X, S, \varphi \rangle$ be a morphism in \mathbb{W} . For each $c \in G(\langle X, S, \varphi \rangle)$ the composite map $f^*(c) = c \circ f$ belongs to $G(\langle Y, T, \psi \rangle)$. Indeed, if $n \in T$ and $y \in \psi(n)$, then $m = \operatorname{vrank}(f(y))$ is a divisor of vrank(y), which is a divisor of n. Hence $c(f(y)) \in \frac{1}{m}\mathbb{Z} \subseteq \frac{1}{n}\mathbb{Z}$. Consequently, $f^*: G(\langle X, S, \varphi \rangle) \to G(\langle Y, T, \psi \rangle)$ is an ℓ -group homomorphism preserving the distinguished

order-units. We shall show that f^* also preserves infima and suprema of denumerable families of elements in $G(\langle X, S, \varphi \rangle)$. To this purpose it is sufficient to show that for every sequence of functions $(c_n: n \in \mathbb{N})$ in $G(\langle X, S, \varphi \rangle)$, if $\bigwedge_{n \in \mathbb{N}} c_n = 0$ then $\bigwedge_{n \in \mathbb{N}} f^*(c_n) = 0$. By way of contradiction, let the sequence $(c_n: n \in \mathbb{N})$ in $G(\langle X, S, \varphi \rangle)$ be a counterexample: thus $\bigwedge c_n = 0$ but the element $c = \bigwedge_{n \in \mathbb{N}} (c_n \circ f)$ is non-zero. Then there is some $z \in Y$ such that c(z) > 0. By continuity there is $\varepsilon > 0$ and a non-empty clopen $U \subseteq Y$ such that $c(y) > \varepsilon$ for each $y \in U$. For each $n \in \mathbb{N}$, f(U) is contained in the open set $H_n = \{x \in X: c_n(x) > \varepsilon\}$. Hence for each $x \in f(U)$ there is a clopen V_x in X such that $x \in V_x \subseteq H_n$. Since f(U) is compact in X, we can find a clopen V_n such that $f(U) \subseteq V_n \subseteq H_n$. It follows that

$$U \subseteq f^{-1}(f(U)) \subseteq \bigcap f^{-1}(V_n) \text{ and } \operatorname{int}\left(\bigcap_{n \in \mathbb{N}} f^{-1}(V_n)\right) \neq \emptyset.$$

On the other hand, $\bigcap V_n \subseteq \bigcap_{n \in \mathbb{N}} H_n \subseteq \{x \in X : \inf_{n \in \mathbb{N}} c_n(x) \ge \varepsilon\}$, where $\inf_{n \in \mathbb{N}} c_n$ denotes the pointwise infimum of the sequence (c_n) . Since $G(\langle X, S, \varphi \rangle)$ is a sub- $\sigma\ell$ -group of Cont (X, \mathbb{R}) , from [4, Theorem 9.2 and Lemma 9.1] it follows that, if $d = \bigwedge_{n \in \mathbb{N}} c_n$, then

$$0 = d(x) = \sup_{W \in \mathcal{N}(x)} \left(\inf_{w \in W} \left(\inf_{n \in \mathbb{N}} c_n(w) \right) \right),$$

where $\mathcal{N}(x)$ is the set of open neighborhoods of $x \in X$. Therefore, $\operatorname{int}(\{x \in X : \operatorname{inf}_{n \in \mathbb{N}} c_n(x) \ge \varepsilon\}) = \emptyset$, whence $\operatorname{int}(\bigcap_{n \in \mathbb{N}} V_n) = \emptyset \neq \operatorname{int}(\bigcap_{n \in \mathbb{N}} f^{-1}(V_n))$, thus contradicting (3.8). This shows that $f^* : G(\langle X, S, \varphi \rangle) \to G(\langle Y, T, \psi \rangle)$ is a morphism in \mathbb{DED} .

Setting $G(f) = f^*$ we have a contravariant functor G from \mathbb{W} into \mathbb{DED} .

From Theorem 2.3 it follows that the correspondence $a \mapsto \hat{a}$ defines an isomorphism $(G, u) \xrightarrow{\eta_{(G,u)}} G(F(G, u))$. Further, for any morphism $(G, u) \xrightarrow{h} (H, v)$ in \mathbb{DED} the following diagram is promptly seen to commute:

Let us now reverse arrows and compositions in this diagram. Then for each morphism $(H, v) \xrightarrow{h} (G, u)$ in the opposite category \mathbb{DED}^{op} of \mathbb{DED} , we obtain

$$h \circ \eta_{(H,v)}^{\text{op}} = \eta_{(G,u)}^{\text{op}} \circ \mathsf{G}\big(\mathsf{F}(h)\big).$$
(4.11)

We have proved

Proposition 4.1. The isomorphisms η^{op} define a natural equivalence from $G \circ F$ to the identity functor of \mathbb{DED}^{op} .

For each object $\langle X, S, \varphi \rangle$ in \mathbb{W} we have the inclusions

$$\operatorname{Cont}(X,\mathbb{Z}) \subseteq G(\langle X, S, \varphi \rangle) \subseteq \operatorname{Cont}(X,\mathbb{R}).$$

From the first inclusion it follows that $G(\langle X, S, \varphi \rangle)$ is a separating sub- $\sigma \ell$ -group of Cont (X, \mathbb{R}) . Thus the evaluation map $\upsilon_X : X \to \partial_e S(G(\langle X, S, \varphi \rangle))$ given by (2.3)–(2.4) is a homeomorphism. Moreover, if $x \in X$ and vrank $(x) = n < \infty$, then for each $c \in G(\langle X, S, \varphi \rangle)$ we have $\upsilon_X(x)(c) = c(x) \in \frac{1}{n}\mathbb{Z}$. Therefore, the integer vrank $(\upsilon_X(x)) = \operatorname{rank}(\upsilon_X(x))$ divides vrank(x), and υ_X is a morphism in \mathbb{W} from $\langle X, S, \varphi \rangle$ into $\mathsf{F}(\mathsf{G}(\langle X, S, \varphi, \rangle))$. In addition, for every morphism $f : \langle X, S, \varphi \rangle \to \langle Y, T, \psi \rangle$ in \mathbb{W} we have a commutative diagram

$$\begin{array}{ccc} \langle X, S, \varphi \rangle & \xrightarrow{f} & \langle Y, T, \psi \rangle \\ & & & \downarrow \\ v_X & & & \downarrow \\ \mathsf{F}(\mathsf{G}(\langle X, S, \varphi \rangle)) \xrightarrow{\mathsf{F}(\mathsf{G}(f))} \mathsf{F}(\mathsf{G}(\langle Y, T, \psi \rangle)). \end{array}$$

$$(4.12)$$

Summing up, the morphisms $v_{(X,S,\varphi)} = v_X$ determine a natural transformation from the identity functor of \mathbb{W} to the composite functor $F \circ G$.

Interpreting F as a (covariant) functor from \mathbb{DED}^{op} to \mathbb{W} , and G as a (covariant) functor from \mathbb{W} to \mathbb{DED}^{op} , for each object (*G*, *u*) of \mathbb{DED}^{op} , we have

$$\left[\mathsf{F}(G,u) \xrightarrow{\upsilon_{\mathsf{F}(G,u)}} \mathsf{F}\bigl(\mathsf{G}\bigl(\mathsf{F}(G,u)\bigr)\bigr) \xrightarrow{\mathsf{F}(\eta_{(G,u)}^{\mathrm{op}})} \mathsf{F}(G,u)\right] = \left[\mathsf{F}(G,u) \xrightarrow{\mathrm{id}_{\mathsf{F}(G,u)}} \mathsf{F}(G,u)\right], \quad (4.13)$$

and for each object $\langle X, S, \varphi \rangle$ in \mathbb{W} ,

$$\begin{bmatrix} \mathsf{G}(\langle X, S, \varphi \rangle) \xrightarrow{\mathsf{G}(\upsilon_X)^{\mathrm{op}}} \mathsf{G}(\mathsf{F}(\mathsf{G}(\langle X, S, \varphi \rangle))) \xrightarrow{\eta_{\mathsf{G}(\langle X, S, \varphi \rangle)}^{\mathrm{op}}} \mathsf{G}(\langle X, S, \varphi \rangle) \end{bmatrix}$$
$$= \begin{bmatrix} \mathsf{G}(\langle X, S, \varphi \rangle) \xrightarrow{id_{\mathsf{G}(\langle X, S, \varphi \rangle)}} \mathsf{G}(\langle X, S, \varphi \rangle) \end{bmatrix}.$$
(4.14)

Recalling now [7, §IV.1 Theorem 2(v)], from (4.11)–(4.14) we obtain

Theorem 4.2. The functor $G: \mathbb{W} \to \mathbb{DED}^{op}$ is right adjoint to $F: \mathbb{DED}^{op} \to \mathbb{W}$. The natural transformation v is the unit of the adjunction, and the counit is the natural equivalence η^{op} .

In the next section we shall show that by restriction, this adjunction gives an equivalence between the categories \mathbb{BFR}^{op} and \mathbb{W}_{fin} .

5. The equivalence between \mathbb{BFR}^{op} and \mathbb{W}_{fin}

It is easy to see that the restriction of the functor F to \mathbb{BFR}^{op} is a functor $F_b:\mathbb{BFR}^{op} \to \mathbb{W}_{fin}$. We shall show that the restriction of G to \mathbb{W}_{fin} is a functor G_b from \mathbb{W}_{fin} to \mathbb{BFR}^{op} .

Proposition 5.1. Let $\langle X, S, \varphi \rangle$ be an object in \mathbb{W}_{fin} . For each $x \in X$, $\text{vrank}(x) = \text{rank}(\upsilon_X(x))$.

Proof. Suppose first that $vrank(x) = n < \infty$. Let J_n be the set of non-multiples of n in S,

$$J_n = \{k \in S: n \text{ does not divide } k\}.$$

Let further $Z_n = X \setminus \bigcup_{k \in J_n} \varphi(k)$. Since Z_n is the complement of a finite union of closed sets, it is open. Hence by (A2') and Remark 3.5, $x \in \varphi(n)' \subseteq Z_n$. Therefore there is a clopen subset Uof X such that $x \in U \subseteq Z_n$, and the function taking constantly the value $\frac{1}{n}$ on U and 0 outside Ubelongs to $G(\langle X, S, \varphi \rangle)$. This shows that $\{c(x): c \in G(\langle X, S, \varphi \rangle)\} = \frac{1}{n}\mathbb{Z}$, i.e., $\operatorname{rank}(\upsilon_X(x)) = n$. If $\operatorname{vrank}(x) = \infty$, then x is in the open set $X \setminus \bigcup_{n \in S} \varphi(n)$. Let U be a clopen neighborhood of x contained in $X \setminus \bigcup_{n \in S} \varphi(n)$. The function taking constantly an irrational value on U and 0 outside U belongs to $G(\langle X, S, \varphi \rangle)$, and this shows that $\operatorname{rank}(\upsilon_X(x)) = \infty$. \Box

The next corollary shows that if $\langle X, S, \varphi \rangle$ is an object in \mathbb{W}_{fin} , then $G(\langle X, S, \varphi \rangle)$ is an object in \mathbb{BFR} .

Corollary 5.2. For each object (X, S, φ) in \mathbb{W}_{fin} we have:

- (i) NumSpec(G($\langle X, S, \varphi \rangle$)) = S;
- (ii) $F_n(G(\langle X, S, \varphi \rangle)) = \upsilon_X(\varphi(n))$ for all $n \in S$.

It follows that the restriction G_b of the functor G to the full subcategory \mathbb{W}_{fin} of \mathbb{W} is a functor from \mathbb{W}_{fin} to \mathbb{BFR}^{op} . Moreover, by Lemma 3.7 and Proposition 5.1, for any object $\langle X, S, \varphi \rangle$ in \mathbb{W}_{fin} , υ_X is an isomorphism from $\langle X, S, \varphi \rangle$ to $F_b(G_b(\langle X, S, \varphi \rangle))$ in the category \mathbb{W} .

Given morphisms $(G, u) \xrightarrow{h} (H, v)$ in \mathbb{BFR} , and $\langle X, S, \varphi \rangle \xrightarrow{f} \langle Y, T, \psi \rangle$ in \mathbb{W} , if we replace in (4.10) and (4.12) F and G by F_b and G_b, respectively, we still have commutative diagrams. Since in this case both η and v are isomorphisms, we obtain the main result of this paper:

Theorem 5.3. The quadruple $(G_b, F_b, \upsilon, \eta^{op})$ defines an equivalence between the categories \mathbb{BFR}^{op} and \mathbb{W}_{fin} .

As a final result, let us show that every object in DED is a limit of objects in BFR.

To this purpose, for any object $\langle X, S, \varphi \rangle$ in \mathbb{W} and integer $p \ge 0$ we let $S_p = \{n \in S : n \le p\}$. Then $\{S_p\}_{p\ge 0}$ is a non-decreasing sequence of finite sets of natural numbers such that $S_0 = \emptyset$ and $\bigcup_{p\ge 0} S_p = S$. For each $p \ge 0$, letting φ_p denote the restriction of φ to S_p , it follows that $\langle X, S_p, \varphi_p \rangle$ is an object of \mathbb{W}_{fin} . The identity over X is both a morphism $\rho_p : \langle X, S_p, \varphi_p \rangle \rightarrow$ $\langle X, S_{p+1}, \varphi_{p+1} \rangle$ and a morphism $\lambda_p : \langle X, S_p, \varphi_p \rangle \rightarrow \langle X, S, \varphi \rangle$. More precisely, in the category \mathbb{W} the system $(\langle X, S, \varphi \rangle, \{\lambda_p\}_{p\ge 0})$ is the colimit of $(\{\langle X, S_p, \varphi_p \rangle\}_{p\ge 0}, \{\rho_p\}_{p\ge 0})$. Note that ρ_p and λ_p are simultaneously monomorphisms and epimorphisms for every $p \ge 0$, but in general they are not isomorphisms in \mathbb{W} . Since by Theorem 4.2, G is a left adjoint of F, it transforms colimits in \mathbb{W} into colimits in \mathbb{DED}^{op} , i.e., limits in \mathbb{DED} . In conclusion, $G(\langle X, S, \varphi \rangle) =$ $\lim G(\langle X, S_p, \varphi_p \rangle) = \lim G_b(\langle X, S_p, \varphi_p \rangle)$, as desired.

Acknowledgment

We are very grateful to the referee for her/his careful and competent reading of our paper, and for suggesting a simplification of Lemma 2.6 and a reorganization of the final part.

References

 A. Bigard, K. Keimel, S. Wolfenstein, Groupes et Anneaux Réticulés, Lecture Notes in Math., vol. 608, Springer, Berlin, 1971.

- [2] G. Birkhoff, Lattice Theory, third ed., Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, RI, 1967.
- [3] W.D. Burgess, J.-M. Goursaud, K₀ d'un anneau dont les localisés centraux sont simples artiniens, Canad. Math. Bull. 25 (1982) 344–347.
- [4] K.R. Goodearl, Partially Ordered Abelian Groups with Interpolation, Amer. Math. Soc., Providence, RI, 1986.
- [5] K.R. Goodearl, K₀ of regular rings with bounded index of nilpotence, in: Contemp. Math., vol. 171, Amer. Math. Soc., 1994, pp. 173–199.
- [6] K.R. Goodearl, D.E. Handelman, J.W. Lawrence, Affine representations of Grothendieck groups and applications to Rickart C*-algebras and ℵ₀-continuous regular rings, Mem. Amer. Math. Soc. 234 (1980).
- [7] S. Mac Lane, Categories for the Working Mathematician, second ed., Grad. Texts in Math., Springer, Berlin, 1998.
- [8] D. Mundici, Interpretation of AF C*-algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986) 15-63.
- [9] B. Riečan, D. Mundici, Probability on MV-algebras, in: E. Pap (Ed.), Handbook of Measure Theory, vol. II, North-Holland, Amsterdam, 2001, pp. 869–909.
- [10] R. Sikorski, Boolean Algebras, Ergeb. Math. Grenzgeb., Springer, Berlin, 1960.