# Roberto Cignoli Maximal Subalgebras <br> Luiz Monteiro of $\mathrm{MV}_{\mathrm{n}}$-algebras. A Proof of a Conjecture of A. Monteiro 


#### Abstract

For each integer $n \geq 2, \mathbb{M V}_{n}$ denotes the variety of MV-algebras generated by the MV-chain with $n$ elements. Algebras in $\mathbb{M} \mathbb{V}_{n}$ are represented as continuous functions from a Boolean space into a $n$-element chain equipped with the discrete topology. Using these representations, maximal subalgebras of algebras in $\mathbb{M} \mathbb{V}_{n}$ are characterized, and it is shown that proper subalgebras are intersection of maximal subalgebras. When $A \in \mathbb{M} \mathbb{V}_{3}$, the mentioned characterization of maximal subalgebras of $A$ can be given in terms of prime filters of the underlying lattice of $A$, in the form that was conjectured by A . Monteiro.


Keywords: MV-algebras, Moisil - Łukasiewicz algebras, Łukasiewicz many-valued logics, Boolean spaces, subalgebras.

Mathematics Subject Classification (2000): 06D30, 06D35, 03G20, 03B50, 08A30.

## Introduction

A pioneering work on the algebraic treatment of many-valued logics was done by Moisil, who in his 1941 paper [15] introduced the three-valued Lukasiewicz algebras, as the algebraic counterpart of Lukasiewicz three-valued logic [14]. These algebras were deeply investigated by A. Monteiro in the early sixties, who related them with other algebras arising from logic, like monadic Boolean algebras and Nelson algebras [17, 18, 19, 20, 21].

Among A. Monteiro's personal files, the second author found a conjecture on the structure of maximal subalgebras of three-valued Lukasiewicz algebras in terms of prime (lattice) filters. The main aim of this paper is to prove that conjecture (see Corollary 3.5).

On the other hand, Iturrioz [12], motivated by results of Sachs [25] on maximal subalgebras of Boolean algebras, showed that the subalgebras that we call of type I in this paper, are maximal subalgebras that contain the Boolean elements of three-valued and four-valued Łukasiewicz algebras, and asked whether all maximal subalgebras of these algebras containing the boolean elements are of type I. We also give a positive answer for a class of

[^0]algebras containing three-valued and four-valued Łukasiewicz algebras (see Theorem 3.2).

In the late fifties, Chang [4, 5] introduced MV-algebras as the algebraic counterpart of Lukasiewicz infinite valued logic [14]. Later, Grigolia [11] introduced $\mathrm{MV}_{n}$-algebras, the MV-algebras corresponding to the $n$-valued Łukasiewicz logic, for $n \geq 2$. Moisil three-valued and four-valued Łukasiewicz algebras coincide with $\mathrm{MV}_{3}$-algebras and $\mathrm{MV}_{4}$ algebras, respectively. For each $n \geq 2, \mathrm{MV}_{n}$-algebras can be represented by continuous functions on Boolean spaces taking values in finite chains equipped with the discrete topology. We use this representation to characterize maximal subalgebras of $\mathrm{MV}_{n}$-algebras. When $n=3$ we obtain that the maximal subalgebras are those conjectured by A. Monteiro. We also show that every proper subalgebra of an $\mathrm{MV}_{n}$-algebra is an intersection of maximal subalgebras, generalizing a result of Sachs [25] for Boolean algebras (that coincide with $\mathrm{MV}_{2}$-algebras).

Since $\mathrm{MV}_{n}$-algebras form a variety generated by a semiprimal algebra, the mentioned representation by continuous functions can be derived from general results of universal algebra [22, 13]. As it plays a fundamental role in this paper, we give a direct elementary proof (Theorem 1.5).

For details on Łukasiewicz-Moisil algebras the reader can consult the monograph [3], and [9] for MV-algebras.

## 1. $\mathrm{MV}_{n}$-algebras

In this section we collect some definitions, notations and results that we shall use in the paper.

A De Morgan algebra is an algebra $\langle A, \vee, \wedge, \neg, 0,1\rangle$ such that $\langle A, \vee, \wedge$, $0,1\rangle$ is a bounded distributive lattice and $\neg$ is a unary operation satisfying: $\neg \neg x=x$, and $\neg(x \wedge y)=\neg x \vee \neg y$. We assume the reader familiar with the basic properties of distributive lattices and De Morgan algebras that can be found in [1, 3, 23] (in this last reference, De Morgan algebras are called quasi-Boolean algebras).

An $M V$-algebra(also known as Wajsberg algebra) is a structure $\langle A, \oplus$, $\neg, 0\rangle$ where $\langle A, \oplus, 0\rangle$ is a commutative monoid with neutral element 0 , satisfying the following equations: $\neg \neg x=x, \quad x \oplus \neg 0=\neg 0$, and

$$
\begin{equation*}
\neg(\neg x \oplus y) \oplus y=\neg(\neg y \oplus x) \oplus x . \tag{1.1}
\end{equation*}
$$

The real unit interval $[0,1]$ equipped with negation $\neg x=1-x$ and truncated addition $x \oplus y=\min (1, x+y)$ is an MV-algebra, which is called
the standard MV-algebra. The defining equations of MV-algebras express simple properties of this concrete model. It was proved by Chang [5] (see also [8] or [9]) the variety $\mathbb{M V}$ of MV-algebras is generated by the standard MV-algebra.

If we add $x \oplus x=x$ to the equations of MV-algebras, then we obtain the variety of boolean algebras. Thus MV-algebras may be regarded as a non-idempotent equational generalization of boolean algebras. We shall use the following abbreviations, where $x, y$ denote arbitrary elements of an MV-algebra:

$$
\begin{aligned}
& 1=\neg 0, \quad x \odot y=\neg(\neg x \oplus \neg y), \quad x \ominus y=x \odot \neg y, \\
& x \vee y=x \oplus \neg(x \oplus \neg y), \quad x \wedge y=x \odot \neg(x \odot \neg y) .^{1}
\end{aligned}
$$

Note that equation (1.1) states that the join operation over $[0,1]$ is commutative. For every MV-algebra $A$, the reduct $\langle A, \vee, \wedge, \neg, 0,1\rangle$ is a De Morgan algebra. Notice that the underlying lattice order of the standard MV-algebra coincides with the usual order of real numbers.

Given an MV-algebra $A$, we set

$$
B(A):=\{x \in A: x \oplus x=x\}
$$

It follows that $B(A)$ is a subalgebra of $A$, which is a Boolean algebra. Indeed, it is the Boolean algebra of the complemented elements of the lattice reduct of $A$. For each $x \in B(A)$, the Boolean complement of $x$ is $\neg x$. The elements of $B(A)$ are called the boolean elements of $A$.

For each integer $n \geq 2$, we denote by $L_{n}$ the subalgebra of the standard MV-algebra formed by the $n$ fractions of denominator $n-1$ : $0, \frac{1}{n-1}, \ldots$, $\frac{n-2}{n-1}, 1$. We shall denote by $\mathbb{M} \mathbb{V}_{n}$ the subvariety of $\mathbb{M V}$ generated by $L_{n}$. The algebras in $\mathbb{M} \mathbb{V}_{n}$ are called $\mathrm{MV}_{n}$-algebras.

The following property, which is well known and easy to check, will play an important role in what follows:

Lemma 1.1. Given integers $m, n \geq 2$, we have:
(i) The only automorphism of $L_{n}$ is the identity,
(ii) $L_{m}$ is a subalgebra of $L_{n}$ if and only if $m-1$ is a divisor of $n-1$.

Since the equation $x \oplus x=x$ holds in $L_{n}$ if and only if $n=2$, we have that $\mathbb{M} \mathbb{V}_{2}$ is the variety of Boolean algebras, and that $B\left(L_{n}\right)=L_{2}$ for each $n \geq 2$.

[^1]The varieties $\mathbb{M} \mathbb{V}_{n}$, for each $n \geq 3$ have been axiomatized by Grigolia [11] (see also [10, 9]).

For every $n \geq 2$, we can define one-variable terms $\sigma_{1}^{n}(x), \ldots, \sigma_{n-1}^{n}(x)$ in the language of MV-algebras such that evaluated on the algebras $L_{n}$ give

$$
\sigma_{i}^{n}\left(\frac{j}{n-1}\right)= \begin{cases}1 & \text { if } i+j \geq n,  \tag{1.2}\\ 0 & \text { if } i+j<n .\end{cases}
$$

(see [6] or [24]). From this it follows that every $\mathrm{MV}_{n}$-algebra admits a structure of an $n$-valued Lukasiewicz-Moisil algebra (see [16, 3]). For $n=3$ and $n=4$, the converse is also true: $\mathrm{MV}_{3}$-algebras and $\mathrm{MV}_{4}$-algebras are termwise equivalent to Moisil's three-valued and four-valued Łukasiewicz algebras, respectively [6, 3].

In the next lemma we collect, for further reference, some well known properties of the operations $\sigma_{i}^{n}, i=1, \ldots, n-1$.

Lemma 1.2. Let following properties hold in every $A \in \mathbb{M} \mathbb{V}_{n}$ for each integer $n \geq 2$, where $x, y$ denote arbitrary elements of $A$ :
(i) $x \in B(A)$ if and only if $x=\sigma_{i}^{n} x$ for some $1 \leq i \leq n-1$ if and only if $x=\sigma_{i}^{n} x$ for all $1 \leq i \leq n-1$,
(ii) $\sigma_{i}^{n}$ is a lattice homomorphism from $A$ onto $B(A)$, for each $1 \leq i \leq n-1$,
(iii) $\sigma_{i}^{n} \sigma_{j}^{n} x=\sigma_{j}^{n} x$ for all $1 \leq i, j \leq n-1$,
(iv) $\sigma_{1}^{n} x \leq \sigma_{2}^{n} x \leq \cdots \leq \sigma_{n-1}^{n}$,
(v) if $\sigma_{i}^{n} x=\sigma_{i}^{n} y$ for $i=1, \ldots, n-1$, then $x=y$.

By a Boolean space we understand a totally disconnected compact Hausdorff topological space. As usual, a set that is simultaneously open and closed is called clopen. The Boolean algebra of clopen sets of a Boolean space $X$ will be denoted by $\operatorname{Clop}(X)$. The characteristic function of a set $S \subset X$ will be denoted by $\gamma_{S}$.

Given an integer $n \geq 1, \operatorname{Div}(n)$ will denote the set of divisors of $n$, and $\operatorname{Div}^{*}(n)$ the set of proper divisors of $n$, i. e., $\operatorname{Div}^{*}(n)=\{d \in \operatorname{Div}(n): d<n\}$. Both sets become distributive lattices under the divisibility order.

Given an integer $n \geq 2$, an $n$-valued Boolean space is a pair $\langle X, \rho\rangle$, such that $X$ is a Boolean space and $\rho$ is a meet-homomorphism from the lattice of divisors of $n-1$ into the lattice of closed subsets of $X$, such that $\rho(n-1)=X$.

If the set $L_{n}$ is equipped with the discrete topology, and ( $X, \rho$ ) is an $n$-valued Boolean space, then $\mathcal{C}_{n}(X, \rho)$ denotes the $\mathrm{MV}_{n}$-algebra formed by
the continuous functions $f$ from $X$ into $L_{n}$ such that $f(\rho(d)) \subseteq L_{d+1}$ for each $d \in \operatorname{Div}^{*}(n-1)$, with the algebraic operations defined pointwise. Clearly, the correspondence $U \mapsto \gamma_{U}$ defines an isomorphism from $\operatorname{Clop}(X)$ onto $B\left(\mathcal{C}_{n}(X, \rho)\right)$.

By a filter of an algebra $A \in \mathbb{M V}_{n}$ we understand a filter of the underlying lattice of $A .^{2}$
Lemma 1.3. The prime filters of $A=\mathcal{C}_{n}(X, \rho)$ are of the form

$$
P_{x}^{i}=\left\{f \in A: f(x) \geq \frac{i}{n-1}\right\}
$$

for each $x \in X$ and $i=1, \ldots, n-1$.
Proof. It is clear that $P_{x}^{i}$ is a prime filter for each $x \in X$ and each $1 \leq i \leq$ $n-1$, and that $P_{x}^{i} \subseteq P_{x}^{j}$ for $1 \leq j \leq i \leq n-1$. To prove that they are the only prime filters of $A$, we shall prove first the following:
Claim: If $F$ is a proper filter of $A$, then there is $z \in X$ such that $f(z)>0$ for all $f \in F$.

To prove the claim, we use a standard argument: suppose that for each $x \in X$ there is a function $f_{x} \in F$ such that $f_{x}(x)=0$. By continuity, $U_{x}=f_{x}^{-1}(\{0\})$ is clopen, and by compactness, there are $x_{1}, \ldots, x_{n}$ in $X$ such that $X=U_{x_{1}} \cup \cdots \cup U_{x_{n}}$. Hence $0=f_{x_{1}} \wedge \cdots \wedge f_{x_{n}} \in F$, and $F$ is not proper. This contradiction proves the claim.

Let $F$ be a prime filter of $A$. By the claim, there is a nonempty set $S \subseteq X$ such that $f(s)>0$ for all $s \in S$ and all $f \in F$. If there were two elements $u, v \in S, u \neq v$, then there would be a clopen $U$ such that $u \in U$ and $v \in V=X \backslash U$. Then $\gamma_{U} \vee \gamma_{V} \in F, \gamma_{U} \notin F$ and $\gamma_{V} \notin F$, and $F$ would not be prime. Hence there is $x \in X$ and $1 \leq i \leq n-1$ such that $F=P_{x}^{i}$.
Remark 1.4. Note that the filters of the form $P_{x}^{n-1}$ are the minimal prime filters of $\mathcal{C}_{n}(X, \rho)$, and those of the form $P_{x}^{1}$ are the maximal filters. Moreover, $P_{x}^{1}=\varphi\left(P_{x}^{n-1}\right)$, where $\varphi$ is the Bialinycki-Birula and Rasiowa transformation defined on prime filters of a De Morgan algebra by the prescription $\varphi(P)=A \backslash \neg P$ (see [2] or [23]). Finally, observe that $\rho(1)=\left\{x \in X: P_{x}^{1}=\right.$ $\left.P_{x}^{n-1}\right\}$.

Since the variety $\mathbb{M} \mathbb{V}_{n}$ is generated by the algebra $L_{n}$, which is a semiprimal algebra, ${ }^{3}$ the next theorem follows at once from [13, Theorem 6.5] (cf [7,22]). For the sake of completeness, we shall give a simple direct proof,

[^2]which gives an explicit description of the spaces $X(A)$ and the meet homomorphism $\rho_{A}$ in terms of the elements of $A$, as well as an explicit construction of an isomorphism $\alpha_{A}$ from $A$ onto $\left.\mathcal{C}_{n}\left(X(A), \rho_{A}\right)\right)$.

Theorem 1.5. For each $A \in \mathbb{M} \mathbb{V}_{n}$, there is a Boolean space $X(A)$ and a meet homomorphism $\rho_{A}$ from $\operatorname{Div}(n-1)$ into the lattice of closed subsets of $X(A)$, satisfying $\rho_{A}(n-1)=X(A)$, such that $A \cong \mathcal{C}_{\mathbf{n}}\left(X(A), \rho_{A}\right)$. Moreover, $X(A)$ is isomorphic to the Stone space of the Boolean algebra $B(A)$.

Proof. Given $A \in \mathbb{M}_{n}$, let $X(A)$ be the set of all homomorphisms $\chi: A \rightarrow L_{n}$. Accordingly, $X(B(A))$ denotes the set of all homomorphisms $\chi: B(A) \rightarrow L_{2}$. It is well known that the map $\chi \mapsto \chi^{-1}(\{1\}) \cap B(A)$ is a one-one correspondence between $X(A)$ and the set of prime filters of $B(A)$. Therefore, if for each $\chi \in X(A)$, we let $\varphi_{A}(\chi)$ denote the restriction of $\chi$ to $B(A)$, then we obtain a bijective map $\varphi_{A}$ from $X(A)$ onto $X(B(A))$.
$X(A)$ becomes a Boolean space with the topology inherited from the product space $\left(L_{n}\right)^{A}$, where $L_{n}$ is equipped with the discrete topology. The sets $W_{a, j}=\left\{\chi \in X(A): \chi(a)=\frac{j}{n-1}\right\}$, for $a \in A$ and $0 \leq j \leq n-1$ form a subbasis for this topology. Notice that $X(B(A))$ coincides with the Stone space of the Boolean algebra $B(A)$. We have that $\varphi_{A}: X(A) \rightarrow X(B(A))$ is a homeomorphism. Indeed, since $\varphi_{A}(\chi)(b)=\chi(b)$ for all $\chi \in X(A)$ and all $b \in B(A)$, the inverse image of a clopen subset $X(B(A))$ is clopen in $X(A)$. Therefore $\varphi_{A}$ is continuous, and a continuous bijection between compact Hausdorff spaces is a homeomorphism.

To each $a \in A$, associate the function $\hat{a}: X(A) \rightarrow L_{n}$ defined by $\hat{a}(\chi)=$ $\chi(a)$ for all $\chi \in X(A)$. By the definition of the topologies in $X(A)$ and in $L_{n}, \hat{a}$ is continuous. For each $d \in \operatorname{Div}(n-1)$, let $\rho_{A}(d)=\{\chi \in X(A):$ $\left.\chi(A) \subseteq L_{d+1}\right\}$. Since $\rho_{A}(d)=\bigcap_{a \in A} \hat{a}^{-1}\left(L_{d+1}\right)$, and $L_{d+1}$ is a clopen subset of $L_{n}$, the continuity of the functions $\hat{a}$ for $a \in A$ implies that $\rho_{A}(d)$ is a closed subset of $X(A)$. Clearly $\rho_{A}(n-1)=X(A)$, and it easy to check that $\rho_{A}$ is a meet homomorphism from $\operatorname{Div}(n-1)$ into the lattice of closed subsets of $X(A)$. Taking into account that the operations in $\mathcal{C}_{n}\left(X(A), \rho_{A}\right)$ are defined pointwise, we have that the correspondence $a \mapsto \hat{a}$ defines an injective homomorphism $\alpha_{A}: A \rightarrow \mathcal{C}_{n}\left(X(A), \rho_{A}\right)$.

To complete the proof we have to show that $\alpha_{A}$ is surjective. We start by showing that for each $U \in \operatorname{Clop}(X(A))$, there is $b \in B(A)$ such that $\hat{b}=\gamma_{U}$. Indeed, since $X(B(A))$ is the Stone space of the Boolean algebra $B(A)$, there is $b \in B(A)$ such that for each $\chi \in X(B(A)), \gamma_{\varphi_{A}^{-1}(U)}(\chi)=\chi(b)$. Hence $\gamma_{U}\left(\varphi_{A}(\chi)\right)=\hat{b}(\varphi(\chi))$ for all $\chi \in X(B(A))$, and since $\varphi_{A}$ is surjective, we have that $\gamma_{U}=\hat{b}$.

Let $f \in \mathcal{C}_{n}\left(X(A), \rho_{A}\right)$, and suppose that the clopen set $U_{j}=$ $f^{-1}\left(\left\{\frac{j}{n-1}\right\}\right) \neq \emptyset$. From the definition of the closed sets $\rho_{A}(d), d \in \operatorname{Div}(n-1)$, we have that for each $\chi \in X(A), f(\chi) \in \chi(A) \subseteq L_{n}$. Hence for each $\xi \in U_{j}$ there is $a_{\xi} \in A$ such that $\widehat{a_{\xi}}(\xi)=f(\xi)=\frac{j}{n-1}$. By continuity, there is a clopen $V_{\xi}$ such that $\chi \in V_{\xi} \subseteq U_{j}$ and $\widehat{a_{\xi}}(\chi)=f(\chi)$ for all $\chi \in V_{\xi}$. Let $b_{\xi} \in B(A)$ be such that $\widehat{b_{\xi}}=\gamma_{V_{\xi}}$ and let $c_{\xi}=a_{\xi} \wedge b_{\xi}$. Hence $\widehat{c_{\xi}}(\chi)=f(\chi)$ for $\chi \in V_{\xi}$ and $\widehat{c_{\xi}}(\chi)=0$ for $\chi \notin V_{\xi}$. By compactness there are $\xi_{1}, \ldots, \xi_{n}$ in $U_{j}$ such that $U_{j}=V_{\xi_{1}} \cup \cdots \cup V_{\xi_{n}}$. Then $c_{j}=c_{\xi_{1}} \vee \cdots \vee c_{\xi_{n}} \in A$ and $\widehat{c_{j}}=f$ on $U_{j}$ and $\widehat{c_{j}}$ is 0 outside $U_{j}$. Taking as $c$ the join of the $c_{j}$ such that $U_{j} \neq \emptyset$, we have that $\hat{c}(\chi)=f(\chi)$ for all $\chi \in X(A)$. Therefore $\alpha_{A}$ is surjective.

Corollary 1.6. For each $A \in \mathbb{M V}_{n}$, we have that $A$ is a Boolean algebra if and only if $\rho_{A}(1)=X(A)$, and that $A$ is a Post algebra of order $n$ if and only if $\rho_{A}(d)=\emptyset$ for each $d \in \operatorname{Div}^{*}(n-1)$.

## 2. Subalgebras of $\mathcal{C}_{n}(X, \rho)$

Unless otherwise specified, through this section, $A$ will denote the $\mathrm{MV}_{n^{-}}$ algebra $\mathcal{C}_{n}(X, \rho)$, where $X$ is a Boolean space, and $\rho$ is a meet-homomorphism from $\operatorname{Div}(n-1)$ into the lattice of closed subsets of $X$, such that $\rho(n-1)=X$.

For each subalgebra $S$ of $A$ let $\equiv_{S}$ be the equivalence relation defined on $X$ by the prescription $x \equiv_{S} y$ if and only if $f(x)=f(y)$ for all $f \in S$.

Let $\Pi(S)$ be the partition of $X$ determined by the equivalence classes of $\equiv_{S}$, and for each $d \in \operatorname{Div}(n-1)$, let $\Gamma_{d}(S)=\{\alpha \in \Pi(S): f(\alpha) \subseteq$ $L_{d+1}$ for all $\left.f \in S\right\}$. It follows from the definition of $\equiv_{S}$ that $f$ is constant on each block $\alpha \in \Pi(S)$, for every $f \in S$. Hence if $\alpha \in \Pi(S)$ and $\alpha \cap \rho(d) \neq \emptyset$, then $\alpha \in \Gamma_{d}(S)$.

We say that a subset $Z \subseteq X$ is $S$-saturated provided that whenever $x \in Z$ and $y \equiv_{S} x$ imply $y \in Z$. In other words, $Z$ is $S$-saturated if and only if $Z$ is a union of equivalence classes of $\equiv_{S}$.

For each subalgebra $S$ of $A$, we have that $B(S)=S \cap B(A)$. Moreover the set of all $U \in \operatorname{Clop}(X)$ such that $\gamma_{U} \in S$ form a subalgebra $\operatorname{Clop}_{S}(X)$ of $\operatorname{Clop}(X)$, which is isomorphic to $B(S)$.

Lemma 2.1. Let $S$ be a subalgebra of $A$. A clopen $U$ belongs to $\operatorname{Clop}_{S}(X)$ if and only if $U$ is $S$-saturated.

Proof. It is obvious that $\gamma_{U} \in S$ implies that $U$ is $S$-saturated. To prove the converse, suppose that $\gamma_{U} \notin \operatorname{Clop}_{S}(X)$, and let $F=\left\{V \in \operatorname{Clop}_{S}(X)\right.$ :
$U \subset V\}$. If $V_{1}, \ldots, V_{k}$ are in $F$, then $V_{1} \cap \cdots \cap V_{k} \cap X \backslash U \neq \emptyset$, because otherwise we should have $U \subseteq V_{1} \cup \cdots \cup V_{k} \subseteq U$, contradicting the hypothesis that $U \notin \operatorname{Clop}_{S}(X)$. Hence $F \cup\{X \backslash U\}$, being a family of clopen sets with the finite intersection property, has a nonempty intersection. Let $v \in$ $(X \backslash U) \cap \bigcap_{V \in F} V$. Let $J=\left\{W \in \operatorname{Clop}_{S}(X): v \notin W\right\}$. We have that for $W_{1}, \ldots, W_{n} \in F, U \cap X \backslash\left(W_{1} \cup \ldots \cup W_{n}\right) \neq \emptyset$, because otherwise $W_{1} \cup \ldots \cup W_{n} \in F \cap J$, which is impossible because $F \cap J=\emptyset$. Therefore the family formed by the complements of the sets in $J$ together with $U$ has the finite intersection property. Let $u \in U \cap \bigcap_{W \in J}(X \backslash W)$. Since for each $V \in \mathrm{Clop}_{S}, u \in V$ if and only if $v \in V$, it follows that $f(u)=f(v)$ for all $f \in B(S)$. Since for each $f \in S, \sigma_{i}^{n} f \in B(S)$, we have that $\sigma_{i}^{n} f(u)=\sigma_{i}^{n} f(v)$ for $i=1, \ldots, n-1$. Hence by (v) in Lemma 1.2, $f(u)=f(v)$. Therefore $u \equiv_{S} v, u \in U$ and $v \notin U$, which shows that $U$ is not $S$-saturated.

Theorem 2.2. Let $S$ be a subalgebra of $A$. If a function $f \in A$ satisfies the conditions
(i) $f$ is constant on each $\alpha \in \Pi(S)$, and
(ii) $f(\alpha) \subseteq L_{d+1}$ for each $\alpha \in \Gamma_{d}(S)$,
then $f \in S$.
Proof. For each $z \in X$ let $\alpha_{z}$ be the only block of $\Pi(S)$ such that $z \in \alpha_{z}$, and let $d$ be the smallest divisor of $n-1$ such that $f(z) \in L_{d+1}$. Condition (ii) implies that $\alpha_{z} \in \Gamma_{j d}(S)$ for some $1 \leq j \leq \frac{n-1}{d}$. Then there is $f_{z} \in S$ such that $f_{z}(z)=f(z)$.

Suppose $f(z)=f_{z}(z)=r \in L_{j d}$, and let $U_{z}=f_{z}^{-1}(\{r\}) \cap f^{-1}(\{r\})$. Clearly $U_{z}$ is clopen. We claim that it is saturated. By the definition of $\Pi(S)$ and condition (i), we have that $\alpha_{z} \subseteq U_{z}$ and $f(x)=f_{z}(x)$ for all $x \in \alpha_{z}$. Let $s \in U_{z} \backslash \alpha_{z}$. If $t \in \alpha_{s}$, then $f_{z}(t)=f_{z}(s)=r=f(s)$, and by (i), $f(t)=f(s)$. This proves our claim, and we have that $f_{z}(x)=f(x)$ for all $x \in U_{z}$.

Since $\left\{U_{z}\right\}_{z \in X}$ is an open covering of $X$, by compactness there are points $z_{1}, \ldots, z_{n}$ such that $X=U_{z_{1}} \cup \cdots \cup U_{z_{n}}$. By Lemma 2.1, $g_{i}=f_{z_{i}} \wedge \gamma_{U_{z_{i}}} \in S$, therefore $f=g_{1} \vee \cdots \vee g_{n} \in S$.

Given $d_{1}, \ldots, d_{k} \in \operatorname{Div}^{*}(n-1)$ and subsets $W_{1}, \ldots, W_{k}$ of $X$ such that $W_{i} \cap \rho\left(d_{i}\right)=\emptyset$, let $S\left(W_{1}, d_{1}, \ldots, W_{k}, d_{k}\right)=\left\{f \in A: f\left(W_{i}\right) \subseteq L_{d_{i}+1}, i=\right.$ $1, \ldots, k\}$. It is clear that $S\left(W_{1}, d_{1}, \ldots, W_{k}, d_{k}\right)$ is a proper subalgebra of $A$ that contains $B(A)$. When $k=1$ and $W_{1}=\{w\}$, we write $S(w, d)$ instead of $S(\{w\}, d)$.

Corollary 2.3. The following are equivalent conditions for each subalgebra $S$ of $A$ :
(i) $B(A) \subseteq S$,
(ii) $S$ is separating, i. e., given different elements $x, y$ in $X$ there is $f \in S$ such that $f(x) \neq f(y)$,
(iii) all the blocks in $\Pi(S)$ are singletons,
(iv) $S=S\left(W_{1}, d_{1}, \ldots, W_{k}, d_{k}\right)$ for some $d_{1}, \ldots, d_{k} \in \operatorname{Div}^{*}(n-1)$ and some subsets $W_{1}, \ldots, W_{k}$ of $X, k \geq 1$.

Proof. Given $x \neq y$ in $X$, there is an $U \in \operatorname{Clop}(X)$ such that $\gamma_{U}(x) \neq$ $\gamma_{U}(y)$. Hence (i) implies (ii). It is obvious that (ii) implies (iii). Suppose that (iii) holds, and let $d_{1}, \ldots, d_{k}$ be the proper divisors of $n-1$ such that $\Gamma_{d_{i}}(S) \neq$ $\emptyset$, and let $W_{i}$ be the union of all singletons $\{w\} \in \Gamma_{d_{i}}(S)$ such that $w \notin \rho\left(d_{i}\right)$. It follows from Theorem 2.2 that $S=S\left(W_{1}, d_{1}, \ldots, W_{k}, d_{k}\right)$. Therefore (iii) implies (iv), and we have already observed that (iv) implies (i).

If $S, T$ are subalgebras of $A$ such that $S \subseteq T$, then $x \equiv_{T} y$ implies $x \equiv_{S} y$ for all $x, y \in X$, and consequently $\Pi(T)$ is a refinement of $\Pi(S)$, that is, each element of $\Pi(S)$ is a union of elements of $\Pi(T)$. Moreover, if $\alpha \in \Gamma_{d}(T)$ and $\alpha \subseteq \beta \in \Pi(S)$, then $\beta \in \Gamma_{d}(S)$. The next corollary is an easy consequence of these remarks and Corollary 2.3.

Corollary 2.4. The maximal subalgebras of $A$ containing $B(A)$ are the subalgebras $S(w, d)$, for $d$ a coatom of $\operatorname{Div}(n-1)$ and $z \notin \rho(d)$.

Given a set $W \subseteq X$ with $\operatorname{card}(W) \geq 2$, where $\operatorname{card}(W)$ denotes the cardinal of $W$, define

$$
S^{W}=\{f \in A: f(s)=f(t) \text { for all }(s, t) \in W \times W\}
$$

Clearly, $S^{W}$ is a non-separating subalgebra of $A$, and if $x, y$ are in $W, x \neq y$, then $S^{W} \subseteq S^{\{x, y\}}$.

Theorem 2.5. The maximal subalgebras of $A$ not containing $B(A)$ are the subalgebras $S^{\{s, t\}}$, with $\{s, t\} \subseteq \rho(d)$ or $\{s, t\} \cap \rho(d)=\emptyset$, for each $d \in$ $\operatorname{Div}^{*}(n-1)$.

Proof. Let $S$ be a maximal subalgebra of $A=\mathcal{C}_{n}(X, \rho)$ such that $B(A) \nsubseteq$ $S$. Since $B(A) \nsubseteq S$, by Corollary $2.3 S$ is not separating, hence there is $W \subseteq X$ with at least two elements $x, y$ such that $S \subseteq S^{W}$. The maximality
of $S$ implies that $S=S^{W}$ and that $W=\{x, y\}$. Suppose (absurdum hypothesis) that $x \in \rho(d)$ and $y \notin \rho(d)$. Then we would have $S=S(y, d)=$ $\left\{f \in A: f(y) \in L_{d+1}\right\}$, and $B(A) \subseteq S$, a contradiction. Hence $x$ and $y$ are both in $\rho(d)$ or are both in $X \backslash \rho(d)$. To prove the converse, let $S=S^{\{s, t\}}$, with $s, t$ both in $\rho(d)$ or both in $X \backslash \rho(d)$, for each $d \in \operatorname{Div}^{*}(n-1)$. We have that the only non-singleton block of $\Pi(A)$ is $\{s, t\}$. Suppose that $T$ is a subalgebra of $A$ such that $S \varsubsetneqq T$. Since $\Pi(T)$ is a refinement of $\Pi(S)$, all the blocks of $\Pi(T)$ are singletons. If $f(x) \in L_{d+1}$ for all $f \in T$, then we also have that $f(x) \in L_{d+1}$ for all $f \in S$, and by the hypothesis on $s, t$, this implies that $x \in \rho(d)$. Hence $\Gamma_{d}(T)$ is the set of singletons $\{y\}$, for $y \in \rho(d)$ for all $d \in \operatorname{Div}^{*}(n-1)$. Therefore, taking into account Theorem 2.2, we conclude that $T=A$. Consequently, $S=S^{\{s, t\}}$ is maximal.

## 3. Subalgebras of $M V_{n}$-algebras

The next theorem generalizes a result of Sachs [25] for Boolean algebras:
Theorem 3.1. Every proper subalgebra of an $M V_{n}$-algebra $A$ is an intersection of maximal subalgebras.

Proof. By Theorem 1.5 we can assume that $A=\mathcal{C}_{n}\left(X(A), \rho_{A}\right)$. Let $S$ be a proper subalgebra of $A$, and suppose that $f \in A \backslash S$. Then by Theorem 2.2 we have two possible cases:
Case 1: $f$ is non-constant on some $\alpha \in \Pi(S)$, or
Case 2: $f$ is constant on all $\alpha \in \Pi(S)$, but there is $d \in \operatorname{Div}^{*}(n-1)$ and $\alpha \in \Gamma(S)$ so that $f(\alpha) \nsubseteq L_{d+1}$.

In Case 1, there are $x, y \in \alpha$ such that $f(x) \neq f(y)$. Hence $f \notin S^{\{x, y\}}$, and $S \subseteq S^{\{x, y\}}$.

In Case 2 , there is $z \in \alpha$ such that $f(z) \notin L_{d+1}$. Since $f \in A$, this implies that $z \notin \rho(d)$. Therefore $f \notin S(z, d)$, and $S \subseteq S(z, d)$.

Since in all possible cases we have found a maximal subalgebra $M$ such that $f \notin M$ and $S \subseteq M$, we conclude that $S$ is an intersection of maximal subalgebras of $A$.

For $n=3$ and $n=4$, the "if" part of the next theorem was proved in [12] by quite different methods, and in that paper was also left open the question of the validity of the "only if" part for these values of $n$.

With the notations of Remark 1.4, we have:
Theorem 3.2. Let $A \in \mathbb{M}_{n}$, with $n-1$ a prime. Then $S \subseteq A$ is the universe of a maximal subalgebra of $A$ containing $B(A)$ if and only if there is a minimal prime filter $P$ of $A$ such that $P \varsubsetneqq \varphi(P)$ and $S=P \cup \neg P$.

Proof. Since $n-1$ is a prime number, then the only proper subalgebra of $L_{n}$ is $B\left(L_{n}\right)=L_{2}$. By Theorem 1.5, $A \cong \mathcal{C}_{n}(X, \rho)$, with $X=X(A)$ and $\rho=\rho_{A}$. With the notation of Lemma 1.3, we have that for each $x \in X \backslash \rho(1)$, $S_{x}=P_{x}^{n-1} \cup \neg P_{x}^{n-1}$, where $P_{x}^{n-1} \varsubsetneqq P_{x}^{1}=\varphi\left(P_{x}^{n-1}\right)$ (see Remark 1.4). Hence the result follows from Corollary 2.4.

From Theorems 3.1 and 3.2 we obtain:
Corollary 3.3. Let $A \in \mathbb{M}_{n}$, with $n-1$ a prime. Then $S \subseteq A$ is the universe of a proper subalgebra of $A$ containing $B(A)$ if and only if $S$ is an intersection of maximal subalgebras of the form $P \cup \neg P$, for $P$ a minimal prime filter of $A$ such that $P \varsubsetneqq \varphi(P)$.

Theorem 3.4. Let $A \in \mathbb{M} \mathbb{V}_{3}$. Then $S \subseteq A$ is the universe of a maximal subalgebra of $A$ such that $B(A) \nsubseteq S$, if and only if there are two prime filters $P_{1}, P_{2}$ of $A$ such that $P_{1} \neq P_{2}, P_{i} \subseteq \varphi\left(P_{i}\right)$ for $i=1,2$, and

$$
\begin{equation*}
S=\left(P_{1} \cap P_{2}\right) \cup\left(\left(\varphi\left(P_{1}\right) \backslash P_{1}\right) \cap\left(\varphi\left(P_{2}\right) \backslash P_{2}\right)\right) \cup\left(\neg P_{1} \cap \neg P_{2}\right) . \tag{3.3}
\end{equation*}
$$

Moreover $P_{1}=\varphi\left(P_{1}\right)$ if and only if $P_{2}=\varphi\left(P_{2}\right)$.
Proof. By Theorem 1.5, $A \cong \mathcal{C}_{3}(X, \rho)$, with $X=X(A)$ and $\rho=\rho_{A}$. By Theorem 2.5, $S$ is the universe of a maximal subalgebra of $A$ not containing $B(A)$ if and only if there are two points, $x_{1}, x_{2}$ in $X$ such that $x_{1} \neq x_{2}$ and $S=S^{\left\{x_{1}, x_{2}\right\}}$. By Lemma 1.3, $P_{x_{1}}^{2}$ and $P_{x_{2}}^{2}$ are different minimal prime filters of $A$. By Remark 1.4, $\varphi\left(P_{x_{i}}^{2}\right)=P_{x_{i}}^{1}$. Note that $P_{x_{1}}^{2}=\varphi\left(P_{x_{1}}^{2}\right)$ if and only if $x_{1} \in \rho_{A}(1)$. But in the light of Theorem 2.5, this happens if and only if $x_{2} \in \rho_{A}(1)$, i. e., if and only if $P_{x_{2}}^{2}=\varphi\left(P_{x_{2}}^{2}\right)$. Since $f \in P_{x_{1}}^{2} \cap P_{x_{2}}^{2}$ if and only if $f\left(x_{1}\right)=f\left(x_{2}\right)=1, f \in\left(\varphi\left(P_{x_{1}}^{2}\right) \backslash P_{x_{1}}^{2}\right) \cap\left(\varphi\left(P_{x_{2}}^{2}\right) \backslash P_{x_{2}}^{2}\right)$ if and only if $f\left(x_{1}\right)=f\left(x_{2}\right)=\frac{1}{2}, f \in \neg P_{x_{1}}^{2} \cap \neg P_{x_{2}}^{2}$ if and only if $f\left(x_{1}\right)=f\left(x_{2}\right)=0$, and $S=S^{\left\{x_{1}, x_{2}\right\}}$, we have the equality (3.3).

Let $A \in \mathbb{M} \mathbb{V}_{3}$. Maximal subalgebras of $A$ of the form $P \cup \neg P$, with $P$ as in Theorem 3.2, are called of type $I$. Those of the form given by (3.3) in Theorem 3.4 will be called of type II when $P_{i} \neq \varphi\left(P_{i}\right)$, and of type III, when $P_{i}=\varphi\left(P_{i}\right), i=1,2$.

The next corollary, which proves the conjecture of A. Monteiro mentioned in the Introduction, is an immediate consequence of Theorems 3.2 and 3.4.

Corollary 3.5. The maximal subalgebras of a $M V_{3}$-algebra are of type $I$, II or III.

Since for each prime filter $P$ of a Boolean algebra $\varphi(P)=P$, we obtain the following result of Sachs [25] for Boolean algebras:

Corollary 3.6. The maximal subalgebras of a Boolean algebra are of type III.

Taking into account Corollary 1.6 and the fact that all prime filters of a Post algebra of order three satisfy that $P \varsubsetneqq \varphi(P)[1,3]$, we have:

Corollary 3.7. The maximal subalgebras of a Post algebra of order three are of type I or III.

If $A$ is a finite algebra in $\mathbb{M} \mathbb{V}_{3}$, then $X(A)$ is a finite set endowed with the discrete topology, and $\rho_{A}(1)$ is a subset of $X(A)$. Hence $A=L_{2}^{m} \times L_{3}^{n-m}$, where $n=\operatorname{card}(X(A))$ and $m=\operatorname{card}\left(\rho_{A}(1)\right)$. This shows that isomorphism classes of $\mathrm{MV}_{3}$-algebras are in one to one correspondence with the pairs of integers $(n, m)$ such that $n \geq 1$ and $0 \leq m \leq n$. The pairs $(n, 0)$ correspond to Post algebras, and the pairs $(n, n)$ corresponds to Boolean algebras.

If $p, q$ are nonnegative integers, we put $\binom{p}{q}=\frac{p!}{q!(p-q)!}$ if $p \geq q$, and $\binom{p}{q}=0$ if $p<q$. With these notations we have:

Corollary 3.8. Let $A$ be a finite $M V_{3}$-algebra characterized, up to isomorphisms, by the pair $(n, m)$. Then A has $(n-m)$ maximal subalgebras of type $I$, $\binom{n-m}{2}$ of type $I I$, and $\binom{m}{2}$ of type III.

Acknowledgements. The authors express their gratitude to the Referee for her/his comments that improved the final presentation of the paper.

## References

[1] Balbes, R., and P. Dwinger, Distributive Lattices, University of Missouri Press, 1974.
[2] Bialinycki-Birula, A., and H. Rasiowa, 'On constructive falsity in the constructive logic with strong negation', Colloq. Math., 6:287-310, 1958.
[3] Boicescu, V., A. Filipoiu, G. Georgescu and S. Rudeanu, Łukasiewicz-Moisil Algebras, North-Holland, 1991.
[4] Chang, C. C., 'Algebraic analysis of many-valued logics', Trans. Amer. Math. Soc., 88:467-490, 1958.
[5] Chang, C. C., 'A new proof of the completeness of Łukasiewicz axioms', Trans. Amer. Math. Soc., 93:74-90, 1959.
[6] Cignoli, R., 'Proper n-Valued Łukasiewicz Algebras as S-algebras of Łukasiewicz n-Valued Propositional Calculi', Stud. Log., 41:3-16, 1982.
[7] Cignoli, R., 'Natural dualities for the algebras of Łukasiewicz finitely-valued logics' (Abstract), Bull. Symb. Logic., 2:218, 1996.
[8] Cignoli, R., and D. Mundici, 'An elementary proof of Chang's completeness theorem for the infinite-valued calculus of Łukasiewicz', Stud. Log., 58:79-97, 1997.
[9] Cignoli, R., I. M. D'Ottaviano, and D. Mundici, Algebraic foundations of manyvalued reasoning, Kluwer, 2000.
[10] Dinola, A., and A. Lettieri, 'Equational characterization of all varieties of MValgebras', J. Algebra, 27:463-474, 1999.
[11] Grigolia, R. S., 'An algebraic analysis of Lukasiewicz - Tarski $n$-valued logical systems', in R. Wójcicki and G. Malinowski (eds.), Selected papers on Eukasiewicz sentential calculus, Ossolineum, 1977, pp. 81-92.
[12] Iturrioz, L., 'On complemented elements in Lukasiewicz algebras', Proc. Ninth Internat. Symp. on Multiple-valued Logic (Bath. 1979), IEEE, 1979, pp. 135-138.
[13] Keimel, K., and H. Werner, 'Stone duality for varieties generated by a quasi-primal algebra', Mem. Amer. Math. Soc., No. 148:59-85, 1974.
[14] Lukasiewicz, J., and A. Tarski, 'Untersuchungen über den Aussagenkalkül', C. R. Soc. Sc. Varsovie, 23:30-50, 1930. English translation in [26, pp. 38-59]
[15] Moisil, G., 'Recherches sur les logiques non chrysippiènnes', Ann. Sci. Univ. Jassy, Sect. I, Math., 26:431-466, 1940. Reproduced in [16, pp. 195-219].
[16] Moisil, G., Essays sur les Logiques Nonchrysippiènnes, Editions de l'Academie de la Republique Socialiste de Roumanie, 1972.
[17] Monteiro, A., 'Sur la définition des algèbres de Łukasiewicz trivalentes', Bull. Math. Soc. Sci. Math. Phy. R. P. Roum. 7 (55):3-12, 1963. Reproduced in: Notas de Lógica Matemática No 21, Instituto de Matemática, Universidad Nacional del Sur, 1964.
[18] Monteiro, A., 'Álgebras de Nelson semi-simples' (Abstract), Rev. Unión Mat. Argent., 21:145-146, 1963. The full paper was published in [21].
[19] Monteiro, A., 'Construction des algèbres de Lukasiewicz trivalentes dans les algèbres de Boole monadiques. I', Math. Jap., 12:1-23, 1967.
[20] Monteiro, A., 'Sur les algèbres de Heyting simétriques', Port. Math., 39:1-237, 1980.
[21] Monteiro, A., Unpublished Papers, I. (L. Monteiro, (ed.), Notas de Lógica Matemática No. 40, Universidad Nacional del Sur, 1996.)
[22] Niederkorn, P., 'Natural dualities for varieties of MV-algebras', J. Math. Anal. Appl., 225:58-73, 2001.
[23] Rasiowa, H., An algebraic approach to non-classical logics, North-Holland, 1974.
[24] Rodríguez, A. J., and A. Torrens, 'Wajsberg algebras and Post algebras', Stud. Log., 53:1-19, 1994.
[25] Sachs, D., 'The lattice of subalgebras of a Boolean algebra', Canad. J. Math., 14:451460, 1962.
[26] Tarski, A., Logic, Semantics, Metamathematics. Clarendon Press, 1956.

Roberto Cignoli<br>Instituto Argentino de Matemática CONICET<br>Saavedra 15, Piso 3<br>1083 Buenos Aires, Argentina.<br>cignoli@dm.uba.ar<br>Luiz Monteiro<br>INMABB-CONICET<br>Universidad Nacional del Sur<br>Avda. Alem 1253<br>8000 Bahía Blanca, Argentina<br>luizmont@criba.edu.ar


[^0]:    Presented by Daniele Mundici; Received November 17, 2005

[^1]:    ${ }^{1}$ Unless otherwise specified, all MV-algebras in this paper shall be nontrivial, i.e., $0 \neq 1$.

[^2]:    ${ }^{2}$ Notice that the lattice filters we are considering in this paper are not congruence filters of the corresponding MV-algebra.
    ${ }^{3} \tau(x, y, z)=\left(\left(\sigma_{1}^{n}((x \rightarrow y) \wedge(y \rightarrow x)) \wedge z\right) \vee\left(\neg \sigma_{1}^{n}((x \rightarrow y) \wedge(z \rightarrow x)) \wedge x\right)\right.$, where $\rightarrow$ denotes Łukasiewicz implication, is a discriminator term for $L_{n}$.

