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0. Introduction

Let G be a group acting on a differential or algebraic manifold M . Then G acts naturally on
the ring A of regular functions of M , and the algebra GA of invariants of this action consists of
the functions that are constants on each of the orbits of M . So, the naif idea is considering GA as
a replacement for M/G in non-commutative geometry. Under suitable conditions the invariant
algebra GA and the smash product A#k[G], associated with the action of G on A, are Morita
equivalent. Since K-theory, Hochschild homology and cyclic homology are Morita invariant,
there is no loss of information if GA is replaced by A#k[G]. In the general case the experience
has shown that smash products are better choices than invariants rings for algebras playing the
role of non-commutative quotients. In fact, except in favorable cases (in which ones the smash
product also works) the invariant ring of an action never is used in non-commutative geometry,
because it is a very coarse invariant to measure properties of the action. For instance, consider
the action t · (x, y) := (eit x, eiθt y) of (R,+) on the torus S1 × S1, where θ is an irrational
number. Then the ring of invariants of the induced action on the algebra A of regular (continuous,
differentiable or analytical) functions is the ring of constant functions, but the associated smash
product A#R[(R,+)] has a very rich structure (which depends on θ ). This was a motivation
for the interest to develop tools to compute the cyclic homology of smash products algebras.
This problem was considered in [6,8,14]. In the first paper it was obtained a spectral sequence
converging to the cyclic homology of the smash product algebra A#k[G]. In [8], this result was
derived from the theory of paracyclic modules and cylindrical modules developed by the authors.
The main tool for this computation was a version for cylindrical modules of Eilenberg–Zilber
theorem. In [1] this theory was used to obtain a Feigin–Tsygan type spectral sequence for smash
products A#H , of a Hopf algebra H with an H -module algebra A.

It is natural to try to extend this result to the general crossed products A#f H introduced in [2]
and [5]. Crossed Products, and more general algebras such as Hopf Galois extensions, have been
homologically studied in several papers (see for instance [9,10,13,15]) but almost all of them
deal with its Hochschild (co)homology. In [10] the relative to A cyclic homology of a Galois H

extension C/A was studied, and the results obtained apply to the Hopf crossed products A#f H ,
giving the absolute cyclic homology when A is a separable algebra. As far as we know, [12]
is the only work dealing with the absolute cyclic homology of a crossed product A#f H , with
A non-separable and f non-trivial. In that paper the authors get a Feigin–Tsygan type spectral
sequence for a crossed products A#f H , under the hypothesis that H is cocommutative and f

takes values in k.
The goal of this article is to present a mixed complex (X,d,D), simpler than the canonical

one, giving the Hochschild, cyclic, negative and periodic homology groups of a crossed product
E = A#f H . Under the assumptions of [12] our complex is isomorphic to the one obtained there.
We actually work in the more general context of relative cyclic homology. Specifically, we con-
sider a subalgebra K of A which is stable under the action of H (that is λh ∈ K for all λ ∈ K and
h ∈ H ), and we find a mixed complex computing the Hochschild, cyclic, negative and periodic
homology groups of E relative to K (which we simply call the Hochschild, cyclic, negative and
periodic homology groups of the K-algebra E). Our main result is Theorem 3.2, in which is
proved that (X,d,D) is homotopically equivalent to the canonical normalized mixed complex
(E ⊗ E⊗∗⊗, b,B). As an application we obtain two spectral sequences converging to the cyclic
homology of the K-algebra E. The first one works in the general setting and the second one
(which generalizes those of [1] and [12]) works when f takes values in K .
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Our method of proof is different from that used in [1,8,12], since they are based in the results
obtained in [9] and the perturbation lemma instead of a generalization of the Eilenberg–Zilber
theorem.

The paper is organized in the following way: in Section 1 we summarize the material on
mixed complexes, perturbation lemma and Hochschild homology of Hopf crossed products nec-
essary for our purpose. Moreover we set up notation and terminology. For proofs we refer to
[4] and [9]. In Section 2 we obtain a mixed complex (X̂, d̂, D̂), simpler that the canonical one,
giving the Hochschild, cyclic, periodic and negative homology of the K-algebra E = A#f H ,
which works without the usual assumption that f is convolution invertible. Finally in Sec-
tion 3, we show that when f is convolution invertible, then (X̂, d̂, D̂) is isomorphic to a simpler
mixed complex (X,d,D). Finally, as an application we derive the above mentioned spectral
sequences.

1. Preliminaries

Here we fix the general terminology and notation used in the following sections, and give a
brief review of the background necessary for the understanding of this paper.

Let k be a commutative ring, A a k-algebra and H a Hopf k-algebra. We will use the Sweedler
notation �(h) = h(1) ⊗k h(2), with the summation implicitly understood and superindices instead
of subindices. Recall from [2] and [5] that a weak action of H on A is a bilinear map (h, a) �→ ah,
from H × A to A, such that for h ∈ H , a, b ∈ A:

(1) (ab)h = ah(1)
bh(2)

,
(2) 1h = ε(h)1,
(3) a1 = a.

Given a weak action of H on A and a k-linear map f :H ⊗k H → A, we let A#f H denote
the k-algebra (in general non-associative and without 1) with underlying k-module A ⊗k H and
multiplication map

(a ⊗k h)(b ⊗k l) = abh(1)

f
(
h(2), l(1)

) ⊗k h(3)l(2),

for all a, b ∈ A, h, l ∈ H . The element a ⊗k h of A#f H will usually be written a#h to remind us
H is weakly acting on A. The algebra E := A#f H is called a crossed product if it is associative
with 1#1 as identity element. It is easy to check that this happens if and only if f and the weak
action satisfy the following conditions:

(i) (Normality of f ) for all h ∈ H , we have f (h,1) = f (1, h) = ε(h)1A.
(ii) (Cocycle condition) for all h, l,m ∈ H , we have

f
(
l(1),m(1)

)h(1)

f
(
h(2), l(2)m(2)

) = f
(
h(1), l(1)

)
f

(
h(2)l(2),m

)
.

(iii) (Twisted module condition) for all h, l ∈ H , a ∈ A we have

(
al(1))h(1)

f
(
h(2), l(2)

) = f
(
h(1), l(1)

)
ah(2)l(2)

.
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Next we establish some notations that we will use throughout the paper.

Notations 1.1. Let K be a subalgebra of A and let C = A or C = E.

(1) We set C = C/K and H = H/k. Moreover for c ∈ C we also let c denote its class in C,
and similarly for h ∈ H .

(2) We use the unadorned tensor symbol ⊗ to denote the tensor product ⊗K .
(3) We write H⊗l

k = H ⊗k · · · ⊗k H (l times) and C⊗l = C ⊗ · · · ⊗ C (l times).
(4) Given c0 ⊗ · · · ⊗ cr ∈ C⊗r+1

and 0 � i < j � r , we write cij = ci ⊗ · · · ⊗ cj .
(5) Given h1 ⊗k · · · ⊗k hs ∈ H⊗s

k and 1 � i < j � s, we write hij = hi ⊗k · · · ⊗k hj .

(6) Given hij ∈ H⊗j−i+1
k , we set

h(1)
ij ⊗k h(2)

ij = h
(1)
i ⊗k · · · ⊗k h

(1)
j ⊗k h

(2)
i ⊗k · · · ⊗k h

(2)
j .

(7) Given a ∈ A and hij ∈ H⊗j−i+1
k , we write ahij = (· · · (ahj )hj−1 · · ·)hi .

(8) Given aij ∈ A⊗j−i+1
and h ∈ H , we write ah

ij = ah(1)

i ⊗ · · · ⊗ ah(j−i+1)

j .
(9) The symbol γ (h) stands for 1#h ∈ E. Moreover we also use the same symbol to denote its

class in E/A.

(10) Given hij ∈ H⊗j−i+1
k , we set

γ (hij ) = γ (hi) ⊗ · · · ⊗ γ (hj ) and γ (hij ) = γ (hi) ⊗A · · · ⊗A γ (hj ).

(11) We will denote by H the image of the canonical inclusion of H into A#H .
(12) Given h1, . . . , hi ∈ H , we will denote by 〈h1, . . . , hi〉 the Hopf subalgebra of H generated

by h1, . . . , hi .

1.1. A simple resolution

Let Υ be the family of all epimorphisms of E-bimodules which split as left E-module maps.
In this subsection we review the construction of the Υ -projective resolution (X∗, d∗), of E as an
E-bimodule, given in Section 1 of [9]. We are going to modify the sign of some maps in order
to obtain expressions for the boundary maps d∗ and the comparison maps between (X∗, d∗) and
the normalized bar resolution of E, simpler than those of the above mentioned paper. Let K

be a subalgebra of A, closed under the weak action of H on A. Since we want to consider the
cyclic homology of the K-algebra E, in the sequel Υ will be the family of all epimorphisms of
E-bimodules which split as (E,K)-bimodule maps.

For all r, s � 0, let

Ys = E ⊗A (E/A)⊗s
A ⊗A E

and

Xrs = E ⊗A (E/A)⊗s
A ⊗ A⊗r ⊗ E.
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Consider the diagram of E-bimodules and E-bimodule maps

...

−∂2

Y2

−∂2

X02
μ2

X12

d0
12 · · ·d0

22

Y1

−∂1

X01
μ1

X11

d0
11 · · ·d0

21

Y0 X00
μ0

X10

d0
10 · · · ,d0

20

where (Y∗, ∂∗) is the normalized bar resolution of the A-algebra E, introduced in [7]; for each
s � 0, the complex (X∗s , d

0∗s) is (−1)s times the normalized bar resolution of the K-algebra A,
tensored on the left over A with E ⊗A (E/A)⊗s

A , and on the right over A with E; and for each
s � 0, the map μs is the canonical projection.

Note that Xrs 	 E ⊗k H⊗s
k ⊗ A⊗r ⊗ E, where the right action of K on E ⊗k H⊗s

k is the one
obtained by translation of structure through the canonical bijection from E ⊗k H⊗s

k to E ⊗A

(E/A)⊗s
A . Moreover, each one of the rows of this diagram is contractible as an (E,K)-bimodule

complex. A contracting homotopy

σ 0
0s :Ys → X0s and σ 0

r+1,s :Xrs → Xr+1,s ,

of the s-th row, is given by

σ 0
0s

(
γ (h0,s+1)

) = γ (h0s) ⊗ γ (hs+1)

and

σ 0
r+1,s

(
γ (h0s) ⊗ a1r ⊗ ar+1γ (h)

) = (−1)r+s+1γ (h0s) ⊗ a1,r+1 ⊗ γ (h).

(To see that the maps σ 0 are right K-linear it is necessary to use that K is stable under the action
of H .)

Let μ̃ :Y0 → E be the multiplication map. The complex of E-bimodules

E Y0
−μ̃

Y1
−∂1

Y2
−∂2

Y3
−∂3

Y4
−∂4

Y5
−∂5 · · ·−∂6

is also contractible as a complex of (E,K)-bimodules. A chain contracting homotopy

σ−1
0 :E → Y0 and σ−1

s+1 :Ys → Ys+1 (s � 0),

is given by σ−1 (x) = (−1)sx ⊗A 1E .
s+1
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For r � 0 and 1 � l � s, we define E-bimodule maps dl
rs :Xrs → Xr+l−1,s−l recursively on l

and r , by:

dl(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ 0 ◦ ∂ ◦ μ(x) if l = 1 and r = 0,

−σ 0 ◦ d1 ◦ d0(x) if l = 1 and r > 0,

−∑l−1
j=1 σ 0 ◦ dl−j ◦ dj (x) if 1 < l and r = 0,

−∑l−1
j=0 σ 0 ◦ dl−j ◦ dj (x) if 1 < l and r > 0,

for x ∈ E ⊗A (E/A)⊗s
A ⊗ A⊗r ⊗ K .

Theorem 1.2. (See [9].) There is an Υ -projective resolution of E

E X0
−μ

X1
d1

X2
d2

X3
d3

X4
d4 · · · ,d5

(1.1)

where μ :X00 → E is the multiplication map,

Xn =
⊕

r+s=n

Xrs and dn =
n∑

l=1

dl
0n +

n∑
r=1

n−r∑
l=0

dl
r,n−r .

In order to carry out our computations we also need to give an explicit contracting homotopy
of the resolution (1.1). For this we define maps

σ l
l,s−l :Ys → Xl,s−l and σ l

r+l+1,s−l :Xrs → Xr+l+1,s−l

recursively on l, by:

σ l
r+l+1,s−l = −

l−1∑
i=0

σ 0 ◦ dl−i ◦ σ i (0 < l � s and r � −1).

Proposition 1.3. (See [9].) The family

σ 0 :E → X0, σ n+1 :Xn → Xn+1 (n � 0),

defined by σ 0 = σ 0
00 ◦ σ−1

0 and

σn+1 = −
n+1∑
l=0

σ l
l,n−l+1 ◦ σ−1

n+1 ◦ μn +
n∑

r=0

n−r∑
l=0

σ l
r+l+1,n−r−l (n � 0),

is a contracting homotopy of (1.1).

Let f 〈h1, . . . , hi〉 := f (〈h1, . . . , hi〉 ⊗ 〈h1, . . . , hi〉) and let f̃ 〈h1, . . . , hi〉 be the minimal K-
subbimodule of A including f 〈h1, . . . , hi〉 and closed under the weak action of 〈h1, . . . , hi〉
on A.
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Theorem 1.4. (See [9].) Let x = γ (h0s) ⊗ a1r ⊗ 1. The following assertions hold:

d1(x) =
s−1∑
i=0

(−1)iγ (h0,i−1) ⊗A γ (hi)γ (hi+1) ⊗A γ (hi+1,s) ⊗ a1r ⊗ 1

+ (−1)sγ (h0,s−1) ⊗ ah
(1)
s

1r ⊗ γ
(
h(2)

s

)
and

d2(x) = (−1)s−1γ (h0,s−2) ⊗ f
(
h

(1)
s−1, h

(1)
s

)∗a1r ⊗ γ
(
h

(2)
s−1h

(2)
s

)
,

where f (h, l)∗a1r = ∑r
i=0(−1)i(al(1)

1i )h
(1) ⊗f (h(2), l(2))⊗ah(3)l(3)

i+1,r . Moreover, for each l � 2, the

map dl
rs takes x into the E-subbimodule of Xr+l−1,s−l generated by all the simple tensors

1 ⊗ x1 ⊗A · · · ⊗A xs−l ⊗ a1 ⊗ · · · ⊗ ar+l−1 ⊗ 1

with one aj in f 〈h1, . . . , hs〉 and l − 2 of the others aj ’s in f̃ 〈h1, . . . , hs〉.
1.1.1. Comparison with the normalized bar resolution

Let (E ⊗ E⊗∗ ⊗ E,b′∗) be the normalized bar resolution of the K-algebra E. As it is well
known, the complex

E E ⊗ E
μ

E ⊗ E ⊗ E
b′

1

E ⊗ E⊗2 ⊗ E

b′
2 · · ·b′

3

is contractible as a complex of (E,K)-bimodules, with contracting homotopy

ξ0 :E → E ⊗ E, ξn+1 :E ⊗ E⊗n ⊗ E → E ⊗ E⊗n+1 ⊗ E (n � 0),

given by ξn(x) = (−1)nx ⊗ 1. Let

φ∗ : (X∗, d∗) → (
E ⊗ E⊗∗ ⊗ E,b′∗

)
and ψ∗ :

(
E ⊗ E⊗∗ ⊗ E,b′∗

) → (X∗, d∗)

be the morphisms of E-bimodule complexes, recursively defined by

φ0 = id, ψ0 = id, φn+1(x ⊗ 1) = ξn+1 ◦ φn ◦ dn+1(x ⊗ 1)

and

ψn+1(y ⊗ 1) = σn+1 ◦ ψn ◦ b′
n+1(y ⊗ 1).

Proposition 1.5. (See [9].) ψ ◦φ = id and φ ◦ψ is homotopically equivalent to the identity map.
A homotopy ω∗+1 :φ∗ ◦ ψ∗ → id∗ is recursively defined by

ω1 = 0 and ωn+1(x) = ξn+1 ◦ (
φn ◦ ψn − id−ωn ◦ b′

n

)
(x),

for x ∈ E ⊗ E⊗n ⊗ K .
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Remark 1.6. Since ω(E ⊗ E⊗n−1 ⊗ K) ⊆ E ⊗ E⊗n ⊗ K and ξ vanishes on E ⊗ E⊗n ⊗ K ,

ω(x0n ⊗ 1) = ξ
(
φ ◦ ψ(x0n ⊗ 1) − (−1)nω(x0n)

)
.

1.1.2. The filtrations of (E ⊗ E⊗∗ ⊗ E,b′∗) and (X∗, d∗)
Let

F i(Xn) =
⊕

0�s�i

E ⊗A (E/A)⊗s
A ⊗ A⊗n−s ⊗ E

and let F i(E ⊗ E⊗n ⊗ E) be the E-subbimodule of E ⊗ E⊗n ⊗ E generated by the tensors
1 ⊗ x1 ⊗ · · · ⊗ xn ⊗ 1 such that at least n − i of the xj ’s belong to A. The normalized bar
resolution (E ⊗ E⊗∗ ⊗ E,b′∗) and the resolution (X∗, d∗) are filtered by

F 0(E ⊗ E⊗∗ ⊗ E
) ⊆ F 1(E ⊗ E⊗∗ ⊗ E

) ⊆ F 2(E ⊗ E⊗∗ ⊗ E
) ⊆ · · ·

and

F 0(X∗) ⊆ F 1(X∗) ⊆ F 2(X∗) ⊆ F 3(X∗) ⊆ F 4(X∗) ⊆ F 5(X∗) ⊆ · · · ,

respectively. In [9, Proposition 1.2.2] it was proven that the maps φ∗, ψ∗ and ω∗+1 preserve
filtrations. In Appendix A we improve this result.

1.2. Mixed complexes

In this subsection we recall briefly the notion of mixed complex. For more details about this
concept we refer to [11] and [3].

A mixed complex (X,b,B) is a graded k-module (Xn)n�0, endowed with morphisms
b :Xn → Xn−1 and B :Xn → Xn+1, such that

b ◦ b = 0, B ◦ B = 0

and

B ◦ b + b ◦ B = 0.

A morphism of mixed complexes f : (X,b,B) → (Y, d,D) is a family of maps f :Xn → Yn,
such that d ◦ f = f ◦ b and D ◦ f = f ◦ B . Let u be a degree 2 variable. A mixed complex
X = (X,b,B) determines a double complex
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BP(X ) =

...

b

...

b

...

b

...

b

· · · X3u
−1B

b

X2u
0B

b

X1u
B

b

X0u
2B

· · · X2u
−1B

b

X1u
0B

b

X0u
B

· · · X1u
−1B

b

X0u
0B

· · · X0u
−1,

B

where b(xui) = b(x)ui and B(xui) = B(x)ui−1. By deleting the positively numbered columns
we obtain a subcomplex BN(X ) of BP(X ). Let BN′(X ) be the kernel of the canonical surjection
from BN(X ) to (X,b). The quotient double complex BP(X )/BN′(X ) is denoted by BC(X ).
The homology groups HC∗(X ), HN∗(X ) and HP∗(X ), of the total complexes of BC(X ), BN(X )

and BP(X ) respectively, are called the cyclic, negative and periodic homology groups of X . The
homology HH∗(X ), of (X,b), is called the Hochschild homology of X . Finally, it is clear that a
morphism f : X → Y of mixed complexes induces a morphism from the double complex BP(X )

to the double complex BP(Y ).
As usual, given a K-bimodule M , we let M⊗ denote the quotient M/[M,K], where [M,K]

is the k-module generated by the commutators mλ − λm, with λ ∈ K and m ∈ M . Moreover [m]
will denote the class of an element m ∈ M in M⊗. Let C be a k-algebra and K ⊆ C a subalgebra.
The normalized mixed complex of the K-algebra C is the mixed complex (C ⊗ C⊗∗⊗, b,B),
where b is the canonical Hochschild boundary map and the Connes operator B is given by

B
([c0 ⊗ · · · ⊗ cr ]

) =
r∑

i=0

(−1)ir [1 ⊗ ci ⊗ · · · ⊗ cr ⊗ c0 ⊗ · · · ⊗ ci−1].

The cyclic, negative, periodic and Hochschild homology groups HCK∗ (C), HNK∗ (C), HPK∗ (C)

and HHK∗ (C), of the K-algebra C, are the respective homology groups of (C ⊗ C⊗∗⊗, b,B).

1.3. The perturbation lemma

Next, we recall the perturbation lemma. We give the more general version introduced in [4].
A homotopy equivalence data

(Y, ∂)
i

(X,d)

p

, h :X∗ → X∗+1, (1.2)

consists of the following:
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(1) Chain complexes (Y, ∂), (X,d) and quasi-isomorphisms i, p between them.
(2) A homotopy h from i ◦ p to id.

A perturbation δ of (1.2) is a map δ :X∗ → X∗−1 such that (d + δ)2 = 0. We call it small if
id−δ ◦ h is invertible. In this case we write Λ = (id−δ ◦ h)−1 ◦ δ and we consider

(
Y, ∂1

)
i1

(X,d + δ)

p1

, h1 :X∗ → X∗+1, (1.3)

with

∂1 = ∂ + p ◦ Λ ◦ i, i1 = i + h ◦ Λ ◦ i, p1 = p + p ◦ Λ ◦ h, h1 = h + h ◦ Λ ◦ h.

A deformation retract is a homotopy equivalence data such that p ◦ i = id. A deformation retract
is called special if h ◦ i = 0, p ◦ h = 0 and h ◦ h = 0.

In all the cases considered in this paper the map δ ◦ h is locally nilpotent, and so (id−δ ◦
h)−1 = ∑∞

n=0(δ ◦ h)n.

Theorem 1.7. (See [4].) If δ is a small perturbation of the homotopy equivalence data (1.2), then
the perturbed data (1.3) is a homotopy equivalence. Moreover, if (1.2) is a special deformation
retract, then (1.3) is also.

2. A mixed complex giving the cyclic homology of a crossed product

Recall that Υ is the family of all epimorphisms of E-bimodules which split as an (E,K)-
bimodule map. Since (X∗, d∗) is an Υ -projective resolution of E, the Hochschild homology of
the K-algebra E is the homology of E ⊗Ee (X∗, d∗). Write X̂rs = E ⊗A (E/A)⊗s

A ⊗ A⊗r ⊗.
It is easy to check that X̂rs 	 E ⊗Ee Xrs . Let d̂ l

rs : X̂rs → X̂r+l−1,s−l be the map induced by
idE ⊗Eedl

rs . Clearly d̂0
rs is (−1)s times the boundary map of the normalized chain Hochschild

complex of the K-algebra A, with coefficients in E ⊗A (E/A)⊗s
A . Moreover, from Theorem 1.4,

it follows easily that

d̂ 1(x) = [
a0γ (h0)γ (h1) ⊗A γ (h2s) ⊗ a1r

]
+

s−1∑
i=1

(−1)i
[
a0γ (h0) ⊗A γ (h1,i−1) ⊗A γ (hi)γ (hi+1) ⊗A γ (hi+2,s) ⊗ a1r

]
+ (−1)s

[
γ
(
h(2)

s

)
a0γ (h0) ⊗A γ (h1,s−1) ⊗ ah

(1)
s

1r

]
and

d̂ 2(x) = (−1)s−1[γ (
h

(2)
s−1h

(2)
s

)
a0γ (h0) ⊗A γ (h0,s−2) ⊗ f

(
h

(1)
s−1, h

(1)
s

)∗a1r

]
,

where x = [a0γ (h0) ⊗A γ (h1s) ⊗ a1r ] and f (h, l)∗a1r is as in Theorem 1.4. With the above
identifications the complex E ⊗Ee (X∗, d∗) becomes (X̂∗, d̂∗), where
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X̂n =
⊕

r+s=n

X̂rs and d̂n :=
n∑

l=1

d̂ l
0n +

n∑
r=1

n−r∑
l=0

d̂ l
r,n−r .

Let

φ̂∗ : (X̂∗, d̂∗) → (
E ⊗ E⊗∗⊗, b∗

)
and ψ̂∗ :

(
E ⊗ E⊗∗⊗, b∗

) → (X̂∗, d̂∗)

be the morphisms of complexes induced by φ and ψ , respectively. By Proposition 1.5, we
have ψ̂ ◦ φ̂ = id and φ̂ ◦ ψ̂ is homotopically equivalent to the identity map, being a homotopy
ω̂∗+1 : φ̂∗ ◦ ψ̂∗ → id∗, the family of maps

(
ω̂n+1 :E ⊗ E⊗n⊗ → E ⊗ E⊗n+1⊗)

n�0,

induced by (ωn+1 :E ⊗ E⊗n ⊗ E → E ⊗ E⊗n+1 ⊗ E)n�0.

2.0.1. The filtrations of (E ⊗ E⊗∗⊗, b∗) and (X̂∗, d̂∗)
Let

F i(X̂n) =
⊕

0�s�i

X̂n−s,s

and let F i(E ⊗ E⊗n⊗) be the k-submodule of E ⊗ E⊗n⊗ generated by the classes of the sim-
ple tensors x0 ⊗ · · · ⊗ xn such that at least n − i of the elements x1, . . . , xn belong to A. The
normalized Hochschild complex (E ⊗ E⊗∗⊗, b∗) and the complex (X̂∗, d̂∗) are filtered by

F 0(E ⊗ E⊗∗⊗) ⊆ F 1(E ⊗ E⊗∗⊗) ⊆ F 2(E ⊗ E⊗∗⊗) ⊆ · · ·

and

F 0(X̂∗) ⊆ F 1(X̂∗) ⊆ F 2(X̂∗) ⊆ · · · ,

respectively. From [9, Proposition 1.2.2] it follows immediately that the maps φ̂∗, ψ̂∗ and ω̂∗+1
preserve filtrations. In Appendix A we improve this result.

Let V̂n ⊆ V̂ ′
n be the k-submodules of E ⊗E⊗n⊗ generated by the simple tensors x0n such that

#({j � 1: xj /∈ A ∪ H}) = 0 and #({j � 1: xj /∈ A ∪ H}) � 1, respectively.
Let h1, . . . , hi ∈ H . Recall that f 〈h1, . . . , hi〉 := f (〈h1, . . . , hi〉 ⊗ 〈h1, . . . , hi〉) and f̃ 〈h1,

. . . , hi〉 is the minimal K-subbimodule of A including f 〈h1, . . . , hi〉 and closed under the weak
action of H . We will denote by Ĉn(h1, . . . , hi) the k-submodule of E ⊗ E⊗n⊗ generated by the
classes of all the simple tensors x0 ⊗ · · · ⊗ xn with some x1, . . . , xn in f̃ 〈h1, . . . , hi〉.

Proposition 2.1. The map φ̂ satisfies

φ̂
([

a0γ (h0) ⊗A γ (h1i ) ⊗ a1,n−i

]) = [
a0γ (h0) ⊗ γ (h1i ) ∗ a1,n−i

] + [
a0γ (h0) ⊗A x

]
,

where [a0γ (h0) ⊗A x] ∈ F i−1(E ⊗ E⊗n⊗) ∩ V̂n ∩ Ĉn(h1, . . . , hi).
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Proof. See Appendix A. �
Proposition 2.2. If x = [1 ⊗ x1n] ∈ (F i(E ⊗ E⊗n⊗) ∩ V̂ ′

n), then

ω̂(x) ∈ (
K ⊗ E⊗n+1) ∩ F i

(
E ⊗ E⊗n+1⊗) ∩ V̂n+1.

Proof. See Appendix A. �
Lemma 2.3. Let B∗ :E ⊗ E⊗∗⊗ → E ⊗ E⊗∗+1⊗ be the Connes operator. The composition
B ◦ ω̂ ◦ B ◦ φ̂ is the zero map.

Proof. Let x = [a0γ (h0) ⊗A γ (h1i ) ⊗ a1,n−i] ∈ X̂n−i,i . By Proposition 2.1,

φ̂(x) ∈ F i
(
E ⊗ E⊗n⊗) ∩ V̂n.

Hence B ◦ φ̂(x) ∈ (K ⊗ E⊗n+1
) ∩ F i+1(E ⊗ E⊗n+1⊗) ∩ V̂ ′

n+1, and so, by Proposition 2.2,

ω̂ ◦ B ◦ φ̂(x) ∈ (
K ⊗ E⊗n+1⊗) ∩ F i+1(E ⊗ E⊗n+1⊗) ∩ V̂n+2 ⊆ kerB,

as desired. �
For each n � 0, let D̂n : X̂n → X̂n+1 be the map D̂ = ψ̂ ◦ B ◦ φ̂.

Theorem 2.4. (X̂, d̂, D̂) is a mixed complex giving the Hochschild, cyclic, negative and periodic
homology of the K-algebra E. Moreover we have chain complexes maps

Tot
(
BP(X̂, d̂, D̂)

)
Φ̂

Tot
(
BP

(
E ⊗ E⊗∗⊗, b,B

))Ψ̂

,

given by

Φ̂n

(
xui

) = φ̂(x)ui + ω̂ ◦ B ◦ φ̂(x)ui−1 and Ψ̂n

(
xui

) =
∑
j�0

ψ̂ ◦ (B ◦ ω̂)j (x)ui−j .

These maps satisfy Ψ̂ ◦ Φ̂ = id and Φ̂ ◦ Ψ̂ is homotopically equivalent to the identity map.
A homotopy Ω̂∗+1 : Φ̂∗ ◦ Ψ̂∗ → id∗ is given by

Ω̂n+1
(
xui

) =
∑
j�0

ω̂ ◦ (B ◦ ω̂)j (x)ui−j .

Proof. For each i � 0, let

φ̂ui : X̂n−2iu
i → (

E ⊗ E⊗n−2i ⊗)
ui,

ψ̂ui :
(
E ⊗ E⊗n−2i ⊗)

ui → X̂n−2iu
i
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and

ω̂ui :
(
E ⊗ E⊗n−2i ⊗)

ui → (
E ⊗ E⊗n+1−2i ⊗)

ui,

be the maps defined by φ̂ui(xui) = φ̂(x)ui , etcetera. By the comments preceding Lemma 2.3,
we have a special deformation retract

Tot
(
BC(X̂, d̂,0)

)
⊕

i�0 φ̂ui

Tot
(
BC

(
E ⊗ E⊗∗⊗, b,0

))⊕
i�0 ψ̂ui

,
⊕
i�0

ω̂ui .

By applying the perturbation lemma to this datum endowed with the perturbation induced by B ,
and taking into account Lemma 2.3, we obtain the special deformation retract

Tot
(
BC(X̂, d̂, D̂)

)
Φ̂

Tot
(
BC

(
E ⊗ E⊗∗⊗, b,B

))Ψ̂

, Ω̂. (2.1)

It is easy to see that Φ̂ , Ψ̂ and Ω̂ commute with the canonical surjections

Tot
(
BC(X̂, d̂, D̂)

) → Tot
(
BC(X̂, d̂, D̂)

)[2] (2.2)

and

Tot
(
BC

(
E ⊗ E⊗∗⊗, b,B

)) → Tot
(
BC

(
E ⊗ E⊗∗⊗, b,B

))[2]. (2.3)

A standard argument, from these facts, finishes the proof. �
Let h1, . . . , hi ∈ H . In the sequel we let Ĵn(h1, . . . , hi) and HĴn+1(h1, . . . , hi) denote the k-

submodules of X̂n generated by all the classes of simple tensors x0s ⊗a1,n−s ∈ E⊗A (E/A)⊗s
A ⊗

A⊗n−s
with 0 � s < n and some aj in f 〈h1, . . . , hi〉, and for all the classes of simple tensors

x0s ⊗ a1,n−s with 0 � s < n and some aj in f̃ 〈h1, . . . , hi〉, respectively.

Proposition 2.5. Let R̂i = F i(E ⊗ E⊗n⊗) \ F i−1(E ⊗ E⊗n⊗). The following equalities hold:

(1) ψ̂([a0γ (h0) ⊗ γ (h1i ) ⊗ ai+1,n]) = [a0γ (h0) ⊗A γ (h1i ) ⊗ ai+1,n].
(2) If x0n ∈ R̂i ∩ V̂n and there is 1 � j � i such that xj ∈ A, then ψ̂(x0n) = 0.
(3) If x = [a0γ (h0) ⊗ γ (h1,i−1) ⊗ aiγ (hi) ⊗ ai+1,n], then

ψ̂(x) ≡ [
a0γ (h0) ⊗A γ (h1,i−1) ⊗A aiγ (hi) ⊗ ai+1,n

]
+ [

γ
(
h

(2)
i

)
a0γ (h0) ⊗A γ (h1,i−1) ⊗ ai ⊗ a

h
(1)
i

i+1,n

]
,

module
⊕i−2

(X̂n−l,l ∩ Ĵn(h1, . . . , hi)).
l=0
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(4) If x = [a0γ (h0) ⊗ γ (h1,j−1) ⊗ ajγ (hj ) ⊗ γ (hj+1,i ) ⊗ ai+1,n] with j < i, then

ψ̂(x) ≡ [
a0γ (h0) ⊗A γ (h1,j−1) ⊗A ajγ (hj ) ⊗A γ (hj+1,i ) ⊗ ai+1,n

]
,

module
⊕i−2

l=0(X̂n−l,l ∩ Ĵn(h1, . . . , hi)).

(5) If x = [a0γ (h0) ⊗ γ (h1,i−1) ⊗ ai,j−1 ⊗ ajγ (hj ) ⊗ aj+1,n] with j > i, then

ψ̂(x) ≡ [
γ
(
h

(2)
j

)
a0γ (h0) ⊗A γ (h1,i−1) ⊗ aij ⊗ a

h
(1)
j

j+1,n

]
,

module
⊕i−2

l=0(X̂n−l,l ∩ Ĵn(h1, . . . , hi−1, hj )).

(6) If x0n ∈ R̂i ∩ V̂ ′
n and there exists 1 � j1 < j2 � n such that xj1 ∈ A and xj2 ∈ H, then

ψ̂(x0n) = 0.

Proof. See Appendix A. �
Let η̂n : X̂n → X̂n+1, t̂H,n : X̂n → X̂n and t̂A,n : X̂n+1 → X̂n+1 be the k-linear maps defined

by

η̂
([

a0γ (h0) ⊗A γ (h1i ) ⊗ a1,n−i

]) = [
γ (h0i ) ⊗ a1,n−i ⊗ a0

]
,

t̂H
([

a0γ (h0) ⊗A γ (h1i ) ⊗ a1,n−i

]) = [
γ
(
h

(2)
i

) ⊗A a0γ (h0) ⊗A γ (h1,i−1) ⊗ a
h

(1)
i

1,n−i

]
and

t̂A
([

a0γ (h0) ⊗A γ (h1i ) ⊗ a1,n−i+1
]) = [

γ
(
h(2)

0i

) ⊗ a2,n−i+1 ⊗ a0a
h(1)

0i

1

]
,

respectively.

Proposition 2.6. The Connes operator D̂ satisfies:

(1) If x = [a0 ⊗A γ (h1i ) ⊗ a1,n−i], then

D̂(x) =
n−i∑
j=0

(−1)j (n−i)+n̂t
j
A ◦ η̂(x),

module F i−1(X̂n+1) ∩ HĴn+1(h1, . . . , hi).

(2) If x = [a0γ (h0) ⊗A γ (h1i ) ⊗ a1,n−i] with a0γ (h0) /∈ A, then

D̂(x) =
i∑

j=0

(−1)ji1 ⊗A t̂
j
H (x) +

n−i∑
j=0

(−1)j (n−i)+n̂t
j
A ◦ η̂(x)

module F i(X̂n+1) ∩ HĴn+1(h1, . . . , hi).
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Proof. It is a direct consequence of the definition of B , Propositions 2.1 and 2.5. We leave the
details to the reader. �
3. The cyclic homology of a crossed product with invertible cocycle

Let E = A#f H . Assume that the cocycle f is invertible. Then, the map γ is convolution
invertible and its inverse is given by γ −1(h) = f −1(S(h(2)), h(3))#S(h(1)). In [9] it was proven
that under this hypothesis the complex (X̂∗, d̂∗) of Section 2 is isomorphic to a simpler complex
(X∗, d∗). In this section we obtain a similar result for the mixed complex (X̂, d̂, D̂).

For each r, s � 0, let

Xrs = (
E ⊗ A⊗r ⊗) ⊗k H⊗s

k .

The map θrs : X̂rs → Xrs , defined by

θrs(x) = (−1)rs
[
a0γ (h0)a1γ

(
h

(1)
1

) · · ·asγ
(
h(1)

s

) ⊗ as+1,s+r

] ⊗k h(2)
1s ,

where x = [a0γ (h0) ⊗A · · · ⊗A asγ (hs) ⊗ as+1,s+r ], is an isomorphism. The inverse map of θrs

is the map given by

[
a0γ (h0) ⊗ a1r

] ⊗k h1s �→ (−1)rs
[
a0γ (h0)γ

−1(h(1)
s

) · · ·γ −1(h(1)
1

) ⊗A γ
(
h(2)

1s

) ⊗ a1r

]
.

Let dl
rs :Xrs → Xr+l−1,s−l be the map dl

rs := θr+l−1,s−l ◦ d̂ l
rs ◦ θ−1

rs . In the absolute case the
following result was obtained in [9]. The generalization to the relative context is direct.

Theorem 3.1. The Hochschild homology of the K-algebra E is the homology of (X∗, d∗), where

Xn =
⊕

r+s=n

Xrs and dn :=
n∑

l=1

dl
0n +

n∑
r=1

n−r∑
l=0

dl
r,n−r .

Moreover d0
rs is the boundary map of the normalized chain Hochschild complex of the K-

algebra A, with coefficients in E, tensored on the right over k with idH⊗s ,

d1
rs(x) = (−1)r+s

[
γ
(
h(3)

s

)
a0γ (h0)γ

−1(h(1)
s

) ⊗ ah
(2)
s

1r

] ⊗k h1,s−1

+
s−1∑
i=1

(−1)r+i
[
a0γ (h0) ⊗ a1r

] ⊗k h1,i−1 ⊗k hihi+1 ⊗k hi+2,s

+ (−1)r
[
a0γ (h0)ε(h1) ⊗ a1r

] ⊗k h2s

and

d2
rs(x) =

r∑
i=0

(−1)i−1[γ (
h

(5)
s−1h

(5)
s

)
a0γ (h0)γ

−1(h(1)
s

)
γ −1(h(1)

s−1

)
⊗ (

ah
(2)
s

1i

)h
(2)
s−1 ⊗ f

(
h

(3)
s−1, h

(3)
s

) ⊗ a
h

(4)
s−1h

(4)
s

i+1,r

] ⊗k h1,s−2,

where x = [a0γ (h0) ⊗ a1r ] ⊗k h1s .
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For each n � 0, let Dn = θn ◦ D̂n ◦ θ−1
n .

Theorem 3.2. (X,d,D) is a mixed complex giving the Hochschild, cyclic, negative and peri-
odic homology of E. More precisely, the mixed complexes (X,d,D) and (E ⊗ E⊗∗

, b,B) are
homotopically equivalent.

Proof. Clearly (X,d,D) is a mixed complex and θ : (X̂, d̂, D̂) → (X,d,D) is an isomorphism
of mixed complexes. So the result follows from Theorem 2.4. �

We are now going to obtain a formula for D. To do this we need to introduce a map

T :H⊗i+1
k → A such that

γ (h0)γ
−1(hi) · · ·γ −1(h1) = T

(
h

(1)
0 , S(h1)

(1), . . . , S(hi)
(1)

)
γ
(
h

(2)
0 S(hi)

(2) · · ·S(h1)
(2)

)
.

To abbreviate notations we set

ζ = γ −1 ◦ S−1 and U(h0i ) = T
(
h0, S(h1), . . . , S(hi)

)
.

Since

γ (h0)γ
−1(hi) · · ·γ −1(h1) = γ (h0)ζ

(
S(hi)

) · · · ζ (
S(h1)

)
,

we can solve

U(h0i ) = γ
(
h

(1)
0

)
ζ
(
S(hi)

(1)
) · · · ζ (

S(h1)
(1)

)
γ −1(h(2)

0 S(h1 · · ·hi)
(2)

)
= γ

(
h

(1)
0

)
ζ
(
S
(
h

(2)
i

)) · · · ζ (
S
(
h

(2)
1

))
γ −1(h(2)

0 S
(
h

(1)
1 · · ·h(1)

i

))
= γ

(
h

(1)
0

)
γ −1(h(2)

i

) · · ·γ −1(h(2)
1

)
γ −1(h(2)

0 S
(
h

(1)
1 · · ·h(1)

i

))
.

We must check that T (h0, S(h1), . . . , S(hi)) ∈ A. For this purpose it suffices to see that this
element is coinvariant under the coaction ν = id⊗� of A#f H , which follows easily because
ν(γ −1(h)) = γ −1(h(2)) ⊗ S(h(1)) and A#f H is a comodule algebra. Note that

a0γ (h0)γ
−1(hi) · · ·γ −1(h1) = a0U

(
h

(1)
0 ,h(2)

1i

)
γ
(
h

(2)
0 S

(
h

(1)
1 · · ·h(1)

i

))
.

For each 0 � i � n, let F i(Xn) = ⊕
0�s�i Xn−s,s . The complex (X∗, d∗) is filtered by

F 0(X∗) ⊆ F 1(X∗) ⊆ F 2(X∗) ⊆ · · · .
Given elements h1, . . . , hi ∈ H , we let HJn(h1, . . . , hi) denote the k-submodule of Xn gen-

erated by all the elements [a0γ (h0) ⊗ a1r ] ⊗k h1s , with r > 0 and some aj ∈ f̃ 〈h1, . . . , hi〉 (for
the definition of this last expression see the discussion above Theorem 1.4).

Let ηn :Xn → Xn+1 and tH,n :Xn+1 → Xn+1 be the k-linear maps defined by

η(x) = [
a0γ

(
h

(1)
0

) ⊗ a1,n−i

] ⊗k h
(2)
0 S

(
h

(1)
1 · · ·h(1)

i

) ⊗k h(2)
1i

and
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tH (y) = [
γ
(
h

(3)
i+1

)
a0γ (h0)γ

−1(h(1)
i+1

) ⊗ a
h

(2)
i+1

1,n−i

] ⊗k h
(4)
i+1 ⊗k h1i ,

where

x = [
a0γ (h0) ⊗ a1,n−i

] ⊗k h1i and y = [
a0γ (h0) ⊗ a1,n−i

] ⊗k h1,i+1,

respectively.

Theorem 3.3. If x = [a0γ (h0) ⊗ a1,n−i] ⊗k h1i , then

D(x) =
i∑

j=0

(−1)ji+n−i t
j
H ◦ η(x)

+
n−i∑
j=0

(−1)(j+1)(n−i)
[
γ
(
h

(3)
0 S

(
h

(1)
1 · · ·h(1)

i

))
γ
(
h

(5)
1

) · · ·γ (
h

(5)
i

)
⊗ aj+1,n−i ⊗ a0U

(
h

(1)
0 ,h(3)

1i

) ⊗ (
a

h(4)
1i

1j

)h
(2)
0 S(h

(2)
1 ···h(2)

i )] ⊗k h(6)
1i ,

module F i(Xn+1) ∩ HJn+1(h1, . . . , hi).

Proof. It follows straightforwardly from Proposition 2.6, the equality D = θ ◦ D̂ ◦ θ−1, and the
formulas of θ and θ−1. �
3.1. First spectral sequence

Arguing as in [9, Proposition 3.2] we see that, for each h ∈ H , there is a morphism of com-
plexes

ϑh∗ :
(
E ⊗ A⊗∗⊗, b∗

) → (
E ⊗ A⊗∗⊗, b∗

)
,

which is given by ϑh
r ([a0γ (h0) ⊗ a1r ]) = [γ (h(3))a0γ (h0)γ

−1(h(1)) ⊗ ah(2)

1r ] and that, for each
h, l ∈ H , the endomorphisms of HK∗ (A,E) induced by ϑh∗ ◦ ϑl∗ and by ϑhl∗ coincide. So,
HK∗ (A,E) is a left H -module. Let

d̃s : HK
r (A,E) ⊗k H⊗s → HK

r (A,E) ⊗k H⊗s−1

and

D̃s : HK
r (A,E) ⊗k H⊗s → HK

r (A,E) ⊗k H⊗s+1

be the maps induced by d1 and
∑s

(−1)js+r t
j ◦ ηr+s , respectively.
rs j=0 H
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Proposition 3.4. Assume that H is a flat k-module. For each r � 0,

˜HK
r (A,E) := (

HK
r (A,E) ⊗k H⊗∗

, d̃∗, D̃∗
)

is a mixed complex and there is a convergent spectral sequence

E2
sr = HCs

(
˜HK
r (A,E)

) ⇒ HCK
r+s(E).

Proof. Consider the spectral sequence (Ev
sr , d

v
sr )v�0, associated with the filtration

F 0(Tot
(
BC(X,d,D)

)) ⊆ F 1(Tot
(
BC(X,d,D)

)) ⊆ F 2(Tot
(
BC(X,d,D)

)) ⊆ · · ·

of the complex Tot(BC(X,d,D)), given by

F i
(
Tot

(
BC(X,d,D)

)
n

) =
⊕
j�0

F i−2j (Xn−2j )u
j .

A straightforward computation shows that:

• E0
sr = ⊕

j�0((E ⊗ A⊗r ⊗) ⊗k H⊗s−2j
)uj and d0

sr is
⊕

j�0d
0
r,s−2j u

j ,

• E1
sr = ⊕

j�0(Hr (A,E) ⊗k H⊗s−2j
)uj and d1

sr is d̃ + D̃.

From this it follows easily that ˜HK
r (A,E) is a mixed complex and

E2
sr = HCs

(
˜HK
r (A,E)

)
.

In order to finish the proof it suffices to note that the filtration of Tot(BC(X,d,D)) introduced
above is canonically bounded, and so, by Theorem 3.2, the spectral sequence (Ev

sr )v�0 converges
to the cyclic homology of the K-algebra E. �
Corollary 3.5. If HK

i (A,E) = 0 for all i > 0, then HCK
n (E) = HCn(

˜HK
0 (A,E)).

Proposition 3.6. Assume H is a separable algebra and let t be the integral of H satisfying
ε(t) = 1. Then

E2
sr =

{
H0(H, ˜HK

r (A,E)) if s is even,

0 if s is odd,

and for s even the map d2
sr :E2

sr → E2
s−2,r+1 is given by

d2
(∑[

a0γ (h) ⊗ a1r

])
=

r∑ ∑
(−1)(j+1)r

[
γ
(
h(2)

) ⊗ aj+1,r ⊗ a0 ⊗ ah(1)

1j

]

j=0



858 G. Carboni et al. / Advances in Mathematics 223 (2010) 840–872
+
r∑

j=0

(−1)j
∑[

γ
(
t (5)h(4)

)
a0γ −1

(
t (1)

) ⊗ (
ah(1)

1j

)t (2) ⊗ f
(
t (3), h(2)

) ⊗ at (4)h(3)

j+1,r

]
,

where
∑[a0γ (h)⊗ a1r ] is an r-cycle of (E ⊗A⊗∗⊗, b∗) and

∑[a0γ (h) ⊗ a1r ] denotes its class

in H0(H, ˜HK
r (A,E)), and similarly for the other terms.

Proof. The first assertion is trivial and the second one follows from a direct computation using
the construction of the spectral sequence of a filtrated complex. To prove this it is convenient to
note that

tH ◦ η
([

a0γ (h) ⊗ a1r

]) − d1([a0γ
(
h(1)

) ⊗ a1r

] ⊗k t ⊗k h(2)
) ∈ Im(d̃s).

We leave the details to the reader. �
3.2. Second spectral sequence

In this subsection we assume that f takes values in K . Under this hypothesis the maps dl

vanish for all l � 2 and we obtain a spectral sequence that generalizes those given in [1] and
[12].

For each r � 0, we define a map

H ⊗k (E ⊗ A⊗r ⊗) E ⊗ A⊗r ⊗,

h ⊗ x h � x

by h � [aγ (u) ⊗ a1r ] = [γ (h(3))aγ (u)γ −1(h(1)) ⊗ ah(2)

1r ].

Proposition 3.7. For each r � 0 the map � is an action of H on E ⊗ A⊗r ⊗.

Proof. It is trivial that � is unitary. Next we verify the associative property. By definition

l �
(
h �

[
aγ (u) ⊗ a1r

]) = [
γ
(
l(3)

)
γ
(
h(3)

)
aγ (u)γ −1(h(1)

)
γ −1(l(1)

) ⊗ (
ah(2)

1r

)l(2)]
.

Since

(
ah

1r

)l = f
(
l(1), h(1)

)
al(2)h(2)

1r f −1(l(3), h(3)
)
, γ (l)γ (h) = f

(
l(1), h(1)

)
γ
(
l(2)h(2)

)
and f −1 is the convolution inverse of f , we have

l �
(
h �

[
aγ (u) ⊗ a1r

])
= [

γ
(
l(4)h(4)

)
aγ (u)γ −1(h(1)

)
γ −1(l(1)

) ⊗ f
(
l(2), h(2)

)
al(3)h(3)

1r

]
.
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By the twisted module condition applied twice,

γ −1(h)γ −1(l) = f −1(S(
h(2)

)
, h(3)

)
γ
(
S
(
h(1)

))
f −1(S(

l(2)
)
, l(3)

)
γ
(
S
(
l(1)

))
= f −1(S(

h(3)
)
, h(4)

)
f −1(S(

l(3)
)
, l(4)

)
f

(
S
(
h(2)

)
, S

(
l(2)

))
γ
(
S
(
l(1)h(1)

))
= f −1(S(

h(3)
)
, h(4)

)
f −1(S(

h(2)
)
S
(
l(2)

)
, l(3)

)
γ
(
S
(
l(1)h(1)

))
= f −1(S(

l(3)h(3)
)
l(4), h(4)

)
f −1(S(

l(2)h(2)
)
, l(5)

)
γ
(
S
(
l(1)h(1)

))
= f −1(S(

l(2)h(2)
)
, l(3)h(3)

)
f −1(l(4), h(4)

)
γ
(
S
(
l(1)h(1)

))
.

Combining the precedent identity with the fact that f −1 is the convolution inverse of f , we
obtain

l �
(
h �

[
aγ (u) ⊗ a1r

]) = [
γ
(
v(5)

)
aγ (u)f −1(S(

v(2)
)
, v(3)

)
γ
(
S
(
v(1)

)) ⊗ av(4)

1r

]
= [

γ
(
v(3)

)
aγ (u)γ −1(v(1)

) ⊗ av(2)

1r

]
,

where v = lh. Since the last expression equals (lh) � [aγ (u) ⊗ a1r ], this finishes the proof. �
For each r � 0, let Mr be E ⊗A⊗r ⊗, endowed with the left H -module structure given by �.

For each r, s � 0, let Brs : Mr ⊗k H⊗s
k → Mr+1 ⊗k H⊗s

k be the map defined by

B(x) =
r∑

j=0

(−1)(j+1)r
[
γ
(
h

(3)
0 S

(
h

(1)
1 · · ·h(1)

s

))
γ
(
h

(5)
1

) · · ·γ (
h(5)

s

)
⊗ aj+1,r ⊗ a0U

(
h

(1)
0 ,h(3)

1s

) ⊗ (
a

h(4)
1s

1j

)h
(2)
0 S(h

(2)
1 ···h(2)

s )] ⊗k h(6)
1s ,

where x = [a0γ (h0) ⊗ a1r ] ⊗k h1s . For each r, s � 0, let

∂r : Hs(H, Mr ) → Hs(H, Mr−1) and Dr : Hs(H, Mr ) → Hs(H, Mr+1)

be the maps induced by d0
rs and Brs , respectively.

Proposition 3.8. For each s � 0,

˜HK
s (H,E) := (

Hs(H, M∗), ∂∗, D∗
)

is a mixed complex and there is a convergent spectral sequence

E 2
rs = HCr

( ˜HK
s (H,E)

) ⇒ HCK
r+s(E).

Proof. Consider the spectral sequence (E v
rs, δ

v
rs)v�0, associated with the filtration

F 0(Tot
(
BC(X,d,D)

)) ⊆ F 1(Tot
(
BC(X,d,D)

)) ⊆ F 2(Tot
(
BC(X,d,D)

)) ⊆ · · ·
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of the complex Tot(BC(X,d,D)), given by

F i
(
Tot

(
BC(X,d,D)

)
n

) =
⊕
j�0

F i−2j (Xn−2j )u
j ,

where F l (Xm) = ⊕
0�r�l Xr,m−r . A straightforward computation shows that:

• E 0
rs = ⊕

j�0(Mr−2j ⊗k H⊗s
)uj and δ0

rs is
⊕

j�0d
1
r−2j,su

j ,

• E 1
rs = ⊕

j�0 Hs(H, Mr−2j )u
j and δ1

rs is ∂ + D.

From this it is easy to see that ˜HK
s (H,E) is a mixed complex and

E 2
rs = HCr

( ˜HK
s (H,E)

)
.

In order to finish the proof it suffices to note that the filtration of Tot(BC(X,d,D)) introduced
above is canonically bounded, and so, by Theorem 3.2, the spectral sequence (E v

rs, δ
v
rs)v�0 con-

verges to the cyclic homology of the K-algebra E. �
Corollary 3.9. If H is separable, then HCK

n (E) = HCn(
˜HK

0 (H,E)).

4. Some decompositions of the mixed complexes

Let [H,H ] be the k-submodule of H spanned by the set of all elements hl − lh with h, l ∈ H .
It is easy to see that [H,H ] is a coideal in H . Let H̆ be the quotient coalgebra H/[H,H ]. In
this section we study decompositions of the mixed complexes (E ⊗ E⊗∗⊗, b,B), (X̂, d̂, D̂) and
(X,d,D) induced by decompositions of H̆ .

For h ∈ H , we let h denote the class of h in H̆ . Given a subcoalgebra C of H̆ and a right H̆ -
comodule (N,ρ), we set NC = {n ∈ N : ρ(n) ∈ N ⊗ C}. It is well known that if H̆ decomposes
as a direct sum of a family (Ci)i∈I of subcoalgebras, then N = ⊕

i∈I NCi .
For each n � 0, the module E ⊗ E⊗n⊗ is an H̆ -comodule via

ρn

([
a0γ (h0) ⊗ · · · ⊗ anγ (hn)

]) = [
a0γ

(
h

(1)
0

) ⊗ · · · ⊗ anγ
(
h(1)

n

)] ⊗k h
(2)
0 · · ·h(2)

n ,

and the map ρ∗ :E ⊗E⊗∗⊗ → (E ⊗ E⊗∗⊗)⊗k H̆ is a morphism of mixed complexes. This last
result implies that if C is a subcoalgebra of H̆ , then

b
(
E ⊗ E⊗n⊗C

) ⊆ E ⊗ E⊗n−1 ⊗C and B
(
E ⊗ E⊗n⊗C

) ⊆ E ⊗ E⊗n+1 ⊗C .

Let (E ⊗ E⊗∗⊗C,bC,BC) be the mixed subcomplex of (E ⊗ E⊗∗⊗, b,B), with modules
E ⊗ E⊗n⊗C . We let HHK,C∗ (E), HCK,C∗ (E), HPK,C∗ (E) and HNK,C∗ (E) denote its Hochschild,
cyclic, periodic and negative homology groups, respectively.

Similarly, for each n � 0, the module X̂n is an H̆ -comodule via

ρn

([
a0γ (h0) ⊗A γ (h1s) ⊗ a1,n−s

]) = [
a0γ

(
h

(1)) ⊗A γ
(
h(1)) ⊗ a1,n−s

] ⊗ h
(2) · · ·h(2)

s ,
0 1s 0
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and the map ρ∗ : X̂∗ → X̂∗ ⊗ H̆ is a morphism of mixed complexes. Consequently, if C is a
subcoalgebra of H̆ , then

d̂n

(
X̂C

n

) ⊆ X̂C
n−1 and D̂n

(
X̂C

n

) ⊆ X̂C
n+1.

Let (X̂C, d̂C, D̂C) be the mixed subcomplex of (X̂, d̂, D̂) with modules X̂C
n . The homotopy

equivalent data introduced in Theorem 2.4 induces by restriction a homotopy equivalent data
between (X̂C, d̂C, D̂C) and (E ⊗E⊗∗⊗C,bC,BC). So, HHK,C∗ (E), HCK,C∗ (E), HPK,C∗ (E) and
HNK,C∗ (E) are the Hochschild, cyclic, periodic and negative homology of (X̂C, d̂C, D̂C), re-
spectively.

Suppose now the cocycle f is invertible. A direct computation shows that the H̆ -coaction of
(X,d,D), obtained by transporting the one of (X̂, d̂, D̂) through θ : (X̂, d̂, D̂) → (X,d,D), is
given by

[
a0γ (h0) ⊗ a1r

] ⊗k h1s �→ [
a0γ

(
h

(1)
0

) ⊗ a1r

] ⊗k h(2)
1s ⊗ h

(2)
0 S

(
h

(1)
1 · · ·h(1)

s

)
h

(3)
1 · · ·h(3)

s .

This implies that if H̆ is cocommutative, then

XC
n =

⊕
r+s=n

XC
rs =

⊕
r+s=n

EC ⊗ A⊗r ⊗ H⊗s

.

For each subcoalgebra C of H̆ , we consider the mixed subcomplex (XC,dC,DC) of (X,d,D)

with modules XC
n . It is clear that θ induces an isomorphism

θC :
(
X̂C, d̂C, D̂C

) → (
XC,dC,DC

)
.

So, HHK,C∗ (E), HCK,C∗ (E), HPK,C∗ (E) and HNK,C∗ (E) are the Hochschild, cyclic, periodic and
negative homology of (XC,dC,DC), respectively.

By the discussion at the beginning of this subsection, if H̆ decomposes as a direct sum of a
family (Ci)i∈I of subcoalgebras, then

(
E ⊗ E⊗∗⊗, b,B

) =
⊕
i∈I

(
E ⊗ E⊗∗⊗Ci , bCi ,BCi

)
(X̂, d̂, D̂) =

⊕
i∈I

(
X̂Ci , d̂Ci , D̂Ci

)
and

(X,d,D) =
⊕
i∈I

(
XCi , dCi ,DCi

)
.

In particular HHK∗ (E) = ⊕
i∈I HHK,Ci∗ (E), etcetera.

In the sequel we use the notations introduced in Sections 3.1 and 3.2.



862 G. Carboni et al. / Advances in Mathematics 223 (2010) 840–872
Lemma 4.1. Assume that H̆ is cocommutative and H is a flat k-module. If C is a subcoalgebra
of H̆ , then for each r, s � 0,

d̃
(
HK

r

(
A,EC

) ⊗k H⊗n) ⊆ HK
r

(
A,EC

) ⊗k H⊗n−1

and

D̃
(
HK

r

(
A,EC

) ⊗k H⊗n) ⊆ HK
r

(
A,EC

) ⊗k H⊗n+1
.

Proof. Left to the reader. �
Proposition 4.2. Assume that H̆ is cocommutative and H is a flat k-module. Let C be a subcoal-
gebra of H̆ and let

˜HK
r

(
A,EC

) := (
HK

r

(
A,EC

) ⊗k H⊗∗
, d̃C∗ , D̃C∗

)
be the submixed complex of ˜HK

r (A,E) with modules HK
r (A,EC)⊗k H⊗n

. There is a convergent
spectral sequence

E2
sr = HCs

( ˜HK
r

(
A,EC

)) ⇒ HCK,C
r+s (E).

Proof. Left to the reader. �
Lemma 4.3. Assume that H̆ is cocommutative. If C is a subcoalgebra of H̆ , then MC

n = EC ⊗
A⊗n⊗ is an H -submodule of Mn for each n � 0. Moreover

∂
(
Hs(H, Mn)

) ⊆ Hs(H, Mn−1) and D
(
Hs(H, Mn)

) ⊆ Hs(H, Mn+1).

Proof. Left to the reader. �
Proposition 4.4. Assume that H̆ is cocommutative. Let C be a subcoalgebra of H̆ and let

˜HK
s

(
H,EC

) := (
Hs

(
H, MC∗

)
, ∂∗, D∗

)
be the submixed complex of ˜HK

s (H,E) with modules Hs(H, MC
n ). There is a convergent spectral

sequence

E 2
rs = HCr

( ˜HK
s

(
H,EC

)) ⇒ HCK,C
r+s (E).

Proof. Left to the reader. �



G. Carboni et al. / Advances in Mathematics 223 (2010) 840–872 863
Appendix A

This appendix is devoted to prove Propositions 2.1, 2.2 and 2.5.

Lemma A.1. We have

σn+1 = −σ 0
0,n+1 ◦ σ−1

n+1 ◦ μn +
n∑

r=0

n−r∑
l=0

σ l
r+l+1,n−r−l .

Proof. By the definition of μ, σ−1 and σ it suffices to prove that

σ l
(
E ⊗A (E/A)⊗

n+1
A ⊗A A

) = 0 for all l � 1.

Assume the result is false and let l � 1 be the minimal upper index for which the above equality

is wrong. Let x ∈ E ⊗A (E/A)⊗
n+1
A ⊗A A. Then

σ l(x) = −
l−1∑
i=0

σ 0 ◦ dl−i ◦ σ i(x) = −σ 0 ◦ dl ◦ σ 0(x).

But, because σ 0(x) ∈ E ⊗A (E/A)⊗
n+1
A ⊗K , from the definition of dl it follows that dl ◦σ 0(x) ∈

Im(σ0). Since σ 0 ◦ σ 0 = 0, this implies that σ l(x) = 0, which contradicts the assumption. �
Lemma A.2. The contracting homotopy σ satisfies σ ◦ σ = 0.

Proof. By Lemma A.1 it will be sufficient to see that σ 0 ◦ σ−1 ◦ μ ◦ σ 0 ◦ σ−1 ◦ μ = 0 and
σ l ◦ σ l′ = 0 for all l, l′ � 0. The first equality follows from the equalities μ ◦ σ 0 = id and σ−1 ◦
σ−1 = 0. We now prove the last one. An inductive argument shows that there exists a map γ l

such that σ l = σ 0 ◦ γ l ◦ σ 0 for all l � 1. So σ l′ ◦ σ l = 0, since clearly σ 0 ◦ σ 0 = 0. �
Remark A.3. The previous lemma implies that ψn(y ⊗ 1) = (−1)nσ ◦ ψ(y) for all n � 1.

Let Lrs ⊆ Urs be the k-submodules of E ⊗A (E/A)⊗s
A ⊗ A⊗r ⊗ E generated by the simple

tensors of the form

1 ⊗A γ (h1s) ⊗ a1r ⊗ 1 and 1 ⊗A γ (h1s) ⊗ a1r ⊗ γ (h),

respectively.
Note that under the identification Xrs 	 E ⊗k H⊗s

k ⊗ A⊗r ⊗ E, the subspaces and Lrs and
Urs of Xrs correspond to k ⊗k H⊗s

k ⊗ A⊗r ⊗ k and k ⊗k H⊗s
k ⊗ A⊗r ⊗ H, respectively.

Lemma A.4. It always holds that dl(Lrs) ⊆ Ur+l−1,s−l , for each l � 2. Moreover

d1(Lrs) ⊆ ELr,s−1 + Ur,s−1.
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Proof. We proceed by induction on l and r . For l = 1 and r � 0, the result follows immediately
from Theorem 1.4. Assume that s � l > 1, r = 0 and that the result for l � 2 is true for every
d

j

r ′s′ ’s with arbitrary r ′, s′ and j < l. Let x = 1 ⊗A γ (h1s) ⊗ 1. By the very definition of dl , the
above inclusion of d1(Lrs), and the inductive hypothesis

dl(x) = −
l−1∑
j=1

σ 0 ◦ dl−j ◦ dj (x)

∈ σ 0 ◦ dl−1(EL0,s−1) +
l−1∑
j=1

σ 0 ◦ dl−j (Uj−1,s−j )

=
l−1∑
j=1

σ 0 ◦ dl−j (Uj−1,s−j ),

where the last equality follows from the fact that

Im
(
σ 0) ⊆ ker

(
σ 0) and dl−1(EL0,s−1) ⊆ Im

(
σ 0),

by the definition of dl−1. Now, by the inductive hypothesis,

dl−j (Uj−1,s−j ) ⊆ Ll−2,s−lE for l − j > 1,

and

d1(Ul−2,s−l+1) ⊆ EUl−2,s−l + Ll−2,s−lE.

Thus, by the definition of σ 0, we have dl(x) ∈ Ul−1,s−l . Suppose now that r > 0 and the result
is true for all the d

j

r ′s′ ’s with arbitrary r ′, s′ and j < l, and for all the dl
r ′s′ ’s with arbitrary s′ and

r ′ < r . Let x = 1 ⊗A γ (h1s) ⊗ a1r ⊗ 1. Arguing as above we see that

dl(x) ≡ −σ 0 ◦ dl ◦ d0(x) (mod Ur+l−1,s−l).

Finally, by the definition of d0 and the inductive hypothesis,

σ 0 ◦ dl ◦ d0(x) ∈ σ 0 ◦ dl(ALr−1,s + Lr−1,sA)

⊆ σ 0(AUr+l−2,s−l + Ur+l−2,s−lA)

⊆ Ur+l−1,s−l ,

which finishes the proof. �
We recursively define γ (h1s) ∗ a1r by:

• γ (h1s) ∗ a1r = a1r if s = 0 and γ (h1s) ∗ a1r = γ (h1s) if r = 0.

• If r, s � 1, then γ (h1s) ∗ a1r = ∑r
(−1)iγ (h1,s−1) ∗ ah

(1)
s ⊗ γ (h

(2)
s ) ⊗ ai+1,r .
i=0 1i
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Let Vn be the k-submodule of E ⊗E⊗n ⊗E generated by the simple tensors 1 ⊗ x1n ⊗ 1 such
that xi ∈ A ∪ H for 1 � i � n.

Recall that H · Im(f ) denotes the minimal k-submodule of A that includes Im(f ) and it is
closed under the weak action of H . We will denote by Cn the E-subbimodule of E ⊗ E⊗n ⊗ E

generated by all the simple tensors 1 ⊗ x1 ⊗ · · · ⊗ xn ⊗ 1 with some xi in H · Im(f ).

Proposition A.5. The map φ satisfies

φ
(
1 ⊗A γ (h1i ) ⊗ a1,n−i ⊗ 1

) ≡ 1 ⊗ γ (h1i ) ∗ a1,n−i ⊗ 1

module F i−1(E ⊗ E⊗n ⊗ E) ∩ Vn ∩ Cn.

Proof. We proceed by induction on n. Let x = 1 ⊗A γ (h1i ) ⊗ a1,n−i ⊗ 1. By item (2) of Theo-
rem 1.4, the fact that dl(x) ∈ Un−i+l−1,i−l (by Lemma A.4), and the inductive hypothesis

ξ ◦ φ ◦ dl(x) ∈ F i−l+1(E ⊗ E⊗n ⊗ E
) ∩ Vn ∩ Cn for all l > 1.

So,

φ(x) ≡ ξ ◦ φ ◦ d0(x) + ξ ◦ φ ◦ d1(x)
(
mod F i−1(E ⊗ E⊗n ⊗ E

) ∩ Vn ∩ Cn

)
.

Moreover, by the definition of d0 and Theorem 1.4

ξ ◦ φ ◦ d0(x) = (−1)nξ ◦ φ
(
1 ⊗A γ (h1i ) ⊗ a1,n−i

)
,

and

ξ ◦ φ ◦ d1(x) = (−1)iξ ◦ φ
(
1 ⊗A γ (h1,i−1) ⊗ a

h
(1)
i

1,n−i ⊗ γ
(
h

(2)
i

))
,

since φ(ELn−s−1,s) ⊆ E ⊗E⊗n−1 ⊗K ⊆ ker(ξ). The proof can be now easily finished using the
inductive hypothesis. �

In the sequel we let Jn denote the E-subbimodule of Xn generated by all the simple tensors

1 ⊗A x1 ⊗A · · · ⊗A xs ⊗ a1 ⊗ · · · ⊗ ar ⊗ 1 (r + s = n),

with some ai in the image of the cocycle f .
The proof of [9, Proposition 1.2.2] is divided in several parts. The first item of the following

result improves part (b).

Lemma A.6. We have:

(1) Let x = 1 ⊗A γ (h1i ) ⊗ ai+1,n. If i < n, then

σ(x) = σ 0(x) = (−1)n ⊗A γ (h1i ) ⊗ ai+1,n ⊗ 1.
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(2) If z = 1⊗A γ (h1,i−1)⊗ai,n−1 ⊗anγ (hn), then σ l(z) ∈ Un−i+l+1,i−1−l for l � 0 and σ l(z) ∈
Jn for l � 1.

(3) If z = 1 ⊗A γ (h1,i−1) ⊗ ai,n−1 ⊗ γ (hn), then σ l(z) = 0 for l � 0.
(4) If z = 1 ⊗A γ (h1,i−1) ⊗ ai,n−1 ⊗ anγ (hn) and i < n, then σ(z) ≡ σ 0(z), module⊕i−2

l=0(Un−l,l ∩ Jn).
(5) If y = 1 ⊗A γ (h1,n−1) ⊗ anγ (hn), then σ(y) ≡ −σ 0 ◦ σ−1 ◦ μ(y) + σ 0(y), module⊕n−2

l=0 (Un−l,l ∩ Jn).
(6) If z = 1 ⊗A γ (h1,n−1) ⊗ γ (hn), then σ(z) = −σ 0 ◦ σ−1 ◦ μ(z).
(7) If z = 1 ⊗A γ (h1,i−1) ⊗ ai,n−1 ⊗ γ (hn) and i < n, then σ(z) = 0.

Proof. We first claim that if l � 1, then σ l(x) = 0. We proceed by induction on l. By the recursive
definition of σ l and the inductive hypothesis

σ l(x) = −
l−1∑
i=0

σ 0 ◦ dl−i ◦ σ i(x) = −σ 0 ◦ dl ◦ σ 0(x) = (−1)n−1σ 0 ◦ dl(x ⊗ 1).

In order to finish the proof of the claim it is sufficient to note that σ 0 ◦ σ 0 = 0 and that, by the
very definition, dl(x ⊗ 1) ∈ Im(σ 0). When i < n − 1 item (1) follows clearly from the claim.
When i = n − 1 it is necessary to see also that σ l ◦ σ−1 ◦ μ(x) = 0, which is immediate, since
σ−1 ◦ μ(x) = 0 by the definitions of μ and σ−1. We will next prove the first part of item (2). By
definition this is clear for σ 0. Assume the result is valid for σ i with i < l. Then, by Lemma A.4,

σ l(z) = −
l−1∑
j=0

σ 0 ◦ dl−j ◦ σ j (z)

⊆
l−1∑
j=0

σ 0 ◦ dl−j (Un−i+j+1,i−1−j )

⊆ σ 0(EUn−i+l,i−1−l ) + σ 0(Un−i+l,i−1−lE)

= Un−i+l+1,i−1−l ,

as desired. We now prove the second part. By Theorem 1.4, the recursive definition of σ l and the
definition of σ 0, we know that

σ l(z) = −
l−1∑
j=0

σ 0 ◦ dl−j ◦ σ j (z) ≡ −σ 0 ◦ d1 ◦ σ l−1(z) (mod Jn).

Since σ 0 ◦ d1 ◦ σ l−1(z) ∈ σ 0 ◦ d1(Un−i+l,i−l ), in order to finish the proof it suffices to see that
σ 0 ◦d1(Un−i+l,i−l ) ⊆ Jn, which is a direct consequence of Theorem 1.4 and the definition of σ 0.
Item (3) follows immediately by induction on l. Items (4) and (5) follow easily from the definition
of σ , item (2) and Lemma A.1. Finally, items (6) and (7) follow from the definition of σ , item (3)
and Lemma A.1. �
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Let V ′
n be the k-submodule of E ⊗E⊗n ⊗E generated by the simple tensors 1 ⊗ x1n ⊗ 1 such

that #({j : xj /∈ A ∪ H}) � 1. (Note that Vn ⊆ V ′
n.)

Let Ri = F i(E ⊗ E⊗n ⊗ E) \ F i−1(E ⊗ E⊗n ⊗ E).

Proposition A.7. The following equalities hold:

(1) ψ(1 ⊗ γ (h1i ) ⊗ ai+1,n ⊗ 1) = 1 ⊗A γ (h1i ) ⊗ ai+1,n ⊗ 1.
(2) If x = 1 ⊗ x1n ⊗ 1 ∈ Ri ∩ Vn and there exists 1 � j � i such that xj ∈ A, then ψ(x) = 0.
(3) If x = 1 ⊗ γ (h1,i−1) ⊗ aiγ (hi) ⊗ ai+1,n ⊗ 1, then

ψ(x) ≡ 1 ⊗A γ (h1,i−1) ⊗A aiγ (hi) ⊗ ai+1,n ⊗ 1

+ 1 ⊗A γ (h1,i−1) ⊗ ai ⊗ a
h

(1)
i

i+1,n ⊗ γ
(
h

(2)
i

)
,

module
⊕i−2

l=0(Un−l,l ∩ Jn).
(4) If x = 1 ⊗ γ (h1,j−1) ⊗ ajγ (hj ) ⊗ γ (hj+1,i ) ⊗ ai+1,n ⊗ 1 with j < i, then

ψ(x) ≡ 1 ⊗A γ (h1,j−1) ⊗A ajγ (hj ) ⊗A γ (hj+1,i ) ⊗ ai+1,n ⊗ 1,

module
⊕i−2

l=0(Un−l,l ∩ Jn).
(5) If x = 1 ⊗ γ (h1,i−1) ⊗ ai,j−1 ⊗ ajγ (hj ) ⊗ aj+1,n ⊗ 1 with j > i, then

ψ(x) ≡ 1 ⊗A γ (h1,i−1) ⊗ aij ⊗ a
h

(1)
j

j+1,n ⊗ γ
(
h

(2)
j

)
,

module
⊕i−2

l=0(Un−l,l ∩ Jn).
(6) If x = 1 ⊗ x1n ⊗ 1 ∈ Ri ∩ V ′

n and there exists 1 � j1 < j2 � i such that xj1 ∈ A and xj2 ∈ H,
then ψ(x) = 0.

Proof. 1) We proceed by induction on n. The case n = 0 is trivial. Suppose n > 0 and the result
is valid for n − 1. Assume first that i < n. By Remark A.3 and the inductive hypothesis,

ψ
(
1 ⊗ γ (h1i ) ⊗ ai+1,n ⊗ 1

) = (−1)nσ ◦ ψ
(
1 ⊗ γ (h1i ) ⊗ ai+1,n

)
= (−1)nσ

(
1 ⊗A γ (h1i ) ⊗ ai+1,n

)
,

and the result follows from item (1) of Lemma A.6. Assume now that i = n. By Remark A.3, the
inductive hypothesis and item (6) of Lemma A.6,

ψ
(
1 ⊗ γ (h1n) ⊗ 1

) = (−1)nσ ◦ ψ
(
1 ⊗ γ (h1n)

)
= (−1)n+1σ 0 ◦ σ−1 ◦ μ

(
1 ⊗A γ (h1,n−1) ⊗ γ (hn)

)
.

The result follows now immediately from the definitions of μ, σ−1 and σ 0.
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2) We proceed by induction on n. Assume first that there exist j1 < j2 < n such that xj1 ∈ A

and xj2 ∈ H. By Remark A.3 and the inductive hypothesis,

ψ(x) = (−1)nσ ◦ ψ(1 ⊗ x1n) = (−1)nσ (0) = 0.

Assume now that x1n = γ (h1,i−1) ⊗ ai,n−1 ⊗ γ (hn). By Remark A.3 and item (1),

ψ(x) = (−1)nσ ◦ ψ(1 ⊗ x1n) = (−1)nσ
(
1 ⊗A γ (h1,i−1) ⊗ ai,n−1 ⊗ γ (hn)

)
,

and the result follows from item (7) of Lemma A.6.
3) We proceed by induction on n. Assume first that i < n. Let

y = 1 ⊗A γ (h1,i−1) ⊗A aiγ (hi) ⊗ ai+1,n,

z = 1 ⊗A γ (h1,i−1) ⊗ ai ⊗ a
h

(1)
i

i+1,n−1 ⊗ γ
(
h

(2)
i

)
an.

By Remark A.3 and the inductive hypothesis,

ψ(x) = (−1)nσ ◦ ψ
(
1 ⊗ γ (h1,i−1) ⊗ aiγ (hi) ⊗ ai+1,n

) ≡ (−1)nσ (y + z),

module σ(
⊕i−2

l=0(Un−1−l,l ∩ Jn−1)A). So, by items (1) and (4) of Lemma A.6,

ψ(x) ≡ (−1)nσ 0(y + z),

module
⊕i−2

l=0(Un−l,l ∩Jn)+σ 0(
⊕i−2

l=0(Un−1−l,l ∩Jn−1)A). Using the definition of σ 0 we obtain
immediately the desired expression for ψ(x). Assume now that i = n. Let

y = 1 ⊗ γ (h1,n−1) ⊗ anγ (hn) and z = 1 ⊗A γ (h1,n−1) ⊗ anγ (hn).

By Remark A.3, item (1) of the present proposition and item (5) of Lemma A.6,

ψ(x) = (−1)nσ ◦ ψ(y) = (−1)nσ (z) ≡ (−1)n+1σ 0 ◦ σ−1 ◦ μ(z) + (−1)nσ 0(z),

module
⊕n−2

l=0 (Un−l,l ∩ Jn). The established formula for ψ(x) follows now easily from the defi-
nitions of μ, σ−1 and σ 0.

4) We proceed by induction on n. When i < n the same argument that in item (3) works.
Assume now that j < i − 1 and i = n. Let

y = 1 ⊗ γ (h1,j−1) ⊗ ajγ (hj ) ⊗ γ (hj+1,n),

z = 1 ⊗A γ (h1,j−1) ⊗A ajγ (hj ) ⊗A γ (hj+1,n−1) ⊗ γ (hn).

By Remark A.3 and the inductive hypothesis,

ψ(x) = (−1)nσ ◦ ψ(y) ≡ (−1)nσ (z),

module σ(
⊕n−3

(Un−1−l,l ∩ Jn−1)E). So, by items (4) and (6) of Lemma A.6,
l=0



G. Carboni et al. / Advances in Mathematics 223 (2010) 840–872 869
ψ(x) ≡ (−1)n+1σ 0 ◦ σ−1 ◦ μ(z),

module
⊕n−4

l=0 (Un−l,l ∩Jn)+σ 0(
⊕n−3

l=0 (Un−1−l,l ∩Jn−1)E). The formula for ψ(x) follows now
easily from the definitions of μ, σ−1 and σ 0. Assume finally that j = i − 1 and i = n. Let

y = 1 ⊗A γ (h1,n−2) ⊗A an−1γ (hn−1) ⊗ γ (hn),

z = 1 ⊗A γ (h1,n−2) ⊗ an−1 ⊗ γ (hn−1)γ (hn).

By Remark A.3 and item (3),

ψ(x) = (−1)nσ ◦ ψ
(
1 ⊗ γ (h1,n−2) ⊗ an−1γ (hn−1) ⊗ γ (hn)

) ≡ (−1)nσ (y + z),

module σ(
⊕n−3

l=0 (Un−1−l,l ∩ Jn−1)E). So, by the fact that σ 0(z) ∈ U2,n−2 ∩ Jn, and items (4)
and (6) of Lemma A.6, we know that

ψ(x) ≡ (−1)n+1σ 0 ◦ σ−1 ◦ μ(y),

module
⊕n−2

l=0 (Un−l,l ∩Jn)+σ 0(
⊕n−3

l=0 (Un−1−l,l ∩Jn−1)E). The formula for ψ(x) follows now
easily from the definitions of μ, σ−1 and σ 0.

5) We proceed by induction on n. Let

y = 1 ⊗ γ (h1,i−1) ⊗ ai,j−1 ⊗ ajγ (hj ) ⊗ aj+1,n,

z = 1 ⊗A γ (h1,i−1) ⊗ aij ⊗ a
h

(1)
j

j+1,n−1 ⊗ γ
(
h

(2)
j

)
an.

By Remark A.3 and item (1) or the inductive hypothesis (depending on j = n or j < n),

ψ(x) = (−1)nσ ◦ ψ(y) ≡ (−1)nσ (z),

module σ(
⊕i−2

l=0(Un−l−1,l ∩ Jn−1)A). Thus, by item (4) of Lemma A.6,

ψ(x) = (−1)nσ 0 ◦ ψ(y) ≡ (−1)nσ 0(z),

module
⊕i−2

l=0(Un−l,l ∩ Jn) + σ 0(
⊕i−2

l=0(Un−l−1,l ∩ Jn−1)A). The result is obtained now imme-
diately using the definition of σ 0.

6) We proceed by induction on n. By Remark A.3 and item (2) or the inductive hypothesis
(depending on xn /∈ A ∪ H or xn ∈ A ∪ H),

ψ(x) = (−1)nσ ◦ ψ(1 ⊗ x1n) = (−1)nσ (0) = 0,

as desired. �
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Lemma A.8. The following equalities hold:

(1) If x = 1 ⊗ γ (h1i ) ⊗ a1,n−i ⊗ 1, then

φ ◦ ψ(x) ≡ 1 ⊗ γ (h1i ) ∗ a1,n−i ⊗ 1

module F i−1(E ⊗ E⊗n ⊗ E) ∩ Vn.
(2) If x = 1 ⊗ x1n ⊗ 1 ∈ Ri ∩ Vn and there exists 1 � j � i such that xi ∈ A, then φ ◦ ψ(x) = 0.
(3) If x = 1 ⊗ γ (h1,i−1) ⊗ aiγ (hi) ⊗ ai+1,n ⊗ 1, then

φ ◦ ψ(x) ≡ a
h(1)

1,i−1
i ⊗ (

γ
(
h(2)

1,i−1

) ⊗ γ (hi)
) ∗ ai+1,n ⊗ 1

+ 1 ⊗ γ (h1,i−1) ∗ (
ai ⊗ a

h
(1)
i

i+1,n

) ⊗ γ
(
h

(2)
i

)
,

module F i−1(E ⊗ E⊗n ⊗ E) ∩ AVn + F i−2(E ⊗ E⊗n ⊗ E) ∩ VnH.
(4) If x = 1 ⊗ γ (h1,j−1) ⊗ ajγ (hj ) ⊗ γ (hj+1,i ) ⊗ ai+1,n ⊗ 1 with j < i, then

φ ◦ ψ(x) ≡ a
h(1)

1,j−1
j ⊗ (

γ
(
h(2)

1,j−1

) ⊗ γ (hji)
) ∗ ai+1,n ⊗ 1,

module F i−1(E ⊗ E⊗n ⊗ E) ∩ AVn + F i−2(E ⊗ E⊗n ⊗ E) ∩ VnH.
(5) If x = 1 ⊗ x1n ⊗ 1 ∈ Ri ∩ V ′

n and there exists 1 � j � i such that xj ∈ A, then φ ◦ ψ(x) ∈
F i−1(E ⊗ E⊗n ⊗ E) ∩ VnH.

Proof. Item (1) follows from item (1) of Proposition A.7 and Proposition A.5, and item (2)
follows from item (2) of Proposition A.7. We will next prove item (3). By item (3) of Proposi-
tion A.7,

φ ◦ ψ(x) ≡ φ
(
a

h(1)
1,i−1

i ⊗A γ
(
h(2)

1,i−1

) ⊗A γ (hi) ⊗ ai+1,n ⊗ 1
)

+ φ
(
1 ⊗A γ (h1,i−1) ⊗ ai ⊗ a

h
(1)
i

i+1,n ⊗ γ
(
h

(2)
i

))
,

module φ(
⊕i−2

l=0 Un−l,l ). So, by Proposition A.5,

φ ◦ ψ(x) ≡ a
h(1)

1,i−1
i ⊗ (

γ
(
h(2)

1,i−1

) ⊗ γ (hi)
) ∗ ai+1,n ⊗ 1

+ 1 ⊗ γ (h1,i−1) ∗ (
ai ⊗ a

h
(1)
i

i+1,n

) ⊗ γ
(
h

(2)
i

)
,

module F i−1(E ⊗E⊗n ⊗E)∩AVn +F i−2(E ⊗E⊗n ⊗E)∩VnH. We leave the demonstrations
of items (4) and (5) to the reader. �
Proposition A.9. If x = 1 ⊗ x1n ⊗ 1 ∈ Ri ∩ V ′ , then ω(x) ∈ F i(E ⊗ E⊗n+1 ⊗ E) ∩ Vn+1.
n
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Proof. We first claim that if x = 1 ⊗ x1n ⊗ 1 ∈ Ri ∩ Vn, then ω(x) = 0. For n = 1 this is imme-
diate, since ω1 = 0 by definition. Assume that n > 1 and the claim holds for n − 1. Then,

ω(x) = ξ
(
φ ◦ ψ(x) − (−1)nω(1 ⊗ x1n)

) = ξ ◦ φ ◦ ψ(x) = 0,

where the last equality follows from the facts that φ ◦ ψ(x) ∈ Vn (by items (1) and (2) of
Lemma A.8) and Vn ⊆ ker(ξ). We now prove the proposition by induction on n. This is triv-
ial for n = 1 since w1 = 0. Assume that n > 1 and the proposition is true for n − 1. Let
x = 1 ⊗ x1n ⊗ 1 ∈ Ri ∩ V ′

n. Since

ω(x) = ξ
(
φ ◦ ψ(x) − (−1)nω(1 ⊗ x1n)

)
,

and, by items (3)–(5) of Lemma A.8,

ξ ◦ φ ◦ ψ(x) ∈ F i
(
E ⊗ E⊗n+1 ⊗ E

) ∩ Vn+1,

in order to finish the proof it suffices to check that

ξ ◦ ω(1 ⊗ x1n) ∈ F i
(
E ⊗ E⊗n+1 ⊗ E

) ∩ Vn+1.

By the inductive hypothesis and the claim:

• If xn ∈ A, then ω(1 ⊗ x1n) ∈ F i(E ⊗ E⊗n ⊗ E) ∩ VnA.
• If xn ∈ H, then ω(1 ⊗ x1n) ∈ F i−1(E ⊗ E⊗n ⊗ E) ∩ VnH.
• If xn /∈ A ∪ H, then ω(1 ⊗ x1n) = 0.

In all these cases the required inclusion is true. �
Proofs of Propositions 2.1, 2.2 and 2.5. They follow immediately from Propositions A.5, A.9
and A.7, respectively. �
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