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Geometry of unitary orbits

of oblique projections
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Abstract. We study those orbits of oblique projections under the action of

the full unitary group of a Hilbert space H, which are submanifolds of B(H).

We also consider orbits under the Schatten unitaries, and obtain a partial

characterization of the submanifold condition for these orbits. Finsler metrics

are introduced, and the minimality of metric geodesics is investigated.

1. Introduction

Given a Hilbert space H, let B(H) be the C∗-algebra of all bounded linear

operators on H, G(H) the group of invertible operators, U(H) the subgroup of

unitary operators, and Bah(H) the space of skew-adjoint operators. An oblique

projection is an idempotent Q ∈ B(H). This paper is devoted to a geometric study

of the unitary orbit of a fixed oblique projection Q:

UQ = {UQU∗ : U ∈ U(H)}.

Of course, UQ consists of oblique projections and it is a proper part of the similarity

orbit

SQ = {GQG−1 : G ∈ G(H)}.

Observe that UQ is a bounded subset of SQ: the norm of every Q′ in UQ is ‖Q‖.
On the other side, except in the trivial cases where Q = 0 or 1, the similarity

orbit is unbounded. If the literature on similarity orbits of oblique projections
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is very rich, the unitary orbit UQ has been less studied, perhaps because of the

“odd nature” of UQ: in some sense, one expects that the unitary group acts on

self-adjoint elements, and oblique projections are rarely self-adjoint. Of course,

if Q∗ = Q, i.e., Q is an orthogonal projection, then the natural unitary orbit of

Q has deserved much attention. It should be observed that unitary equivalence

is in general a difficult problem, even for matrices. However, Jacques Dixmier

proved that the study of UQ is related to the problem of unitary equivalence of

pair of closed subspaces, at least if the pair is in generic position (“position p”, in

French). Raeburn and Sinclair could simplify Dixmier’s proof and found a way for

avoiding the extra hypothesis on generic positions. We shall enlarge this comment

in Section 2, where, after describing the unitary orbit of Q, we consider the problem

of characterizing the oblique projections Q such that UQ is a submanifold of B(H).

It turns out that this occurs if and only if the spectrum of Q∗Q is finite. This is

done in Section 3, using some fine results by G. K. Pedersen. In Section 4, we define

a reductive structure and in Section 5 we define a Finsler metric on UQ. In the main

result of this section we prove the minimality of a large family of geodesics, where

minimal means that, in the length notion defined by the Finsler metric, geodesics

are short. The two last sections contain a description of the action of Schatten

unitary groups and its orbits, and some minimality results in these smaller orbits.

2. The unitary orbit of Q

Given an oblique projection Q ∈ B(H), the unitary orbit of Q is the set

of projections which are unitary similar to Q, i.e. UQ = {UQU∗ : U ∈ U(H)}.
Observe that the problem of characterizing this set is equivalent to the problem of

finding the unitary invariants of the pair of subspaces {R(Q), N(Q)}, where R(Q)

and N(Q) are the range and the nullspace of Q, respectively; or, equivalently, to

find the pairs of orthogonal projections {P1, P2} such that there exists a unitary

operator U ∈ B(H) such that P1 = UPR(Q)U
∗ and P2 = UPN(Q)U

∗. Two closed

subspaces M and N of H are in generic position if

M∩N =M∩N⊥ =M⊥ ∩N =M⊥ ∩N⊥ = {0}.

In [10], J. Dixmier proved that if the closed subspacesM and N of H are in generic

position, then the pair of subspaces {M′,N ′} is unitarily equivalent to the pair

{M,N} (i.e. there exists U ∈ U(H) such that U(M) = M′ and U(N ) = N ′) if

and only if the operators PM +PN and PM′ +PN ′ are unitarily equivalent. See a

different proof by P. R. Hamos [15].
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Later, I. Raeburn and A. M. Sinclair [23] generalized this result to subspaces

which are not necessarily in generic position. More precisely, they proved that if

{P,Q} and {P ′, Q′} are two pairs of orthogonal projections and λ > 1, then there

is a unitary operator U such that UPU∗ = P ′ and UQU∗ = Q′ if and only if the

positive operator λP +Q is unitarily equivalent to λP ′ +Q′.

We present here an alternative description of the unitary orbit of an oblique

projection Q0 ∈ B(H). Denote P0 = PR(Q0). In matrix form

P0 =

(
1 0

0 0

)
and Q0 =

(
1 B

0 0

)
.

Note that two oblique projections Q0 and Q1,

Q0 =

(
1 B0

0 0

)
R(Q0)

R(Q0)
⊥ and Q1 =

(
1 B1

0 0

)
R(Q1)

R(Q1)
⊥

are unitarily equivalent if and only if there exist surjective isometries U01:R(Q0)→
R(Q1) and U10:R(Q0)

⊥ → R(Q1)
⊥ such that U01B0 = B1U10. Indeed, if Q1 =

UQ0U
∗, then also P1 = UP0U

∗. In particular, this implies that U maps R(Q0)

onto R(Q1), and the same for the orthogonal complements, i.e.,

U01 = P1UP0:R(Q0)→ R(Q1) and U10 = (1− P1)U(1− P0):R(Q0)
⊥ → R(Q1)

⊥

are isometries. On the other hand, also the matrices

(
0 B0

0 0

)
R(Q0)

R(Q0)
⊥ and

(
0 B1

0 0

)
R(Q1)

R(Q1)
⊥

are unitarily equivalent by means of the same U . As straightforward matrix com-

putation shows that U01B0U10 = B1.

Conversely, if such isometries U01 and U01 exist, it implies that P0 and P1 are

unitarily equivalent by means of U = U01 ⊕ U10, which therefore also implements

the equivalence between Q0 and Q1.

For canonical forms of projections in finite dimensional spaces, which are

unitarily equivalent to a fixed oblique projection, the reader is referred to the

papers by Dokovic [12] and Ikramov [17].
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3. A smooth structure for the unitary orbit of Q0

We shall characterize first the oblique projections Q such that their unitary

orbits are complemented submanifolds of B(H), in terms of the operators B. We

fix some notation.

Let UQ0 = {UQ0U
∗ : U ∈ U(H)}. Denote by πQ0 the map

πQ0 :U(H)→ UQ0 , πQ0(U) = UQ0U
∗.

Theorem 3.1. The orbit UQ0 ⊂ B(H) is a real analytic submanifold if and only

if the spectrum of Q∗
0Q0 is finite. In that case, the map πQ0 is a real analytic

submersion.

Proof. First note that the condition that the spectrum of Q∗
0Q0 is finite is equiv-

alent to the condition that the spectrum of B∗B (or of BB∗) is finite. Indeed

Q0Q
∗
0 =

(
1 +BB∗ 0

0 0

)
,

and thus the spectrum of Q0Q
∗
0 (or of Q∗

0Q0) is finite if and only if the spectrum

of BB∗ (or B∗B) is finite.

In [4] it was shown that the unitary orbit of an operator is a submanifold

of B(H) if and only if the C∗-algebra C∗(Q0) generated by 1 and Q0 is finite

dimensional. Also it was shown that in this case the map πQ0 is a submersion.

Note that P0 ∈ C∗(Q0); indeed, it is a known fact that P0 can be obtained,

for instance, as P0 = Q0Q
∗
0(1 + (Q0 −Q∗

0)
2)−1. Then

(
0 B

B∗ 0

)
= Q0(1− P0) + (1− P0)Q

∗
0 = D ∈ C∗(Q0).

Thus (
BB∗ 0

0 B∗B

)
= D2 ∈ C∗(Q0).

If C∗(Q0) is finite dimensional, any self-adjoint element in C∗(Q0) must have finite

spectrum (otherwise, by a simple spectral calculus argument, one can find infinitely

many linearly independent elements in C∗(Q0)). Thus, since σ(D2) = σ(BB∗) ∪
σ(B∗B) (and σ(BB∗) ∪ {0} = σ(B∗B) ∪ {0}), it follows that σ(B∗B) is finite.

In [18], it was shown that the algebra generated by an idempotent is generated

by two self-adjoint projections, in our case

P0 , and R =

(
1− CC∗ (1− CC∗)1/2C

C∗(1− CC∗)1/2 C∗C

)
,
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where C = 1
2‖B‖B. In [20], G. K. Pedersen showed that the C∗-algebra C∗(Q0),

generated by two projections P0 and R is determined by σ = σ(P0RP0) = σ(1 −
CC∗), which is finite in our case. Let σ′ = σ−{0} and σ′′ = σ−{1}. In Theorems

3.2 and 3.4 of [20], Pedersen proved that if

A =

( C0(σ′) C0(σ′′)
C0(σ′′) C0(σ′′)

)
,

then:

(1) If 0 /∈ σ̄′, then C∗(Q0) is isomorphic to A, A⊕ C or A⊕ C⊕ C.

(2) If 0 ∈ σ̄′, then

C∗(Q0) ≃
( C(σ) C0(σ′′)
C0(σ′′) C0(σ − {1})

)
.

Since σ is a finite set, all these algebras are finite dimensional.

Remark 3.2. Note that if C∗(Q0) is finite dimensional, then B is of the form

B =

n∑

i=1

λiV Pi,

where Pi are mutually orthogonal projections and V is a partial isometry with

initial space
∑n
i=1 Pi. For this class of oblique projections, unitary equivalence is

determined by the numbers λ1, . . . , λn and their multiplicities (i.e., the ranks of

the projections Pi)

Examples of oblique projections such that UQ0 is a submanifold are obtained

if, for instance B0 is a partial isometry. If one fixes the range P0, an oblique

projection Q (with a partial isometry in the 12 entry (in terms of the decomposition

H = H0 ×H0) lies in the unitary orbit of Q0 if and only if the partial isometries

B0 and B are unitarily equivalent in the sense of [1]: there exist unitaries U,W

acting in H0 such that B = UB0W
∗.

In general, if C∗(Q0) is not finite dimensional, UQ0 can be endowed with the

quotient topology and a quotient smooth structure which makes πQ0 a submersion.
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Remark 3.3. Let Q0 be an arbitrary oblique projection. Then the Banach–Lie

algebra of GQ0 is complemented in the Banach–Lie algebra of U(H). Indeed, GQ0

consists of unitaries which commute with Q0. If a unitary operator commutes with

Q0, then it also commutes with Q∗
0. Thus GQ0 is the unitary group of C∗(Q0)

′,
the commutant of C∗(Q0). As seen above, C∗(Q0) is a C∗-algebra generated by

two orthogonal projections. It is a known result that such algebras are nuclear

(see for instance [24]). Therefore its commutant is injective, i.e. there exists a

conditional expectation E:B(H) → C∗(Q0)
′. Since E is ∗-preserving, its restric-

tion to Bah(H), the Banach–Lie algebra of U(H), is an idempotent map onto the

Banach–Lie algebra of GQ0 , and thus this algebra is complemented in Bah(H).

Following the notation in [6],

Definition 3.4. A subgroup G ⊂ U(H) is called an algebraic subgroup of degree

≤ n if there exists a family of polynomials P in B(H) in two variables of degree

≤ n such that

G = {U ∈ U(H) : p(U,U∗) = 0 for all p ∈ P}.

A polynomial p in B(H) in two variables is a sum p(A,B) =
∑k
i=1 ψk(A,B), A,B ∈

B(H) where each ψi is given by a monomial of degree di ≤ n. A monomial ψ of

degree d is given by a d-multilinear map

ρ: (B(H)2)d → B(H),

by means of ψ(A,B) = ρ((A,B), . . . , (A,B)).

In the case of UQ0 , the isotropy subgroup of Q0 is GQ0 = {U ∈ U(H) :

UQ0U
∗ = Q0}. Consider the polynomial p(A,B) = AQ0B − Q0. Then clearly

GQ0 is an algebraic subgroup of degree ≤ 1. Thus one can apply Theorems 4.18

and 4.19 in [6] to obtain

Proposition 3.5. The unitary orbit UQ0 , endowed with the quotient topology

U(H)/GQ0 , has a structure of real analytic manifold, and the map πQ0 is a real

analytic submersion.

In any case, the tangent spaces of UQ0 at Q1

(1) (TUQ0)Q1 = {XQ1 −Q1X : X ∈ B(H)ah}.
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If UQ0 is a submanifold, the space is considered with the norm topology. Other-

wise, it should be considered with the quotient norm topology: ‖XQ1 − Q1X‖ =

inf{‖Y ‖ ∈ Y ∈ B(H)ah : Y Q1 −Q1Y = XQ1 −Q1Y }.

4. Reductive structure

The isotropy group GQ of the action is the unitary group of the commutant of

C∗(Q). Suppose that C∗(Q) is finite dimensional. Then there exist Hilbert spaces

J1, . . . ,Jk and positive integers n1, . . . , nk such that

(2) H ≃ J n1
1 ⊕ · · · ⊕ J nk

k ,

and

C∗(Q) ≃ (Mn1(C)⊗ IdJ1)⊕ · · · ⊕ (Mnk
(C)⊗ IdJk

).

That is, in terms of the decomposition 2 above, an element A ∈ C∗(Q) has a matrix

of the form

A =




A1 0 0 · · · 0

0 A2 0 · · · 0

0 0 A3 · · · 0
...

. . .
...

0 · · · 0 Ak




J n1
1

J n2
2

J n3
3

J nk

k

,

where each entry Al is a scalar matrix of the form Al = (ali,j)1≤i,j≤nl
· IJl

.

Therefore the isotropy algebra GQ, which is the skew-adjoint part of the com-

mutant of C∗(Q), consists of matrices of the form

B =




B1 0 0 · · · 0

0 B2 0 · · · 0

0 0 B3 · · · 0
...

. . .
...

0 · · · 0 Bk




J n1
1

J n2
2

J n3
3

J nk

k

,

where each Bl is a skew-adjoint operator in J nl

l , whose nl × nl matrix is of the

form

Bl =




B′
l 0 0 · · · 0

0 Bl 0 · · · 0

0 0 B′
l · · · 0

...
. . .

...

0 · · · 0 B′
l



.
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A reductive structure consists of a supplement KQ for the isotropy algebra GQ
which is inner invariant for the action of GQ: VKQV ∗ = KQ. In view of the

matrix form of GQ, clearly it amounts to finding a supplement for the skew-adjoint

operators bl above, in each diagonal block (acting in J nl

l ). Consider the space Kl
of skew-adjoint operators in J nl

l given by

(3) Kl = {Y = (Yi,j)1≤i,j≤nl
∈ B(J nl

l ) : Y ∗ = −Y and

nl∑

i=1

Yii = 0}.

Denote Hl = J nl

l . Thus H = H1 ⊕ · · · ⊕ Hk. Then the supplement KQ is

KQ = {Z = (Zi,j)1≤i,j≤k ∈ B(H) : Z∗ = −Z and Zl,l ∈ Kl , 1 ≤ l ≤ k}.

Straightforward matrix computations show that

B(H)ah = GQ ⊕KQ,
(4) VKQV ∗ = KQ for any v ∈ GQ.

If Q1 = UQU∗ ∈ UQ, put KQ1 = UKQU∗. It is apparent that KQ1 is a supplement

for GQ1 . The definition of KQ1 does not depend on the choice of U due to (4).

A reductive structure defines a linear connection in UQ; this is a standard fact

in the theory of homogeneous spaces (see [16] as a classical reference, or [19] where

the specific case of homogeneous spaces of operators is treated). For instance, if

Q1 ∈ UQ and XQ − QX ∈ (TUQ)Q1 , then there is a unique Z ∈ KQ1 such that

ZQ1 − Q1Z = XQ1 − Q1X. Then the unique geodesic δ of the connection with

δ(0) = Q1 and δ̇(0) = XQ1 −Q1X is given by

δ(t) = etZQ1e
−tZ .

5. A Finsler metric for UQ

Following ideas and methods in [13], we shall consider the following norms in

the tangent spaces of UQ. If Q1 ∈ UQ and v = XQ1 −Q1X ∈ (TUQ)Q1 , put

(5) ‖v‖Q1 = inf{‖Y ‖ : Y ∗ = −Y and Y Q−QY = v}.

Each Y ∈ B(H)ah such that v = Y Q − QY is called a lifting of v. A lifting Z of

v is called minimal if it achieves the infimum above, i.e. ‖Z‖ = ‖z‖Q1 . A simple

argument shows that minimal liftings always exist. Indeed, a minimal lifting is
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obtained as a weak limit point of a minimizing sequence, as follows. Let Y ∗
n = −Yn

with YnQ1 −Q1Yn = v such that ‖Yn‖ → ‖v‖Q1 . The sequence {Yn} is bounded,

therefore there exists a subsequence, still denoted Yn, which is convergent in the

weak operator topology, 〈Ynξ, η〉 → 〈Zξ, η〉 for all ξ, η ∈ H. Note that

v = YnQ1 −Q1Yn
wot→ ZQ1 −Q1Z,

and thus ZQ1 − Q1Z = v. Also it is clear that Z∗ = −Z. For ǫ > 0 fix a unit

vector ξ such that |〈Zξ, ξ〉| ≥ ‖Z‖ − ǫ. Then

‖Yn‖ ≥ |〈Ynξ, ξ〉| → |〈Zξ, ξ〉| ≥ ‖Z‖ − ǫ,

and therefore taking limits ‖Z‖ ≥ ‖v‖Q1 ≥ ‖Z‖ − ǫ. We remark that the minimal

lifting may not be unique.

Minimal liftings are relevant due to the following result by Mata, Durán and

Recht [13]:

Theorem 5.1. Let Q1 ∈ UQ and v ∈ (TUQ)Q1 , with Z ∈ B(H)ah a minimal lifting

of v. Then the curve δ(t) = etZQ1e
−tZ has minimal length for |t| ≤ π

2‖Z‖ = π
2‖v‖Q1

.

In general, minimal liftings are not easy to compute (see for instance [3] as

an example of the complexity of this problem even in finite dimensions). Note

also that the metric geodesic (or curve that has minimal length) described above

looks formally similar to the geodesic of the linear connection in UQ described in

the previous section. However, the exponents Z in both curves are different. It

is seldom the case that the geodesics of the linear connection are minimal with

respect to the Finsler metric given by the operator norm (see [3]). One remarkable

exception to this observation is the homogeneous space of self-adjoint projections

of a C∗-algebra ([8], [21]): in this case minimal liftings are unique and coincide

with the elements in the reductive supplement of the isotropy Lie algebra.

Let us consider a simple case of an oblique projection, where more can be said

on the minimal liftings of certain special tangent directions. Let H = H0×H0 and

Q be

Q =

(
1 1

0 0

) H0

H0
.

Note that the unitary orbit of this Q consists of all oblique projections

Q1 =

(
1 B

0 0

)
R(Q1)

Q(Q1)
⊥
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with B:R(Q1)
⊥ → R(Q1) isometric.

The isotropy algebra GQ and the reductive supplement KQ consist of matrices

which are of the form, respectively,

X =

(
D 0

0 D

)
and Z =

(
A B

−B∗ −A

)
,

with A,D self-adjoint in H0. We shall say that a tangent vector v ∈ (TUQ)Q is

symmetric if, in the corresponding element Z ∈ KQ (characterized by ZQ−QZ =

v), B is skew-adjoint. This condition means that v has a lifting Z of the form

Z =

(
A B

B −A

)
,

with all entries skew-adjoint. A vector v tangent at Q1 = UQU∗ is called symmet-

ric, if U∗vU (which is tangent at Q) is symmetric in the above sense. Note that

this does not depend on the choice of U .

Let us show that symmetric tangent vectors have reductive symbols Z which

are minimal liftings. It suffices to show this fact at Q.

Lemma 5.2. Let v = ZQ−QZ be symmetric, Z ∈ KQ with B∗ = −B. Then Z is

a minimal lifting of v. Namely, ‖Z‖ ≤ ‖Z +X‖, for all X ∈ GQ.

Proof. Multiplying all operators by i, enables one to reason with self-adjoint op-

erators. Suppose then that all operators concerned are self-adjoint (and we use the

same letters to name them). Let ξ = (ξ1, ξ2) ∈ H0 ×H0 with ‖ξ‖ = 1. Then

〈Zξ, ξ〉 = 〈Aξ1, ξ1〉 − 〈Aξ2, ξ2〉+ 2Re〈Bξ2, ξ1〉.

Note that if η = (−ξ2, ξ1), then ‖η‖ = 1, and

〈Aη, η〉 = −〈Aξ, ξ〉.

The key fact here is that B∗ = B. It follows that both −‖Z‖ and +‖Z‖ belong

to the spectrum of Z. Let ξn = (ξn1 , ξ
n
2 ) ∈ H0 × H0 with ‖ξn‖ = 1, such that

〈Zξn, ξn〉 → ‖Z‖. Taking ηn = (−ξn2 , ξn1 ) as above, one has that 〈Zηn, ηn〉 →
−‖Z‖. If X ∈ GQ, by the remarks above,

〈(Z +X)ξn, ξn〉 = 〈Zξn, ξn〉+ 〈Dξn1 , ξn1 〉+ 〈Dξn2 , ξn2 〉.
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Also note that 〈Xηn, ηn〉 = 〈Xξn, ξn〉 = rn, which is a bounded sequence in R.

Consider a convergent subsequence of these numbers, and denote it again by rn,

with rn → r0. Then

‖Z +X‖ ≥ 〈(Z +X)ξn, ξn〉 → ‖Z‖+ r0,

and

−‖Z +X‖ ≤ 〈(Z +X)ηn, ηn〉 → −‖Z‖+ r0,

Therefore if either r0 ≥ 0 or r0 < 0, one has that ‖Z +X‖ ≥ ‖Z‖.

Let us denote by ST (UQ)Q1 the space of symmetric tangent vectors. Appar-

ently, it is a closed complemented subspace of T (UQ)Q1 . Indeed, note that if we

denote by δQ1 the differential of the map πQ1 :U(H) → UQ, πQ1(U) = UQ1U
∗ at

the identity 1,

δQ1 :B(H)ah → (TUq)Q1 , δQ1(X) = XQ1 −Q1X,

then N(δQ1) = GQ1 and therefore

δQ1 |KQ1
:KQ1 → (TUQ)Q1

is an isomorphism (its inverse is usually called the 1-form of the linear connection

[16], [19]). Note that ST (UQ)Q1 is the image of the subspace {Z ∈ KQ1 : B∗ =

−B} ⊂ KQ1 under this isomorphism. An arbitrary Z ∈ KQ1 can be decomposed

as

Z =

(
A B

−B∗ −A

)
=

(
A Bah
Bah −A

)
+

(
0 Bh
−Bh 0

)
= ZS + ZD,

where Bah and Bh are skew-adjoint and self-adjoint parts of B, respectively. The

image of all matrices of the same form as the second summand under δQ1 is a

supplement for S(TUq)Q1 , which we shall call D(TUq)Q1 . Let us show that the

liftings of vectors in D(TUq)Q1 are also minimal.

Lemma 5.3. Let v ∈ D(TUq)Q1 , v = ZQ1 −Q1Z with Z = ZD as above. Then for

all X ∈ GQ1 ,

‖Z‖ ≤ ‖Z +X‖.
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Proof. The proof is similar as in the previous case, even more simple. Again

suppose the operators Z and X are self-adjoint. If ξ = (ξ1, ξ2) ∈ H, then

〈Zξ, ξ〉 = 2Re〈Bξ2, ξ1〉,

and clearly the set of these values is symmetric with respect to the origin (for

instance, if ξ′ = (−ξ1, ξ2), 〈Zξ′, ξ′〉 = −〈Zξ, ξ〉), and the proof follows as in the

previous case.

We may summarize these facts in the following:

Theorem 5.4. Let Q1 ∈ Uq and v ∈ (TUq)Q1 . Then if either v lies in S(TUq)Q1 or

its supplement D(TUq)Q1 , then the unique geodesic of the connection with δ(0) = Q1

and δ̇(0) = v, given by δ(t) = etZQ1e
−tZ , for Z ∈ KQ1 (ZQ1 − Q1Z = V ), is

minimal for all t such that |t| ≤ π
2‖v‖Q1

= π
2‖Z‖ .

6. The action of the Schatten unitary groups

In this section we consider the former action restricted to the p-Schatten

unitary group Up(H), for a fixed 1 ≤ p ≤ ∞

Up(H) = {U ∈ U(H) : U − 1 ∈ Bp(H)},

where Bp(H) = {X ∈ B(H) : Tr(|X|p) < ∞} and B∞(H) denote the ideals of p-

Schatten and compact operators, respectively. Denote by Up,Q the restricted orbit

of Q,

Up,Q = {UQU∗ : U ∈ Up(H)}.
Note that Up,Q = {UQU∗ : U ∈ Up(H)} ⊂ Q + Bp(H) = {Q + X : X ∈ Bp(H)}.
Indeed,

UQU∗ = Q+ (U − 1)QU∗ + UQ(U∗ − 1) + (U − 1)Q(U∗ − 1) ∈ Q+ Bp(H).

This space Q + Bp(H) can be endowed with the p-metric: d(Q + X,Q + Y ) =

‖X − Y ‖p. It can be regarded as an affine Banach space. Adapting techniques

from [4], it can be proved that if C∗(Q) is finite dimensional, then the restricted

orbit Up,Q is a submanifold of Q+ Bp(H).

First we need the following lemmas. The first was stated in the appendix

of [22].
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Lemma 6.1. Let G be a Banach–Lie group acting smoothly on a Banach space X.

For a fixed x ∈ X, denote by πx:G → X the smooth map πx(g) = g · x. Suppose

that

(1) πx is an open mapping, when regarded as a map from G onto the orbit {g ·x :

g ∈ G} of x (with the relative topology of X).

(2) The differential d(πx)1: (TG)1 → X splits: its kernel and range are closed

complemented subspaces.

Then the orbit {g · x : g ∈ G} is a smooth submanifold of X, and the map πx:G→
{g · x : g ∈ G} is a smooth submersion.

Lemma 6.2. Suppose that there exists a real analytic map

Ω̄:B → 1 + Bp(H)

defined on an open neighbourhood B of Q in Q + Bp(H), such that the restriction

Ω = Ω̄|Up,Q
takes values in Up(H) and is a cross section for πQ:Up(H) → Up,Q,

with Ω̄(Q) = 1. Then Up,Q ⊂ Q+ Bp(H) is a real analytic submanifold and πQ is

a real analytic submersion.

Proof. Clearly, πQ:Up(H) → Up,Q is open, having local cross sections. Also it is

real analytic, regarded as a map from 1 + Bp(H) with values in Bp(H). As before,

denote (dπ̄Q)1 = δQ. Since Ω̄(Q) = 1, we may eventually shrink B in order that

Ω̄ takes invertible values (in the unitization on Bp(H)). The polar decomposition

of invertible operators in the unitization of Bp(H) is a real analytic operation;

more precisely, both the unitary part and the absolute value are real analytic

maps. By composing Ω̄ with the unitary part, we may suppose that furthermore

Ω̄ takes unitary values. Note two facts. First, since by hypothesis Ω̄ takes values

in 1 +Bp(H), the unitary values (equal to the unitary part of Ω̄) belong to Up(H).

Second, taking unitary part has no effect when one restricts Ω̄ to Up,Q.

We claim the following facts:

(dπ̄Q ◦ Ω̄ ◦ π̄Q)1(X) = δQ ◦ (dΩ̄)Q ◦ δQ(X) = δQ(X)

and

(dΩ̄)Q ◦ δQ(X) ∈ Bp(H)ah.

The second fact is apparent, since Ω̄ takes values in Up(H) and Ω̄(Q) = 1. To prove

the first fact, consider γ(t) = etXQe−tX . Then

(dπ̄Q ◦ Ω̄ ◦ π̄Q)1(X) =
d

dt
π̄Q ◦ Ω̄(γ(t))|t=0 =

d

dt
πQ ◦ Ω(γ(t))|t=0 = XQ−QX.
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It follows that

∆ := (dΩ̄)Q ◦ δQ:Bp(H)ah → Bp(H)ah,

verifies ∆2 = ∆. Note that N(∆) = N(δQ), which implies that this subspace is

complemented in Bp(H)ah.

On the other hand, R(δQ ◦ (dΩ̄)Q) ⊂ RδQ, because (dΩ̄)Q) takes skew-adjoint

values. Also it is clear that

δQ ◦ (dΩ̄)Q|R(δQ) = IdR(δQ).

This implies that δQ ◦ (dΩ̄)Q is an idempotent with range equal to R(δQ), and

therefore also this space is complemented.

Then Lemma 6.1 applies.

Let us state the following result, establishing the homogeneous structure of

the orbit under the action of the Schatten unitary groups. A related fact can be

found in Theorem 5.3 in [7], where they show the existence of continuous local cross

section for the action of more general unitary groups, namely, unitaries which are

a perturbation of the identity by a symmetric Banach ideal of B(H).

Proposition 6.3. If dim C∗(Q) < ∞, then Up,Q ⊂ Q + Bp(H) is a real analytic

submanifold, and the map πQ:Up(H)→ Up,Q is a real analytic submersion.

Proof. Let us construct local cross sections for πQ, which are restrictions of real

analytic maps defined on open sets in Q + Bp(H). The proof follows applying

Lemma 6.2 above. We proceed as in [4], Th. 1.3. Since C∗(Q) is finite dimensional,

there exist positive integers n1, . . . , nh and a ∗-isomorphism

θ: C∗(Q)→Mn1(C)⊕ · · · ⊕Mnh
(C).

Let n =
∑h
i=1 ni. Consider the set of systems of projections

Pn =
{

(P1, . . . , Pn) ∈ B(H)n : P 2
i = P ∗

i = Pi, PiPj = 0 if i 6= j and

n∑

i=1

Pi = 1
}
.

Let eij,k ∈Mni(C) be the elementary matrix with 1 in the j, k-entry and zero

elsewhere (consider Mni(C) imbedded in Mn1(C)⊕· · ·⊕Mnh
(C)). Since θ(Q) and

θ(Q)∗ generate Mn1(C) ⊕ · · · ⊕ Mnh
(C), it follows that there exist polynomials

pij,k(X,Y) in two non-commuting variables X,Y such that eij,k = pij,k(θ(Q), θ(Q)∗).
Consider the operators EiJ,k ∈ B(H) given by

Eij,k = θ−1(eij,k) = pij,k(Q,Q
∗).
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Consider the map

ϕ:Up,Q → Pn,
ϕ(X) = (p1

1,1(X,X
∗), p1

2,2(X,X
∗), . . . , p1

n1,n2
(X,X∗), . . .

. . . , ph1,1(X,X
∗), . . . , phnh,nh

(X,X∗)).

Clearly it is a real analytic map, and it is well defined (it takes values in Pn)
because

pij,k(UQU
∗, UQ∗U∗) = Upij,k(Q,Q

∗)U∗,

and therefore ϕ(UQU∗) = Uϕ(Q)U∗. We consider the subset of restricted systems

of projections,

Pnp,Q = {(Uϕ1(Q)U∗, . . . , Uϕn(Q)U∗ : U ∈ Up(H)}.

Apparently ϕ takes values in Pnp,Q. This space can be endowed with the p-metric

in each coordinate. Indeed, each coordinate ϕi(X) lies in ϕi(Q)+Bp(H). Let Σ be

the following map defined on a neighbourhood of ϕ(Q) in Pnp,Q (with this p-metric):

Σ(R1, . . . , Rn) =

n∑

i=1

ϕi(Q)Ri[1− (ϕi(Q)−Ri)2]−1/2.

The map Σ is defined on the open subset of ϕ(Q) in Pnp,Q given by the condition

that 1− (ϕi(Q)−Ri)2 are invertible for i = 1, . . . , n. It can be shown that Σ takes

unitary values (see [4]), and has the following property: ϕ(X) = Σ(X)ϕ(Q)Σ(X)∗.
Put κ(X) =

∑h
i=1

∑ni

j=1 p
i
j,1(X,X

∗)Ei1,j . It can be shown that [4]

Ω(X) = Σ(ϕ(X))∗ κ (Σ(ϕ(X))XΣ(ϕ(X))∗)

is a local cross section of the unitary action, defined on the open set (in the p-metric)

of the elements X ∈ Up,Q such that Σ(ϕ(X)) is defined.

Let us prove that it takes values in Up(H). First note that if (R1, . . . , Rn) ∈
Pnp,Q, then Ri = Uϕi(Q)U∗ for some U ∈ Up(H), U = 1 +K, K ∈ Bp(H). Then

1− (ϕi(Q)−Ri)2 = 1−Uϕi(Q)U∗ −ϕi(Q) +Uϕi(Q)U∗ϕi(Q)−ϕi(Q)Uϕi(Q)U∗.

Replacing U by 1+K, it is apparent that 1−(ϕi(Q)−Ri)2 ∈ 1+Bp(H). Therefore,

if it is invertible, by a straightforward spectral argument, the element

[1− (ϕi(Q)−Ri)2]−1/2 = 1 +K ′
i ∈ 1 + Bp(H)
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(in fact, it lies in the group Glp(H) of invertibles operators S such that S − 1 ∈
Bp(H), which is the group of invertibles of a ∗-Banach algebra, the unitization

Bp(H)). Therefore

Σ(R1, . . . , Rn) =

n∑

i=1

Uϕi(Q)U∗ϕi(Q)(1 +K ′
i) =

n∑

i=1

Uϕi(Q)U∗ϕi(Q) +K ′′,

where K ′′ =
∑n
i=1 Uϕi(Q)U∗ϕi(Q)K ′

i ∈ Bp(H). Note that
n∑

i=1

Uϕi(Q)U∗ϕi(Q)

= 1 +

n∑

i=1

(Kϕi(Q)K∗ϕi(Q) + ϕi(Q)K∗ϕi(Q) +Kϕi(Q)) ∈ 1 + Bp(H).

Finally, if X = UQU∗ with U = 1 +K ∈ Up(H), then

κ(X) =

h∑

i=1

ni∑

j=1

UEij,1U
∗Ei1,j = K ′ +

h∑

i=1

ni∑

j=1

Eij,1E
i
1,j = K ′ + 1,

where K ′ =
∑h
i=1

∑ni

j=1(KE
i
j,1K

∗Ei1,j +Eij,1K
∗Ei1,j) +K. It follows that κ(X) ∈

Up(H), and thus Ω takes values in Up(H).

In order to apply Lemma 6.2, we must show that Ω can be extended to a

real analytic map defined on an open neighbourhood of Q in Q + Bp(H). This is

apparent from the algebraic expression of Ω.

Note that the proposition above holds for any operator A ∈ B(H) such that

C∗(A) is finite dimensional.

There is a partial converse to this proposition, that holds in the case where

the (full) unitary orbit of Q contains an element

Q0 =

(
1 B0

0 0

) H0

H0

with B∗
0 = B0. This condition is equivalent to dimN(B) = dimN(B∗). Indeed,

if dimN(B) = dimN(B∗), then one can choose a unitary operator in the polar

decomposition B = U |B|. Then

Q0 =

(
1 |B|
0 0

)
=

(
U 0

0 1

) (
1 B

0 0

) (
U∗ 0

0 1

)
.

Conversely, if there is one such Q0 in the orbit of Q, by the discussion in Section

2, there exist surjective isometries U01:R(Q0)→ R(Q) and U10:R(Q0)
⊥ → R(Q)⊥

such that U01B0 = BU10, and therefore

dimN(B) = dimN(B0) = dimN(B∗
0) = dimN(B∗).
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Theorem 6.4. Suppose that Q is unitary equivalent to an oblique projection Q0

with B0 self-adjoint. Then Up,Q ⊂ Q+Bp(H) is a real analytic submanifold if and

only if the spectrum of B∗B is finite.

Proof. If Q = UQ0U
∗ = Ad(U)(Q), then Ad(U) is an isometric isomorphism

between Q + Bp(H) and Q0 + Bp(H) which sends Up,Q to Up,Q0 , and it is also

a ∗-ismorphism between C∗(Q) and C∗(Q0). Therefore we may reason with Q0.

Sufficiency was proved in the previous proposition. Let us suppose that Up,Q0 ⊂
Q0 +Bp(H) is a real analytic submanifold, and prove that the spectrum of B0 must

be finite. This assumption implies that the differential δQ0 = (dπQ0)1,

δQ0 :Bp(H)ah → Bp(H)

has complemented range. In particular, it has closed range. Let Y (n), n ≥ 1 be a

sequence in Bp(H)ah. Note that

δQ0(Y (n)) =

(
B0Y (n)∗

1,2 Y (n)1,2 + Y (n)1,1B0 −B0Y (n)2,2
−Y (n)∗

1,2 −Y (n)∗
1,2B0

)
.

Therefore if δQ0(Y (n)) is convergent, then Y (n)1,2 is convergent, and thus also

Y (n)1,1B0 −B0Y (n)2,2

is convergent. These facts imply that if δQ0 has closed range, then also the restric-

tion {(
X1,1 0

0 X2,2

)
: X∗

i,i = −Xi,i

}
δQ0−→ Bp(H)

has closed range. One may further restrict δQ0 to

{(
X0 0

0 X0

)
: X∗

0 = −X0

}
,

and it will still have closed range. Indeed, suppose that XnB0−B0Xn → Y for Xn

in Bp(H0)ah. The closed range condition implies that there existX0, Z0 ∈ Bp(H0)ah
such that Y = X0B0 − B0Z0. Thus, taking adjoints and substracting, one has

0 = (X0 − Z0)B0 −B0(X0 − Z0). Therefore

Y = X0B0−B0Z0−
1

2
(X0−Z0)B0 +

1

2
B0(X0−Z0) =

X0 + Z0

2
B0−B0

X0 + Z0

2
.

Thus we have reduced the situation to the following problem: prove that if

δB0 :Bp(H0)ah → Bp(H0)
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has closed range, then B0 must have finite spectrum. Therefore we finish the proof

if we prove Lemma 6.6 below. Note that δB0 maps Bp(H0)ah into Bp(H0)h

To establish the referred lemma, we need the following result by L. Fialkow

[14]: denote by τAB the operator τAB(X) = AX − XB. Let J be any Schatten

ideal.

Theorem 6.5. (Fialkow [14]) The following are equivalent:

(1) τAB :B(H)→ B(H) is bounded below.

(2) τAB :J → J is bounded below for some J .

(3) τAB :J → J is bounded below for any J .

(4) σl(A) ∩ σr(B) = ∅.

Here σl(A) (resp. σr(B)) denote the left (resp. right) spectrum of A (resp. B).

In our particular case, we deal with τAA = δA and J = K(H). We state the lemma,

which in the case p = 1 was proved by C. Apostol in [5]

Lemma 6.6. Let A∗ = A ∈ B(H). If the map δA:Bp(H)ah → Bp(H)h has closed

range then the spectrum of A is finite.

Proof. Denote by δC

A the map δC

A:Bp(H)→ Bp(H) defined accordingly. Clearly

Bp(H) = Bp(H)h ⊕ Bp(H)ah,

δC

A(Bp(H)h) ⊂ Bp(H)ah and δC

A(Bp(H)ah) ⊂ Bp(H)h.

Therefore it is apparent that δA has closed range if and only if δC

A does. Let us

denote this latter map also by δA to lighten the notation.

The Hilbert space H can be decomposed in two orthogonal subspaces H =

Hc⊕Hpp which reduce A, such that Ac = A|Hc ∈ B(Hc) has continuous spectrum,

and the spectrum of App = A|Hpp has a dense subset of eigenvalues. We claim

that δAc and δApp have both closed range. Suppose Xn ∈ B(Hc) is such that

δAc(Xn)→ Y , then Yn = Xn ⊕ 0 ∈ B(H) satisfy

δA(Yn) = δAc(Xn)⊕ 0→ Y ⊕ 0

in B(H), and thus Y ⊕ 0 = δA(X). If one writes this equality in matrix form (in

terms of the decomposition H = Hc ⊕Hpp), one has

(
Y 0

0 0

)
=

(
X11Ac −AcX11 X12App −AcX12

X21Ac −AppX21 X22App −AppX22

)
,
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and therefore Y = δAc(X11). Analogously one proves that the range of δApp is

closed. In order to prove that the spectrum of A is finite, we must show first that

Hc is trivial. First note that δAc :Bp(Hc) → Bp(Hc) has trivial kernel. Indeed, if

X 6= 0 is a compact operator commuting with Ac, since also X + X∗ commutes

with Ac, by the spectral decomposition of compact self-adjoint operators, one can

find a non-trivial (finite rank) spectral projection of X+X∗, which commutes with

Ac, and thus Ac would have an eigenvalue, leading to a contradiction. It follows

that δAc :Bp(Hc) → Bp(Hc) is bounded from below. Thus, by Fialkow’s theorem

above, one would have that σl(Ac) ∩ σr(Ac) = ∅. Since for self-adjoint operators,

right and left spectra coincide, this implies that the spectrum of Ac is empty, and

therefore Hc is trivial.

It follows that the spectrum of A has a dense subset of eigenvalues. Suppose

that there are infinitely many eigenvalues. By adding a multiple of the identity to A

(a change that does not affect δA), we may suppose that 0 is an accumulation point

of the set of eigenvalues of A. From this infinite set one can select a sequence of

(different) eigenvalues {λn : n ≥ 1} which decrease to 0. For each n ≥ 1 pick a unit

eigenvector en, consider H0 the closed linear span of these eigenvectors, and denote

A0 = A|H0 ∈ B(H0). It is apparent that since δA:Bp(H)→ Bp(H) has closed range,

then δA0 :Bp(H0) → Bp(H0) also has closed range. Let us show that the kernel is

complemented. Note that A0, written in the orthogonal basis {en : n ≥ 1} is a

diagonal infinite matrix, with different entries in the diagonal. Thus the kernel of

δA0 , which is formed by the p-summable operators in H0 which commute with A0,

consists also of diagonal matrices. Therefore N(δA0) is complemented, and one can

choose the projection Π onto N(δA0) given by

Π :




X11 X12 X13 · · ·
X21 X22 X23 · · ·
X31 X32 X33 · · ·

...
. . .


 7→




X11 0 0 · · ·
0 X22 0 · · ·
0 0 X33 · · ·
...

. . .


 .

Then Bp(H0) = N(δA0)⊕ L, with L = N(P ), and

δA0 |L:L→ R(δA0)

is an isomorphism between Banach spaces. It follows that there exists a constant

C > 0 such that

‖XA0 −A0X‖p ≥ C‖X −Π(X)‖p, for all X ∈ Bp(H0).

For each k ≥ 1, consider the k × k matrix bk with 1
k in all entries, and let Xk be

the operator in H0 which is given by

Xk = 0k ⊕ bk ⊕ 0∞,
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where 0k and 0∞ are, respectively, k-dimensional and ∞-dimensional zero opera-

tors, and the decomposition is made with respect to the basis {en : n ≥ 1}. Note

that Xk is a rank one orthogonal projection and thus ‖Xk‖p = 1. Also note that

for p > 1, ‖Π(Xk)‖pp = 1
kp−1 . It follows that

‖Xk −Π(Xk)‖p → 1

as k → ∞. For p = 1, it suffices to compute the 1-norm of the k × k matrix with

zeros on the diagonal, and 1/k off the diagonal, namely bk − 1
k1k. The spectrum

of this matrix consists of 1 − 1/k with multiplicity 1, and −1/k with multiplicity

k − 1 (because bk is a rank one projection). Thus

‖Xk −Π(Xk)‖1 = 2− 2/k.

On the other hand, XkA0−A0Xk is a finite rank operator. Denote by Pk the

ortohogonal projection, which in the basis of the en is given by

Pk = 0k ⊕ 1k ⊕ 0∞,

where 1k denotes the identity operator of rank k. Clearly A0Xk = A0PkXk, and

thus

‖A0Xk‖1 ≤ ‖A0Pk‖∞‖Xk‖1 = λk+1.

Therefore, if k is big enough so that the operator norm of A0Xk is less than 1

‖XkA0 −A0Xk‖p ≤ 2‖A0Xk‖p ≤ 2‖A0Xk‖1 → 0,

as k goes to infinity, leading to a contradiction. It follows that the spectrum of A

is finite.

7. Finsler metrics in the p-Schatten unitary orbits

Let us describe a natural Finsler metric for homogeneous spaces of the p-

Schatten unitary groups, and the minimality results obtained for it [2], for p and

even integer. The case p = ∞, i.e. the case of the orbit under the action of the

Fredholm group, is similar, though it has some differences and is treated apart.

These results in [2] apply to the particular case of the unitary orbit of Q. The

metric is induced by the action of Up(H) and the p-norm, and is formally the same

metric considered for the full orbit of Q. We should mention that it is not required
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here that Up,Q be a submanifold of Bp(H), the method applies if Up,Q has smooth

structure which makes the map

πQ:Up(H)→ Up,Q, πQ(U) = UQU∗

a smooth submersion. Using the same argument as in Proposition 3.5, one can

prove that this is always the case. If R ∈ Up,Q and v = ZR−RZ ∈ (TUp,Q), put

‖v‖R = inf{‖Z‖p : Z ∈ Bp(H)ah, ZR−RZ = v}.

The metric is invariant under the action of the group. The second important fact

of this metric is that, due to the uniform comvexity of the p-norm, there is a unique

minimal lifting Z0, v = Z0RRZ0, achieving the infimum,

‖Z0‖p = ‖v‖R.

This situation contrasts with the operator norm Finsler metric, where multiple

minimal liftings can occur. If p = 2, it can be shown that the minimal lifting lies

in the reductive space KR. If p > 2, the set of minimal liftings is, in general, not a

linear subspace. The main result from [2], adapted to this context, is the following:

Theorem 7.1. If R ∈ Up,Q and Z0 is the minimal lifting for v ∈ (TUp,Q)R, then

the curve

δ(t) = etZ0Re−tZ0

which starts at R with initial velocity v has minimal length for |t| < π
4‖Z0‖p

. More-

over, δ is unique with this property.

If we denote by dp the metric in Up,Q induced by this Finsler metric, also from

[2] we have the following:

Theorem 7.2. The metric space (Up,Q, dp) is complete.
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