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In this paper we introduce a family of examples that can be regarded as spaces of
nonpositive curvature, but with the distinct quality that they are not complete as metric
spaces. This amounts to the fact that they are modelled on a finite von Neumann
algebra, and the metrics introduced arise from the trace of the algebra. In spite of the
noncompleteness of these manifolds, their geometry can be studied from the view-point of
metric geometry, and several techniques derived from the functional analysis are applied
to gain insight on their geodesic structure.
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1. Introduction

The view-point adopted to present the examples in this paper is that of the metric geometry, which is well-suited to
deal with these infinite-dimensional phenomena. Since Menger and Wald [26,32], who introduced the notions and methods
of curves in metric spaces, geodesic length spaces and comparison triangles, there have been several attempts to exploit
the intrinsic insight of metric geometry: the foundations of the theory of metric spaces with upper curvature bounds were
laid in the 50s with the work of Alexandrov and Busemann [2,9], but it was not until recently, with the work of Ballmann,
Gromov and Schroeder [6] among others, with their study of espaces de longueur of nonpositive curvature, that this subject
has shown its true relevance and connections to many areas of modern mathematics, such as operator theory, hyperbolic
groups and topology.

Our examples consist of endowing the cone of positive invertible operators of a finite von Neumann algebra with the
rectifiable distances induced by the p-norms (which are derived from the finite trace of the algebra). The study of the
geometry of cones of positive invertible matrices was initiated by Mostow [27] in the 50s; his concern was the Riemannian
metric arising from the finite trace of the algebra. Later, Corach, Porta and Recht [16,17] studied the geometry of such
cones on B(H), the bounded operators on an infinite-dimensional Hilbert space H. The metric they were interested in, is
the Finsler metric induced by the uniform norm of B(H) (the term Finsler metric is used here in a loose sense, since it
is not required that the Hessian of the metric is positive definite: moreover, the uniform norm is not even smooth). So
the techniques introduced by them are relevant from the view-point of operator theory, but they certainly do not come
from the Riemannian geometry. Recently [12,14,22], we have studied spaces of perturbations of Schatten operators where
again, despite the infinite-dimensional setting, the metrics introduced come from the (infinite) trace of B(H). The results
obtained in those works, together with a factorization theorem for the group of invertible elements of a C∗-algebra obtained
by Porta and Recht in [30], have been extended to Banach–Lie groups in [15]. A closer relevant precedent is [5] where the
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(weak) Riemannian case, corresponding to p = 2, is studied as a geodesic length space. It is worth mentioning that the
inner product 〈v, w〉 = τ (v w∗) available in that case enabled the introduction of techniques of Riemannian geometry such
as comparison triangles; these tools are not available here but, as we have shown in [15], we find in the notion of uniform
convexity [11] a valuable substitute.

For Banach–Finsler manifolds, the work of Neeb [28] gives a natural setting for the study of Cartan–Hadamard manifolds
in infinite dimension. He introduced techniques of dissipative operators to describe the condition of nonpositive curvature
in its infinitesimal form (i.e. in terms of the differential of the exponential map). These tools can be adapted to the present
context, via operator algebra techniques.

This paper is organized as follows. In Section 2 we introduce the set of positive invertible elements of a finite von Neu-
mann algebra M, together with some (elementary) considerations regarding its smooth manifold structure as a subset
of M, and the relevant metrics induced by the trace that we will consider. In Section 3 we describe the geodesic structure
of such cones of operators with the given Finsler metric, and we characterize convex submanifolds. Finally, in Section 4, we
study the problem of best approximation from a given point to a convex submanifold, via the notion of uniform convexity,
and in the process, we establish some inequalities that are a nonlinear variation on the Clarkson–McCarthy’s inequali-
ties [11].

2. Background

Let M be a finite von Neumann algebra, and let τ be a faithful normal tracial state on M. For 1 � p < ∞, the p-

metric is given in M by the trace, ‖x‖p = τ (|x|p)
1
p . Let L p = L p(M, τ ) stand for the completion of M relative to the

p-metric, with the usual identification L∞ = M. We will use ‖ · ‖ to denote the usual (uniform) norm of M. Then L1

can be identified with the pre-dual space M∗ of M, the subspace of linear functionals in M∗ which are ultraweakly
continuous. For 1 < p < ∞, we have (L p)∗ = Lq , where p−1 + q−1 = 1. A good reference of the subject is the book of
Takesaki [33]. All these identifications are induced by duality via the trace, namely (v, w) �→ τ (v w∗). The p-norms are
unitarily invariant in the sense that when u, v ∈ U M (the unitary group of M) then ‖uxv‖p = ‖x‖p for any x ∈ L p(M, τ ).
We will use B(L p) to denote the set of bounded linear operators acting on the Banach space L p(M, τ ), and B(M) =
B(L∞) to indicate the set of bounded linear operators acting on M. The involution ∗ of M extends to an anti-linear
isometry J : L p(M, τ ) → L p(M, τ ), and we will consider the linear space of self-adjoint elements in L p(M, τ ), that is
L p

h = L p(M, τ )h = {x ∈ L p(M, τ ): J x = x}. We indicate with Mh (resp. Mah) the self-adjoint operators of M (resp. skew-
adjoint), and clearly Mh = L p

h ∩ M.

2.1. The algebras B(M) and B(L p)

In this section we discuss briefly the relations among the different spectra that arise from the various norms considered
in this paper.

Remark 2.1. Let Lx, Rx : M → M stand for the left and right multiplication by x ∈ M. Then Lx, Rx ∈ B(M). The map
L : M → B(M) is a faithful representation of M into a closed Banach subalgebra L(M) of B(M). We use σA(x) to
indicate the spectrum of the element x relative to the Banach algebra A. The same remarks hold for Rx instead of Lx . Let
ad x : M → M denote the adjoint representation, ad x = Lx − Rx . That is, ad x(y) = [x, y] = xy − yx. Then σB(M)(ad x) ⊂
σM(x) − σM(x) because Lx and Rx commute.

Remark 2.2. Let GL(M, p) be the group of invertible elements of B(L p). It is a Banach–Lie group since it is open there. Let
U (M, p) stand for the group of linear isometries of B(L p),

U (M, p) = {
g ∈ GL(M, p): ‖g‖ = ∥∥g−1

∥∥ � 1
}
.

Here ‖ · ‖ denotes the usual supremum norm of operators on a Banach space. Then U (M, p) is a real Banach–Lie group
(not necessarily in the norm topology of B(L p)), with Banach–Lie algebra

Herm(M, p) = {
T ∈ B

(
Lp)

:
∥∥esT

∥∥ � 1 for any s ∈ R
}
,

the space of Hermitian elements of B(L p). The key fact here is that if T ∈ Herm(M, p) and s ∈ R, then by general consid-
erations of the theory of semi-groups and dissipative operators (for instance, see Lemma 3.1 in [25]) the operator 1 ± sT is
invertible and expansive, namely ‖(1 ± sT )z‖p � ‖z‖p for any z ∈ L p(M, τ ).

Remark 2.3. If x ∈ M, the maps Lx and Rx extend to bounded linear operators of B(L p) with the same norm (less or equal
to ‖x‖), because ‖yxz‖p � ‖y‖‖x‖p‖z‖ whenever y, z ∈ M.

We shall denote these maps by L̃x and R̃x respectively. Note that the image of L̃, R̃ is not necessarily closed in B(L p).
Apparently σB(Lp)(L̃x) ⊂ σM(x) and σB(Lp)(R̃x) ⊂ σM(x). Let ãd x ∈ B(L p) be the extension of ad x. Then

σB(L p)(ãd x) ⊂ σB(L p)(L̃x) − σB(L p)(R̃x) ⊂ σM(x) − σM(x).

In particular ãd x has real spectrum if x ∈ Mh .
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Let M× stand for the group of invertible elements of M, and g ∈ M× . Consider Adg : M → M the adjoint action,
Adg x = gxg−1, that is Adg = Lg R g−1 . The identity Adex = ead x holds for any x ∈ M because Lx and Rx commute. The same
holds for their extensions to B(L p): when x ∈ M, then∥∥ei ad xz

∥∥
p = ‖Adeix z‖p = ∥∥eixze−ix

∥∥
p = ‖z‖p

for any z ∈ M. Then ‖ei ãd xz‖p = ‖z‖p for any z ∈ L p because M is dense there.

Lemma 2.4. If x ∈ Mh, the operator 1 + i ãd x ∈ B(L p) is expansive and invertible.

Proof. By Remark 2.3, i ãd x ∈ Herm(M, p). The assertion now follows from Remark 2.2. �
2.2. Positive invertible elements

Let Π = {z ∈ C: Re(z) > 0} be the open right half-plane. Let ΠM = {x ∈ M: σM(x) ⊂ Π} ⊂ M, which is an open
subset of M since the spectrum map is lower semi-continuous [31, Theorem 10.20]. Let P = ΠM ∩ Mh the set of positive
invertible elements in M, i.e. the set of elements a ∈ M such that σM(a) ⊂ (0,+∞). Clearly P is an open subset of Mh .
Since any positive invertible element a ∈ M has its spectrum confined to the real interval (0,+∞), it admits a unique (real
analytic) logarithm in Mh , that we shall denote ln(a).

Let us show that the exponential map is a smooth isomorphism of Mh onto P (with the subspace topology). We first
recall a useful (and well-known) expression for the differential of the usual exponential map. If f : A → B is a smooth map
among smooth manifolds, and TA, TB denote the respective tangent bundles, we indicate with f∗ : TA → TB the differential
of f , and with f∗x its specialization at x ∈ A.

Lemma 2.5. Let x, y ∈ Mh. Let exp(x) = ex be the usual exponential map of M, and let F be the entire function given by F (z) =
z−1 sinh(z) = ∑

n�0
z2n

(2n+1)! . Then

(exp)∗x(y) =
1∫

0

e(1−t)x yetx dt,

and e−x/2(exp)∗x(y)e−x/2 = F (ad x/2)(y).

Lemma 2.6. Let F (z) = z−1 sinh(z), and let w ∈ Mh. Then F (ad w) ∈ B(M) and it is invertible there. Moreover F (ad w) is an
isomorphism of Mh onto Mh.

Proof. Clearly F (ad w) is a bounded map of M into M. Since F is an entire function, we have σB(M)(F (ad w)) =
F (σB(M)(ad w)), and since w ∈ Mh , then σB(M)(ad w) ⊂ R by Remark 2.1. Since F maps the real line onto [1,+∞),
then F (ad w) is invertible in B(M). The map F (ad w) sends Mh into Mh because the power series of F (z) involves only
real coefficients and even powers of z, and ad2 w = ad w ◦ ad w maps Mh into Mh . Since F (ad w) is invertible, it must be
an automorphism of Mh . �

The following result is also well known, we include a proof anyway since it is extremely short with the tools at hand.

Proposition 2.7. The exponential map exp : Mh → P given by the usual series is a (real analytic) isomorphism onto P , and it has an
inverse ln : P → Mh, given locally by the usual power series, which is also a (real analytic) isomorphism.

Proof. Certainly exp maps Mh into P injectively by the well-known properties of the real functional calculus. On the other
hand, if a ∈ P then σM(a) ⊂ (0,+∞), and then it has a unique real analytic logarithm ln(a) ∈ Mh given, for instance,
by the Cauchy functional calculus. Then exp maps Mh onto P . The map (exp)∗x is an isomorphism of Mh onto Mh
by Lemma 2.6, since it clearly maps Mh into Mh , and it is the composition of the isomorphism F (ad x/2) with the
isomorphism z �→ ex/2zex/2. �
2.3. The metric spaces P p , 1 � p � ∞

Now P is a smooth manifold, isomorphic to Mh . Consider P as a subset of L p
h . We make of P a weak Banach–Finsler

P p manifold by assigning to each tangent space a metric with the p-norm:

‖x‖a,p = ∥∥a− 1
2 xa− 1

2
∥∥

p, a ∈ P, x ∈ Mh. (1)
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Remark 2.8. This metric is continuous in the uniform topology, but note that the tangent spaces are not complete with it
(if p < ∞). This metric is natural in the sense that it is invariant for the action of the group of invertible elements (see
Corollary 3.11). Note that, since ‖x‖p � ‖x‖, then the uniform closure of sets in M is always contained in the L p closure.

We measure the length of rectifiable curves in P p in the standard fashion, namely

�P p (γ ) =
1∫

0

∥∥γ̇ (t)
∥∥
γ (t),p dt =

1∫
0

∥∥γ (t)−
1
2 γ̇ (t)γ (t)−

1
2
∥∥

p dt

for any piecewise smooth curve γ : [0,1] → P p . By smooth we mean C1 and with nonzero derivative. We define the
geodesic distance between two points a,b ∈ P p as the infimum of the lengths of the curves in P p joining a to b,

dp(a,b) = inf
{
�P p (γ ): γ ⊂ P p, γ is piecewise smooth, γ (0) = a, γ (1) = b

}
.

This defines a semi-finite distance, and for any a,b ∈ P p we will exhibit in Section 3 a short geodesic joining a to b in P p ,
so (P p,dp) is indeed a metric space. The topology of P p induced by this metric does not necessarily match the topology of
P p as a subspace of M (p < ∞).

3. Convex sets and isometries

In this section we explore briefly the structure of the smooth convex sets in P p , and as a byproduct we obtain two
distinguished classes of isometries. See the survey [18] by P. Eberlein for some background on the group of isometries of
(finite-dimensional, Riemannian) manifolds of nonpositive curvature.

Definition 3.1. Let H be a closed real subspace of Mh . We say that H is a Lie triple system if [x, [x, y]] = ad2 x(y) ∈ H
whenever x, y ∈ H . Let K = exp(H) ⊂ P p , then we say that K is an exponential set.

The name exponential set has been borrowed from the fundamental paper [30] by Porta and Recht. It is not hard to see
that the condition above is equivalent to [x, [y, z]] ∈ H for x, y, z ∈ H . In this case we also say that H is closed under double
bracketing. The following is a well-known result, the proof of Mostow [27] for real matrices adapts verbatim to our situation,
therefore it is omitted.

Proposition 3.2. Let H be a closed real linear subspace of Mh and K = exp(H). Then aba ∈ K for any a,b ∈ K if and only if H is a
Lie triple system.

Remark 3.3. Let a,b ∈ P p , then clearly a− 1
2 ba− 1

2 ∈ P p . Then γa,b : R → M, given by

γa,b(t) = a
1
2
(
a− 1

2 ba− 1
2
)t

a
1
2 ,

is in fact a smooth curve in P joining a = γ (0) to b = γ (1), since P = exp(Mh). Note that if a = 1 then γ (t) = bt = et ln(b) .
If a,b ∈ K = exp(H) with H a Lie triple system, then γa,b(t) ∈ K for any value of t ∈ R. Note also that∥∥γ̇ (t)

∥∥
γ (t),p = ∥∥u ln

(
a− 1

2 ba− 1
2
)
u∗∥∥

p = ∥∥ln
(
a− 1

2 ba− 1
2
)∥∥

p = ∥∥γ̇ (0)
∥∥
γ (0),p,

where u = γ − 1
2 a

1
2 (a− 1

2 ba− 1
2 )

t
2 ∈ UM . Hence, for any p � 1, the length of these curves is given by the norm of the speed,

which is constant and does not depend on t:

�P p (γa,b) = ∥∥γ̇a,b(0)
∥∥
γa,b(0),p = ∥∥ln

(
a− 1

2 ba− 1
2
)∥∥

p,

and also, since γa,b(1 − t) = γb,a(t), then �P p (γa,b) = �P p (γb,a). In particular, if a = 1, they have length ‖ln(b)‖p .

Definition 3.4. Let K ⊂ P p . We say that K is convex if, for any given a,b ∈ K , γab(t) ∈ K for any t ∈ [0,1].

This definition will hold as the natural one, once we prove (in the next section) that these curves are short geodesics. In
what follows in this section we proceed as in the (weak) Riemannian case, see [5].

Definition 3.5. Let us consider, for a,b ∈ P p , the geodesic symmetries given by σa(b) = ab−1a for a,b ∈ P . Then σa maps P
into P by Proposition 3.2. Note that since σ 2

a = id, then σa is a bijection of P onto P . These maps are indeed isometries
of P p , since for any piecewise smooth curve γ ⊂ P p , then γ̇ −1 = −γ −1γ̇ γ −1, hence
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∥∥∥∥ ∂

∂t
σa(γ )

∥∥∥∥
σa(γ ),p

= ∥∥(
a−1γ a−1) 1

2 aγ −1γ̇ γ −1a
(
a−1γ a−1) 1

2
∥∥

p = ∥∥uγ − 1
2 γ̇ γ − 1

2 u∗∥∥
p,

with u = (a−1γ a−1)
1
2 aγ − 1

2 ∈ UM . Then ‖ ∂
∂t σa(γ )‖σa(γ ),p = ‖γ̇ ‖γ ,p .

Lemma 3.6. If K = exp(H) is an exponential set in P p , with H a Lie triple system, then the geodesic symmetry σa : b �→ ab−1a maps
K into K for any a ∈ K .

Proof. It is easy to check that σa maps the curve γa,b(t) onto γa,b(−t) for any b ∈ K . Then σa(b) = γa,b(−1) ∈ K by Re-
mark 3.3. �
Proposition 3.7. Let K = exp(H) with H a closed real linear subspace of Mh. Then K is geodesically convex if and only if H has the
Lie triple property.

Proof. If H is closed under double bracketing, then K is convex by Proposition 3.2 and Remark 3.3 above. Let a,b ∈ K , with
K convex. Then

aba = a
3
2
(
a

1
2 b−1a

1
2
)−1

a
3
2 = σ

a
3
2

◦ σ
a

1
2
(b),

which proves that aba ∈ K , and then by Proposition 3.2, H has the Lie triple property. �
From now on we refer to a Lie triple system H as an LTS, and to K = exp(H) as a convex exponential set.
Motivated by the definition of convexity we may consider, for a ∈ P p , a generalization of the usual exponential map. Let

Expa : Mh → P p be given by

Expa(x) = a
1
2 exp

(
a− 1

2 xa− 1
2
)
a

1
2 .

Then Expa gives a global chart around a ∈ P ; moreover, if x ∈ Mh , then Expa(tx) = γa,b(t) where b = Expa(1). In Theo-
rem 3.16 we will show that these curves are short for the geodesic distance, hence the curve γ (t) = Expa(tx) is a short

geodesics starting at a with initial speed x. If b ∈ P p , then taking x = a
1
2 ln(a− 1

2 ba− 1
2 )a

1
2 ∈ M p

h gives γ (1) = b. Moreover,
‖(Expa)∗x(y)‖a,p � ‖y‖Expa(x),p for any x, y ∈ Mh , a fact that will be proved in Theorem 3.14 in the next section.

Corollary 3.8. Let K = exp(H), with H an LTS in Mh. Then K ⊂ P is a manifold with tangent spaces isomorphic to H. The maps

Expa : a
1
2 Ha

1
2 → K (a ∈ K ) are the charts of K , and we can identify Ta K with a

1
2 Ha

1
2 . If H splits (i.e. Mh = H ⊕ S with S a closed

supplement of H in Mh) then K is a submanifold of P .

Proof. Each Expa is a local isomorphism by Lemma 2.6. It is easy to see that these maps are injective, since exp is injective

by Proposition 2.7. Let us show that Expa maps a
1
2 Ha

1
2 onto K . If b ∈ K , let v = a

1
2 ln(a− 1

2 ba− 1
2 )a

1
2 . Then v ∈ a

1
2 Ha

1
2 , and

Expa(v) = b. This proves surjectivity. On the other hand, if v = a
1
2 xa

1
2 ∈ a

1
2 Ha

1
2 , then Expa(v) = a

1
2 exa

1
2 ∈ K by Proposi-

tion 3.2, which shows that Expa maps H into K . The last assertion follows from the inverse function theorem for Banach
spaces, applied to the map E : H × S → P given by (x, y) �→ exe y . �
Remark 3.9. Let K = exp(H), with H an LTS. Let G K be the group generated by the elements in K (namely g ∈ G K if
g = a1 · · ·an , with ai ∈ K ). Let I g(a) = g∗ag , for a ∈ P . Then if g ∈ G K , I g(a) = an · · ·a1aa1 · · ·an hence I g(a) ∈ K by Propo-

sition 3.2. Conversely, every element a ∈ K can be written as I g(1), where g = a
1
2 . Let U K = {g ∈ G K : I g(1) = 1} be the

isotropy group of 1 ∈ K for this action I . Then U K is a subgroup of U M and K � G K /U K is a homogeneous space. Moreover,

the group G K acts transitively on K , since if a,b ∈ K , then g = a− 1
2 b

1
2 ∈ G K and I g(a) = b.

Remark 3.10. Let K = exp(H) with H an LTS. Let [H, H] ⊂ Mah denote the closure of the set of finite real linear commu-
tators of elements in H . By the Jacobi identity, the real linear space g = H ⊕ [H, H] is a real Banach–Lie subalgebra of M.
Now g is integrable [29, Corollary V.2.21] and if G H denotes the group generated by exp(g), then G H is a connected real
Banach–Lie group (with a topology that is possibly finer than the norm topology on M), with real Banach–Lie algebra g.
Note that G K ⊂ G H . We claim that G H also acts on K : let us show that I g(ex0) = g∗ex0 g is an element of K for any g ∈ G H

and any x0 ∈ H . By the implicit function theorem, any element in g ∈ G H can be written as a finite product

g = (
ex1 e y1

)α1 · · · (exn e yn
)αn

,

where xi ∈ H , yi ∈ [H, H] and αi = ±1. Then direct inspection of the expression shows that g∗ex0 g ∈ K , because we
have either products of the form exi ex j exi (which belong to K by Proposition 3.2), or either products of the form
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e−yi ex j e yi = exp(ead(−yi)(x j)) (which belong to K because g is a Banach–Lie algebra). Let U H be the unitary part of G H .
Then we have the manifold isomorphism G H/U H � K given by the action g �→ I g(1) = g∗g , that makes K a homogeneous
manifold.

These are results on polar decomposition of Banach–Lie groups that are proved in a broader context by K.-H. Neeb [28]
and these remarks can be obtained by specialization from there.

Corollary 3.11. Let K = exp(H) be a convex exponential set. Let g ∈ G H , with G H ⊂ M× the connected Banach–Lie group with
Banach–Lie algebra g = H ⊕ [H, H]. Let I g(a) = g∗ag. Then each I g is a bijection of K and an isometry relative to the Finsler metric:
the maps I g act isometrically and transitively on K , hence K is a homogeneous Finsler manifold.

Proof. Clearly each I g is a bijection of K by the remarks above. We have (I g)∗a(x) = g∗xg for any a ∈ K , x ∈ H . Now consider

u = (g∗ag)− 1
2 g∗a

1
2 . Then u ∈ U M , hence ‖uyu∗‖p = ‖y‖p . Put y = a− 1

2 xa− 1
2 , then ‖g∗xg‖g∗ag,p = ‖x‖a,p , which proves that

the action is isometric. The maps I g act transitively on K , since taking g = a−1/2b1/2 ∈ G H maps a to b. �
3.1. The exponential metric increasing property

In this section we prove results related to the existence of short curves for the geodesic distance. Let �p denote the usual
p-length of curves in the linear space Mh .

The considerations of this section are an extension of the results in [28], where the author considers Banach–Finsler
manifolds with spray. What is remarkable is that those considerations still hold in this setting, disregarding the fact that
the topology of P p with the p-norms does not match the topology of P as a Banach manifold (if p < ∞). The following
lemma is Proposition 3.15 in [28], adapted to our situation.

Lemma 3.12. Let F (z) = z−1 sinh(z), w ∈ Mh. Then F (ad w) admits a bounded extension to B(L p), given by the analytic functional
calculus of ãd w, which is invertible and expansive, ‖F (ãd w)(z)‖p � ‖z‖p for any z ∈ L p(M, τ ).

Proof. Let us write F (z) in its Weierstrass expansion. Since the zero set of F is {zk = kπ i}, then F (z) = ∏
n�1(1 ± i z

nπ ),

where the product converges uniformly on compact sets of C to F . Let Tn = 1 ± i ãd w
nπ , then Tn ∈ B(L p) and it is expansive

by Lemma 2.4. Hence

F (ãd w) = lim
n

n∏
k=1

Tk ∈ B
(
Lp)

and it is expansive there since each term is expansive. �
Remark 3.13. The inequality of the previous lemma is equivalent to the so-called exponential metric increasing property [8],
which states that∥∥∥∥∥

1∫
0

a1−tbat dt

∥∥∥∥∥
p

�
∥∥a

1
2 ba

1
2
∥∥

p .

Indeed, put b = a− 1
2 ya− 1

2 in the above equation, put a = ex , and use the identities of Lemma 2.5.

Let γ be a piecewise smooth curve γ ⊂ P . Then γ = eΓ for a uniquely determined piecewise smooth curve Γ = ln(γ )

such that Γ ⊂ Mh . By Lemma 2.5,

γ̇ = (exp)∗Γ (Γ̇ ) =
1∫

0

e(1−t)Γ Γ̇ etΓ dt.

Theorem 3.14. Let γ = eΓ ⊂ P p be a piecewise smooth curve. Then �p(Γ ) � �P p (γ ).

Proof. Let us compute the speed of γ using Lemma 2.5:

‖γ̇ ‖γ ,p = ∥∥γ −1/2γ̇ γ −1/2
∥∥

p = ∥∥e− Γ
2 (exp)∗Γ (Γ̇ )e− Γ

2
∥∥

p = ∥∥F (ad Γ/2)(Γ̇ )
∥∥

p .

On the other hand, by Lemma 3.12, ‖F (adΓ/2)(Γ̇ )‖p � ‖Γ̇ ‖p . �
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Corollary 3.15. Let v, w ∈ Mh. Then dp(ew , ev) � ‖w − v‖p .

Proof. Let γ be any piecewise smooth curve joining ev to ew , put γ = eΓ as before. Then

‖w − v‖p = ∥∥Γ (1) − Γ (0)
∥∥

p =
∥∥∥∥∥

1∫
0

Γ̇ dt

∥∥∥∥∥
p

�
1∫

0

‖Γ̇ ‖p dt = �p(Γ ) � �P p (γ ).

Hence the infimum of the length of these curves must be greater or equal than ‖w − v‖p . �
Theorem 3.16. Let a,b ∈ P p . Let γa,b(t) = a

1
2 (a− 1

2 ba− 1
2 )ta

1
2 . Then γa,b is shorter than any other piecewise smooth curve joining a to

b in P p , and

dp
(
ev , ew) = ∥∥ln

(
ev/2e−wev/2)∥∥

p .

Proof. By Corollary 3.11, it suffices to prove the result for a = 1, and b = ew . Let γ (t) = et w . Let β be any other curve
joining 1 to b. By Corollary 3.15,

�P p (γ ) = ‖w‖p = ‖w − 0‖p � dp
(
ew ,1

)
� �P p (β). �

Remark 3.17. For 1 < p < ∞ the strict convexity properties of L p imply that straight segments are the unique short smooth
curves joining two vectors in L p , and this in turn implies that, for 1 < p < ∞, the geodesics of Theorem 3.16 are the unique
short curves joining a,b ∈ P p , when the length is measured with the tangent p-norms. Indeed, if γ is a short smooth curve
joining 1 to a = ev in P p , then γ = eΓ for some smooth curve Γ ∈ Mh , and since �p(Γ ) � �P p (γ ) = ‖v‖p , then Γ (t) = tv
hence γ = etv = γ1,a(t). By the invariance of the metric, the claim follows for a,b ∈ P p .

Corollary 3.18. Let K ⊂ P p be convex. Then for any a,b ∈ K , the curve γa,b is a smooth short path joining a to b in K . It is unique if
1 < p < ∞.

Remark 3.19. The minimal curves in P p have the following property: if we apply the complex interpolation method intro-
duced by Calderón in [10], to the space L p(M, τ ) with the Finsler norms ‖‖a,p and ‖‖b,p with a,b ∈ P , it can be proved
that the interpolated curve matches the minimal curve γa,b in P . This is an extension of the result obtained in [3] for the
Finsler metric induced by the uniform norm in the cone of positive invertible operators of a C∗-algebra, but with a different
approach. Following the notation used in [7], observe that for all a,b ∈ P and 1 � p < ∞, the Banach spaces L p

a = (L p,‖‖a,p)

and L p
b = (L p,‖‖b,p) are compatible, due to the isomorphism L p

a � (L p,‖‖p). Then the following theorem can be proved as
in [13, Theorem 3.1], with some minor adaptations to the proof that therefore, is omitted here:

Theorem 3.20. Let p � 1, a,b ∈ P and t ∈ (0,1). Then (L p
a , L p

b )[t] = L p
γa,b(t) .

3.2. Completion of P

There are three natural metrics to consider in the manifold P . One is the linear metric induced by the p-norms, when
one regards P as a linear subspace of L p

h , that is

dl
p

(
ev , ew) = ∥∥ev − ew

∥∥
p, (2)

for v, w ∈ Mh . The second one is the Finsler metric induced by the p-length functional on rectifiable arcs, that is

dp
(
ev , ew) = ∥∥ln

(
ev/2e−wev/2)∥∥

p .

The third one is the metric induced by the isomorphism of P with its tangent space Mh , that is

dt
p

(
ev , ew) = ‖v − w‖p . (3)

By the exponential metric increasing property, one can compare dp � dt
p .

Assume that v, w ∈ Mh , and consider α(t) = ln(etv/2e−t w etv/2), which is a smooth curve of self-adjoint elements of M.
Note that α(1) = ln(ev/2e−w ev/2) and α(0) = 0. Let β = eα , then by Theorem 3.14 followed by Hölder’s inequality,
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dp
(
ev , ew) = ∥∥α(1) − α(0)

∥∥
p �

1∫
0

∥∥α̇(t)
∥∥

p dt �
1∫

0

∥∥β−1/2β̇β−1/2
∥∥

p dt

�
1∫

0

∥∥β−1β̇
∥∥

p dt �
1∫

0

∥∥β−1
∥∥‖β̇‖p dt.

We have used the elementary inequality ‖xy‖p � ‖yx‖p if (xy)∗ = xy. A straightforward computation shows that

β̇(t) = 1

2
etv/2(v − w)e−t w etv/2 + 1

2
etv/2e−t w(v − w)etv/2.

Thus ‖β̇(t)‖p � et(‖v‖+‖w‖)‖v − w‖p , since ‖et w‖ � et‖w‖ . Likewise,∥∥β−1
∥∥ = ∥∥e−tv/2et w e−tv/2

∥∥ � et(‖v‖+‖w‖).
It follows that

dp
(
ev , ew)

�
1∫

0

e2t(‖v‖+‖w‖) dt‖v − w‖p � e2(‖v‖+‖w‖) − 1

2(‖v‖ + ‖w‖) ‖v − w‖p,

namely

‖v − w‖p � dp
(
ev , ew)

� K∞(v, w)‖v − w‖p

where K∞ is a constant depending solely on the uniform norm of v, w , such that K∞(v, w) → 1 as v, w → 0 in M.
Now we compare ‖ev − ew‖ to ‖v − w‖p . Let v, w ∈ Mh , with ‖v‖,‖w‖ � C . Then

∥∥ev − ew
∥∥

p =
∥∥∥∥∑

n�1

vn

n! − wn

n!
∥∥∥∥

p
=

∥∥∥∥∥
∑
n�1

1

n!
n−1∑
j=0

vn−1− j(v − w)w j

∥∥∥∥∥
p

�
∑
n�1

1

n!
n−1∑
j=0

‖v‖n−1− j‖v − w‖p‖w‖ j

�
∑
n�1

1

(n − 1)! Cn−1‖v − w‖p = eC ‖v − w‖p .

Likewise, if m = max{‖ev‖,‖ew‖} and δ = max{‖ ev

m − 1‖,‖ ew

m − 1‖} < 1, then the expansion ln(x) = −∑
n�1

1
n (x − 1)n for

any x such that |x − 1| < 1 gives ‖v − w‖p � 1
m(1−δ)

‖ev − ew‖p . Thus

dt
p � Cdl

p � C ′dt
p � C ′dp � C ′′dt

p,

for uniformly bounded subsets of P , where the three metrics are equivalent. Then such subsets of P are complete with the
distance dp : they are complete with the linear p-metric dl

p(v, w) = ‖v − w‖p in M, since the linear p-metric induces the
strong operator topology on uniformly bounded subsets of M.

It is not hard to see that the completion of P with the distance (2) gives the positive (non-necesarily invertible, possibly
unbounded) operators of L p(M, τ ).

Remark 3.21. What is not clear, and we would like to know, is the structure of the completion of P p relative to its rectifiable
metric. In the finite-dimensional setting, it is well known that P p is a complete metric space with it. Certainly, it is not
a complete space: for consider x ∈ L p such that J x = x and x is an unbounded operator affiliated with M. For n ∈ N, let
pn be the spectral projection of x obtained from the finite interval [−n,n] ⊂ R, and let xn = xpn = pnx. Then it is easy to
check that xn ∈ M, x∗

n = xn , xnxm = xmxn for any n,m ∈ N and moreover ‖xn − x‖p → 0. Thus dp(exn , exm ) = ‖xn − xm‖p < ε
if n,m > n0, but exn cannot converge to a point in P .

3.3. Cördes inequality and convexity of the geodesic distance

The Cördes inequality for bounded operators on B(H) states that ‖etxety‖ � ‖exe y‖t for any self-adjoint x, y and
t ∈ [0,1]. It is equivalent to the inequality∥∥ln

(
etxe−2tyetx)∥∥ � t

∥∥ln
(
exe−2yex)∥∥,

which has a geometric interpretation [4]: it establishes the fact that the geodesic distance in the space of positive invert-
ible operators is a convex function. In our context it can be related to a well-known inequality due to Araki, Lieb and
Thirring [21].
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Lemma 3.22. Let x, y ∈ Mh. Then for any t ∈ [0,1], ‖ln(e
tx
2 e−tye

tx
2 )‖p � t‖ln(e

x
2 e−ye

x
2 )‖p .

Proof. See for instance [23] for a detailed proof. �
The following fact was proved in [24] by Lawson and Lim for Banach–Finsler manifolds, it still holds in our weak setting

due to the previous lemma.

Theorem 3.23. Let γa,b and γa,c be two short curves as in Remark 3.3, starting both at a ∈ P p . Let f (t) = dp(γa,b(t), γa,c(t)) be the
distance function among the two geodesics. Then f : [0,1] → R�0 is continuous and convex.

Proof. By the invariance of the metric, it will suffice to prove the theorem assuming a = 1, where f (t) = ‖ln(c
t
2 b−tc

t
2 )‖p .

It is continuous, since t �→ h(t) = ln(c
t
2 b−tc

t
2 ) is continuous as a map from [0,1] to M with the uniform topology, and

∣∣ f (s) − f (t)
∣∣ �

∥∥h(s) − h(t)
∥∥

p �
∥∥h(s) − h(t)

∥∥.

The convexity of f is equivalent to the inequality

f (t) = ∥∥ln
(
c

t
2 b−tc

t
2
)∥∥

p � t
∥∥ln

(
c

1
2 b−1c

1
2
)∥∥

p = t f (1)

for any t ∈ (0,1), which is exactly the claim of Lemma 3.22. �
Corollary 3.24. Let γa,b and γc,d be two short curves in P p as in Remark 3.3. Let g : [0,1] → R�0 be the distance among the two
geodesics. Then g is continuous and convex.

Proof. The map g is continuous by the same argument we used in the proof of the previous theorem. Now consider the
geodesic rectangle with vertices a,b, c,d, let γc,b be the short curve joining c to b in P p , and consider the triangle with
sides c,b,d and the geodesic triangle with sides b,a, c. Note that γc,b(t) = γb,c(1 − t) and the same holds for γa,b . Then, by
the triangle inequality

g(t) = dp
(
γa,b(t), γc,d(t)

)
� dp

(
γa,b(t), γc,b(t)

) + dp
(
γc,b(t), γc,d(t)

)
.

By the previous theorem dp(γc,b(t), γc,d(t)) � tdp(b,d), and also

dp
(
γb,c(1 − t), γb,a(1 − t)

)
� (1 − t)dp(a,b).

Adding these two inequalities yields the convexity of g . �
Corollary 3.25. Let a ∈ P p , and γb,c a short curve as in Remark 3.3. Then the distance map f : [0,1] → R�0 from the point a to the
curve γb,c is a continuous and convex function.

4. Uniform convexity and minimizers

The notion of uniform convexity for Banach spaces was introduced in [11], where Clarkson showed that the classical
measure spaces L p(Ω,μ) (1 < p < ∞) are uniformly convex. This notion can be translated to inner metric spaces. The
notion of midpoint map plays a fundamental role. Let (X,d) be a metric space. A midpoint map m : X × X → X is an
assignment satisfying

d
(
m(x, y), x

) = 1

2
d(x, y) = d

(
m(x, y), y

)
, ∀x, y ∈ X .

Definition 4.1. Let (X,d) be a metric space with a midpoint map m. Then X is uniformly ball convex if for all 0 < ε � 2
there exists δd(ε) > 0 such that for all x, y, z ∈ X satisfying d(x, y) > ε max{d(x, z),d(y, z)}, it holds

d
(
m(x, y), z

)
�

(
1 − δd(ε)

)
max

{
d(x, z),d(y, z)

}
.

The function δd is called the modulus of convexity of the space.
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4.1. Uniform convexity of P p , with 1 < p < ∞

Clarkson–McCarthy’s inequalities do hold in noncommutative L p spaces, as shown by Kosaki, see [20, Propositions 5.2
and 5.3]:

Proposition 4.2. Let a,b ∈ L p(M, τ ), 1 < p � 2, and 1/p + 1/q = 1. Then

(‖a + b‖q
p + ‖a − b‖q

p
) 1

q � 2
1
q
(‖a‖p

p + ‖b‖p
p
) 1

p .

If 2 � p < ∞ then

(‖a + b‖p
p + ‖a − b‖p

p
) 1

p � 2
1
q
(‖a‖p

p + ‖b‖p
p
) 1

p .

Lemma 4.3. For x, y ∈ L p(M, τ ), 1 < p � 2, and 1/p + 1/q = 1, we have

‖x‖q
p + ‖y‖q

p � 1

2

(‖x + y‖q
p + ‖x − y‖q

p
)
.

If 2 � p � ∞ then

‖x‖p
p + ‖y‖p

p � 1

2

(‖x + y‖p
p + ‖x − y‖p

p
)
.

Proof. First we consider p � 2. From the previous proposition, by setting a = x+y
2 and b = x−y

2 we obtain that

‖x‖q
p + ‖y‖q

p � 2

(
1

2p

)q/p(‖x + y‖p
p + ‖x − y‖p

p
)q/p = 21−q(‖x + y‖p

p + ‖x − y‖p
p
)q/p

.

Since q − 1 = q/p, and using the fact that the function f (t) = tq/p is convex on [0,+∞),

‖x‖q
p + ‖y‖q

p � 1

2

(‖x + y‖p
p
)q/p + 1

2

(‖x − y‖p
p
)q/p = 1

2
‖x + y‖q

p + 1

2
‖x − y‖q

p .

The case p � 2 is easier, just put a = x+y
2 , b = x−y

2 in Proposition 4.2 to obtain it. �
The following inequalities establish semi-parallelogram laws in P p . We use γt to indicate the point γ (t) ∈ P p , and q � 1

denotes the conjugate exponent of p as before, 1/p + 1/q = 1. In what follows, r � 2 indicates the following number: r = q
if p ∈ (1,2] and r = p if p ∈ [2,+∞). That is r = max{p,q}.

Theorem 4.4. Let a ∈ P p and γ : [0,1] → P p be a geodesic. Then if 1 < p � 2,

1

2q
dp(γ0, γ1)

q � 1

2

(
dp(a, γ0)

q + dp(a, γ1)
q) − dp(a, γ1/2)

q.

If 2 � p < ∞ then

1

2p
dp(γ0, γ1)

p � 1

2

(
dp(a, γ0)

p + dp(a, γ1)
p) − dp(a, γ1/2)

p .

Proof. Consider 2 � p < ∞. By the invariance of the metric, it suffices to consider the case γ1/2 = 1. Let γ0 = e y , γ1 = e−y ,
a = ex . Then dp(γ0, γ1) = �P p (γ ) = ‖2y‖p = 2‖y‖p , and ‖x‖p = dp(γ1/2,a). By the previous lemma and the exponential
metric increasing property of Corollary 3.15,

1

2p
dp(γ0, γ1)

p + dp
(
γ1/2, ex)p = ‖y‖p

p + ‖x‖p
p � 1

2

(‖x + y‖p
p + ‖x − y‖p

p
)

� 1

2

(
dp

(
ex, e y)p + dp

(
e−y, ex)p)

= 1

2

(
dp

(
ex, γ0

)p + dp
(
ex, γ1

)p)
.

The other inequality has an analogous proof and it is therefore omitted. �
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Corollary 4.5. For 1 < p < ∞ the metric space (P p,dp) is uniformly ball convex, and an admissible value for the modulus of convexity
δdp is

δdp (ε) = 1 −
[

1 −
(

ε

2

)r]1/r

= 1

r2r
εr + o

(
ε2r) � kεr,

which is increasing in (0,2].

Proof. From the previous inequalities follows that if dp(γ0, γ1) > ε max{dp(γ0,a),dp(γ1,a)}, then

dp(a, γ1/2)
r <

[
1 −

(
ε

2

)r]
max

{
dp(γ0,a),dp(γ1,a)

}r
. �

Note that the formula for the modulus matches those obtained by Clarkson for the L p measure spaces in [11].

4.1.1. Further inequalities on P p
Theorem 4.6. Let a ∈ P p , γ : [0,1] → P p a geodesic, 1 < p < ∞. Then there exists a positive constant bp such that if t ∈ [0,1], then

dp(a, γt)
r � (1 − t)dp(a, γ0)

r + tdp(a, γ1)
r − wr(t)bpdp(γ0, γ1)

r .

Here wr(t) = tr(1 − t) + t(1 − t)r .

Proof. It suffices to prove the assertion for t ∈ (0,1). Let f (t) = [ dp(a,γt )

dp(γ0,γ1)
]r on [0,1] and

h(t) = (1 − t) f (0) + t f (1) − f (t)

wr(t)
.

Then h is nonnegative in (0,1), since wr(t) > 0 in (0,1), and f is convex due to Corollary 3.25. It suffices to prove that the
nonnegative number bp := inf{h(t): t ∈ (0,1)} is strictly positive. Consider

h(t) =
⎧⎨
⎩

h(0+) if t = 0,

h(t) if 0 < t < 1,

h(1−) if t = 1,

where

h
(
0+) = lim

t→0+ h(t) = − f (0) + f (1) − f ′(0+)
,

and

h
(
1−) = lim

t→1− h(t) = f (0) − f (1) + f ′(1−)
.

Then h is continuous in [0,1] and it attains its minimum value bp = h(c) for some c ∈ [0,1]. We claim that bp is strictly
positive.

First assume that c ∈ (0,1). If h(c) = 0, then f (c) = cf (1) + (1 − c) f (0), and since f is convex and differentiable, it must
be f (t) = (1− t) f (0)+ t f (1) for any t ∈ (0,1), which it is not possible by Theorem 4.4. Now assume that c = 0 or c = 1, and
bp = h(0+) = 0 or bp = h(1−) = 0. With an analogous argument one obtains that f is a linear map, which again contradicts
Theorem 4.4. �
4.2. Projection to convex closed sets

Let us discuss the properties of the best approximation in convex sets in P p . We start with a brief discussion at the
tangent level.

4.2.1. Linear p-orthogonality
Let K ⊂ P be a convex exponential set. Let H be the tangent space of K at a = 1, namely K = exp(H) with H an LTS

(see Section 3). Then a1/2 Ha1/2 is the tangent space of K at a ∈ K . If p = 2, then H is clearly complemented. Let us show
how to construct a nonlinear supplement for K when 1 < p < ∞.

Since L p(M, τ )h is uniformly convex for 1 < p < ∞, there exists [19], for any closed convex (in the standard, linear
sense) set C in L p(M, τ )h , a (possibly nonlinear) continuous projection P C : L p(M, τ )h → C such that∥∥x − P C (x)

∥∥ � ‖x − y‖p for any y ∈ C,
p
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called the nearest point projection. Note that if C is a linear space and y ∈ C , then y′ = PC (x) + y ∈ C hence∥∥x − P C (x) − y
∥∥

p = ∥∥x − y′∥∥
p �

∥∥x − P C (x)
∥∥

p,

showing that PC ◦ (1 − PC ) = 0. Clearly (1 − PC ) ◦ PC = PC − P 2
C = 0 also, hence PC shares many nice properties with the

linear orthogonal projection corresponding to a norm derived from an inner product (which corresponds to p = 2 for us).

Definition 4.7. Let 1 < p < ∞. Let K ⊂ P p be a convex exponential set. Then Ha = a1/2 Ha1/2 is the tangent space of K at
a ∈ K if H = T1 K . Let P be the projection to H , and let

H⊥ = H⊥
1,p = {

v ∈ Lp(M, τ )h: P (v) = 0
}

be the Birkhoff orthogonal to H . Note that it may contain unbounded self-adjoint operators, i.e. elements of L p
h . Then

H⊥
a,p = a1/2 H⊥a1/2 = {

v ∈ Lp(M, τ )h: P
(
a−1/2 va−1/2) = 0

}
is the Birkhoff orthogonal of Ha in L p(M, τ )h . Any element x ∈ L p(M, τ )h can be uniquely decomposed as

x = x − Pa(x) + Pa(x) = x⊥
a,p + xa,p

where xa,p = Pa(x) is the projection to the completion of Ha relative to dp , and x⊥
a,p ∈ H⊥

a,p .

Lemma 4.8. Let K = exp(H) ⊂ P p be a convex exponential set. Then v ∈ H⊥
a,p if and only if

τ
[∣∣a−1/2 va−1/2

∣∣p−1
u∗w

] = 0 for any w ∈ H,

where a−1/2 va−1/2 = u|a−1/2 va−1/2| is the polar decomposition of a−1/2 va−1/2 .

Proof. It suffices to prove the assertion for a = 1 and v /∈ H . For given w ∈ H , consider f (t) = ‖v − t w‖p . The function f
is convex and its derivative can be computed with the chain rule and using a supporting functional for v (see, for instance
[1, Theorem 2.3]),

ḟ (0) = τ

( |v|p−1u∗w

‖v‖p−1
p

)

where v = u|v| is the polar decomposition of v . Then t = 0 is a minimum of f if and only if τ (|v|p−1u∗w) = 0.
Now if τ (|v|p−1u∗w) = 0 for any w ∈ H , then ‖v − w‖p = f (1) � f (0) = ‖v‖p for any w ∈ H , hence v ∈ H⊥ . Likewise,

if v ∈ H⊥ , for given w ∈ H , ‖v − t w‖p � ‖v‖p for any t ∈ R, which says that f has a minimum at t = 0, so it must be
τ (|v|p−1u∗w) = 0. �
4.2.2. Nonlinear minimization

Let us consider now the nonlinear projection in the manifold of positive operators (here 1 < p < ∞). Given the distance
dp in P p , the distance from a ∈ P p to a subset K ⊆ P p is defined according to dp(a, K ) = inf{dp(a,b): b ∈ K }.

Theorem 4.9. Let K = exp(H) ⊂ P p be a convex exponential set. Let b ∈ P p , b /∈ K . Then a ∈ K is the best approximation to b in K
relative to dp if and only if the short geodesic α joining a to b in P p has initial speed α̇(0) ∈ H⊥

a,p .

Proof. Let c ∈ K , let β be the short geodesic joining a to c in K (K is convex). Then f (t) = dp(b, β(t)) has a global
minimum at t = 0 if and only if a is a best approximation to b in K . Now f is convex by Corollary 3.25, hence t = 0
is minimum of f if and only if ḟ (0) = 0. We may assume (by the invariance of the metric) that a = 1. Let c = ex with
x ∈ H , let b = e y . Then β(t) = etx , and f (t) = ‖ln(e−y/2etxe−y/2)‖p = ‖α(t)‖p , where α(t) = ln(e−y/2etxe−y/2). Hence, since

α(0) = −y, ḟ (0) = ‖y‖1−p
p τ (|y|p−1u∗α̇(0)). Now eα = e−y/2etxe−y/2, hence (exp)∗α(α̇) = eαe y/2xe−y/2, so

e y/2xe−y/2 =
1∫

0

e−sαα̇esα ds

by Lemma 2.5. In particular (t = 0), e y/2xe−y/2 = ∫ 1
0 esyα̇(0)e−sy ds. Since y is self-adjoint, it commutes with |y| and u, and

also u = u∗ . Then

τ
(|y|p−1ux

) =
1∫
τ
(
esy|y|p−1uα̇(0)e−sy)ds = ‖y‖p−1

p ḟ (0). �

0
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The uniqueness of the best approximation P K (a) ∈ K , and the continuity of the map P K , can be easily derived adapting
the proofs of [14, Theorems 3.15 and 3.17] to our context.

Theorem 4.10 (Best approximation). Let K ⊂ P p be a convex set, 1 < p < ∞ and a ∈ P p . Then the best approximation problem has a
unique solution in the completion of K . In other words, there is a unique a0 in the completion of (K ,dp) such that dp(a,a0) = dp(a, K ).

Proof. Let {qn}n∈N be a sequence in K , such that dp(a,qn) → dp(a, K ), by Theorem 4.4 we immediately derive that

1

2r
dp(qn,qm)r � 1

2

(
dp(qn,a)r + dp(a,qm)r) − dp(a, K )r, (4)

where qn,m = γ1/2 ∈ K with γt the geodesic joining qn and qm .
This implies that {qn}n∈N is a Cauchy sequence in K , hence convergent to some a0 in its completion. By the continuity

of the distance we have

dp(a0,a) = lim
n→∞dp(qn,a) = dp(a, K ).

For the uniqueness, let b, c be in the completion of K with dp(b,a) = d = dp(c,a), with d = dp(a, K ). Let {bn}, {cn} be Cauchy
sequences in K converging to b, c respectively. Replacing qn and qm by bn and cn respectively in (4) we obtain

dr � dp(a,an)
r � 1

2

(
dp(bn,a)r + dp(a, cn)r) − 1

2r
dp(bn, cn)

r,

where an ∈ K is the midpoint of the geodesic of K joining bn to cn . Hence

1

2r
dp(bn, cn)

r � 1

2

(
dp(bn,a)r + dp(a, cn)r) − dr .

Letting n → ∞ shows that dp(bn, cn) → 0, hence b = c. �
Theorem 4.11. Let K ⊂ P p be a convex set, which is complete for the geodesic distance. Let 1 < p < ∞ and P K : P p → K the
projection onto K . Then P K is continuous.

Proof. Let the sequence xn converge to x in P p . Denote un = P K (xn), which we claim is a Cauchy sequence in K . If not,
there exist a positive number ε and subsequences unk and umk such that nk < mk and dp(unk , umk ) � ε for all k. Put ak = unk ,
bk = umk and Mk = max{dp(x,ak),dp(x,bk)}. Note that Mk → dp(x, K ) as k → ∞. Now dp(x,ak) � Mk , dp(x,bk) � Mk and
dp(ak,bk) � ε

Mk
Mk . Then, if mk ∈ K denotes the midpoint between ak,bk ∈ P p , by Corollary 4.5

dp(x, K ) � dp(x,mk) � Mk

(
1 − δdp

(
ε

Mk

))
.

Hence δdp (
ε

Mk
) � 1 − dp(x,K )

Mk
. Letting k → ∞, we obtain δ(ε) � 0, and ε cannot be positive. Thus {P K (xn)} is a Cauchy

sequence in K and therefore converges to a point z in K . Since dp(x, z) = dp(x, K ), then z = P K (x). �
Remark 4.12. With little effort, many of the results on this paper (for instance, minimality of the curves γa,b or the convexity
of the geodesic distance) can be extended to any tracial gauge norm on the finite von Neumann algebra M.
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