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Abstract

This paper studies the metric structure of manifolds of semi-negative curvature. Explicit
estimates on the geodesic distance and sectional curvature are obtained in the setting of
homogeneous spaces G/K of Banach–Lie groups, and a characterization of convex homogeneous
submanifolds is given in terms of the Banach–Lie algebras. A splitting theorem via convex
expansive submanifolds is proved, inducing the corresponding splitting of the Banach–Lie group
G. The notion of nonpositive curvature in Alexandrov’s sense is extended to include p-uniformly
convex Banach spaces, and manifolds of semi-negative curvature with a p-uniformly convex
tangent norm fall in this class of nonpositively curved spaces. Several well-known results, such as
the existence and uniqueness of best approximations from convex closed sets, or the Bruhat–Tits
fixed-point theorem, are shown to hold in this setting, without dimension restrictions. Finally,
these notions are used to study the structure of the classical Banach–Lie groups of bounded linear
operators acting on a Hilbert space, and the splittings induced by conditional expectations in
such a setting.

1. Introduction

The present paper is a derivation from the study of the classical Banach–Lie groups of compact
p-Schatten operators [4], where convexity methods have been applied to the study of the
rectifiable distance in spaces of unitary operators, that is, the elliptic case. Our concern in the
present paper are the cones of positive invertible operators derived from such operator ideals,
that is, the hyperbolic case.

The study of nonpositively curved spaces began with the work of Hadamard in the early years
of the last century and the work of Cartan about twenty years later. However, the foundations
of the theory of metric spaces with upper curvature bounds were laid in the 1950s with the
work of Alexandrov [1] and Busemann [13], who actually coined the term ‘nonpositively curved
space’. At the heart of their viewpoint (the use of conditions that are equivalent to nonpositive
sectional curvature in the Riemannian case, rather than sectional curvature itself) is the work
of Menger [33] and Wald [43], who introduced the notions and methods of curves in metric
spaces, geodesic length spaces and comparison triangles. These methods have been used with
great success in a wide variety of settings, especially since the work of Ballmann, Gromov and
Schroeder [9]. The link with smooth manifolds is given by the following elementary fact: if M
is a Riemannian–Hilbert manifold of semi-negative sectional curvature, then

‖(expx)∗v(w)‖ � ‖w‖
for any x ∈ M and v, w ∈ TxM (here (expx)∗ denotes the differential of the exponential map
of M). This condition is adopted in [36] by Neeb as a definition of semi-negative curvature
in the context of Banach–Finsler manifolds, one of the main results in that paper being a
Cartan–Hadamard theorem. In the special situation when M = G/K is an homogeneous space
of semi-negative curvature, a polar decomposition for G is also obtained that generalizes the
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MANIFOLDS OF SEMI-NEGATIVE CURVATURE 671

usual polar decomposition for the group B(H)× of invertible bounded operators in a Hilbert
space H. In this paper, we translate to the setting M = G/K several results on operator theory,
particularly results on the group of invertibles of C∗-algebras, that through time have been
established using operator–theoretic techniques. Our major concern are the splitting theorems
due to Porta and Recht [37], which can now be stated as splitting theorems for Banach–Lie
groups (Corollary 4.39). To establish such results, we give a detailed characterization of the
convex homogeneous submanifolds of M , which we think are interesting in their own right,
since an infinite-dimensional theory is still lacking.

Nonpositive curvature in the sense of Alexandrov states that sufficiently small geodesic
triangles in the inner metric space (X, d) are at least as thin as corresponding Euclidean
triangles. Equivalently X verifies the so-called CN-inequality of Bruhat and Tits [12]: for any
x ∈ X and any geodesic segment γ ∈ X, we have

1
4L(γ)2 � 1

2 (d(x, γ0)2 + d(x, γ1)2) − d(x, γ1/2)2,

provided γ is sufficiently close to x. If X is a 2-uniformly convex Banach space (in the sense
of Ball, Carlen and Lieb [8], that is there exists a positive constant C such that

2
(

1
C
‖v‖2 + ‖w‖2

)
� ‖v − w‖2 + ‖v + w‖2 (1.1)

for any v, w ∈ X), then the nonpositive curvature condition of Alexandrov holds for X if C � 1.
It has been observed that Banach spaces with a p-uniformly convex norm (p � 2) share many

of the nice properties of Hilbert spaces in spite of the fact that, generally speaking, they do not
verify Alexandrov’s definition of nonpositive curvature: in order to verify (1.1), a Banach space
has to be necessarily Euclidean [11, II.1.14]. Thus it is only natural to consider such Banach
spaces as a convenient generalization of Euclidean space, leading us to introduce the notion
of Alexandrov p-space, which is a geodesic length space that verifies the following geodesic
curvature condition:

1
(2K)p

L(γ)p � 1
2
(d(x, γ0)p + d(x, γ1)p) − d(x, γ1/2)p.

We show that if the Finsler norm of a manifold M of semi-negative curvature is p-uniformly
convex, then M can be regarded as an Alexandrov p-space.

Is the distance map between two geodesics, in a manifold of semi-negative curvature, a convex
function in this setting? This question was shown to have a positive answer by Lawson and Lim
[29], as part of their studies on symmetric spaces. What other properties (of a Riemann–Hilbert
manifold) can be translated to this context? for example, existence of best approximations from
convex sets, or the Bruhat–Tits theorem for groups of isometries. One of the purposes of this
paper is to answer some of the questions posed in Neeb’s paper, assuming in some cases that
the tangent norms of M are p-uniformly convex, thus dealing with the Alexandrov p-spaces
just introduced.

This paper is organized as follows. In Section 2, the reader can find the basic definitions
concerning Banach–Finsler manifolds with spray, and an account on the results in [36]. In
Section 3, we study manifolds M of semi-negative curvature with a p-uniformly convex tangent
norm, leading to the concept of Alexandrov p-space. We translate several results from the
Riemannian context to this setting, and we establish metric splitting theorems for M via
convex submanifolds C by means of the Birkhoff orthogonal to the tangent spaces TxC, where
x ∈ C. In Section 4 we drop the assumption on p-uniform convexity, and we establish some
general metric results on homogeneous spaces M = G/K of semi-negative curvature, such as
formulas for the geodesic distance and estimates of sectional curvature, and a characterization
of the different levels of convexity that arise in this setting. We conclude with a splitting
theorem for the homogeneous space M via expansive reductive submanifolds, which gives the
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672 CRISTIAN CONDE AND GABRIEL LAROTONDA

corresponding splitting of the Banach–Lie group G (Corollary 4.39), which is the main result
of this paper.

The specialization of these results to the positive cones of the classical linear groups
Gp(H) of invertible p-Schatten operators, which were our original concern, are included in the
Appendix, generalizing the typical scheme G = B(H)×, K = the group of unitary operators
of H. These constructions provide what we think are relevant examples of manifolds of semi-
negative curvature with a p-uniformly convex tangent norm. Conditional expectations in B(H)
provide a sufficient amount of expansive reductive submanifolds, inducing factorizations of
linear operators via C∗-subalgebras of B(H) (see Theorem A.3 in Appendix A.2).

2. Background

Let M be a Banach manifold with spray. Then M is a smooth manifold locally isomorphic to
a fixed Banach space, provided with a second-order vector field F : TM → TTM . A standard
reference on the subject is the book of Lang [25, IV.4]. Recall that such a field verifies π∗ ◦ F =
idTM , where π : TM → M is the projection map of the tangent bundle, and

F (sv) = (sM )∗sF (v) for any s ∈ R, v ∈ TM.

Here sM : TM → TM denotes the multiplication map v �→ sv by s ∈ R, and throughout this
paper f∗ : TX → TY indicates the differential of the smooth map f : X → Y . We use f∗x to
indicate the differential of f at x ∈ X.

Let v ∈ TM and let βv be the unique integral curve of F with initial condition v, that is
βv : I → TM , with βv(0) = v and

d

dt
βv = F (βv).

Let Dexp ⊂ TM stand for the set of vectors v such that βv is defined at least on the interval
[0, 1]. The exponential map exp : Dexp → M is defined accordingly to

exp(v) = π(βv(1)),

and the restriction of exp to each TxM will be denoted by expx. The geodesics of M at x with
initial speed w ∈ TxM are then given by α(t) = π(βv(t)), where v = (x,w) ∈ TM . Parallel
translation along α will be denoted as follows:

P t
s(α) : Tα(s)M −→ Tα(t)M.

A tangent norm on M is a map b : TM �→ R
+ whose restriction to each TxM is a norm, and

it is called a compatible norm if the topology induced by b on each TxM matches the topology
induced on it by the Banach space norm.

A Finsler manifold is a pair (M, b) of a Banach manifold M and a compatible norm b on
TM . In this paper we identify b with the subjacent norm ‖ · ‖x = b(x) of the Banach space,
and we measure the length of piecewise smooth curves γ : [a, b] → M with the usual rectifiable
length given by

Lb
a(γ) =

∫ b

a

‖γ̇‖γ dt,

and when γ is defined in I = [0, 1], we use L(γ) for short.
In this paper the term smooth means C1 and with nonzero derivative. The set of piecewise

smooth curves in M joining two points x, y ∈ M will be denoted by Ωx,y, and given by

Ωx,y = {γ : [0, 1] −→ M, γ is piecewise smooth, γ(0) = x, γ(1) = y},
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MANIFOLDS OF SEMI-NEGATIVE CURVATURE 673

and the distance between points in M is defined as the infimum of the lengths of the piecewise
smooth curves joining them, given by

d(x, y) = inf{L(γ), γ ∈ Ωx,y}.
Let Aut(M) = Aut(M, b) stand for the group of compatible automorphisms of M , which is
the set of diffeomorphisms ϕ of M such that b ◦ ϕ∗ = b. Then the distance defined above
is compatible in the sense that the induced topology matches the topology of M , and it is
invariant for the action of the automorphism group of M . See [42, Proposition 12.22] for a
proof of these facts.

A Finsler manifold with spray is a Finsler manifold such that the tangent norm b is invariant
under parallel transport along geodesics.

2.1. Cartan–Hadamard manifolds

In [36] Neeb established a definition of semi-negative curvature for Finsler manifolds with
spray, which we recall here. A Finsler manifold M with spray has semi-negative curvature if,
for any x ∈ M and v ∈ TxM ∩ Dexp, then we have the following:

(1) (expx)∗v is invertible;
(2) for any w ∈ TxM , we have

‖(expx)∗v(w)‖expx(v) � ‖w‖x. (2.1)

The following Cartan–Hadamard theorem can be found in [36, Theorem 1.10]:

Theorem 2.1. Let M be a connected Banach–Finsler manifold with spray with semi-
negative curvature. Then M is geodesically complete if and only if M is complete, and in
that case, for each x ∈ M , the exponential map expx : TxM → M is a surjective covering. In
particular if M is simply connected expx is an isomorphism for each x ∈ M .

Remark 2.2. Since M has semi-negative curvature, if Γ is a lift (to TxM) of a smooth
curve γ ∈ M , then

LTxM (Γ) � LM (γ). (2.2)

Indeed, since expx(Γ) = γ, then

‖γ̇‖γ = ‖(expx)∗Γ(Γ̇)‖expx(Γ) � ‖Γ̇‖x.

If γ is any smooth curve joining x to y in M , let Γ ⊂ TxM be the unique lift of γ such that
Γ(0) = 0. Then we have

L(γ) � L(Γ) � ‖Γ(1)‖x = L(γx,y),

where γx,y = expx(tΓ(1)). In particular, given two points x, y ∈ M , there exists a smooth curve
γx,y (which is a geodesic) such that γx,y is minimizing for the geodesic distance.

Remark 2.3. Caution: in spite of the fact that the distance function is convex in a
manifold of semi-negative curvature (Theorem 2.5), there might be other short (that is, distance
minimizing) curves; see Remark A.2 in the Appendix.

However, provided that the norm of TM is strictly convex, we have that

‖v + w‖ = ‖v‖ + ‖w‖ implies that v = λw for some λ ∈ [0,+∞),

the short curves being unique: Proposition 3.6 below proves this fact. We compare with
Corollary 6.3 in [25, Chapter VIII], where uniqueness is proved via the Gauss lemma in the
Riemann–Hilbert context.
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674 CRISTIAN CONDE AND GABRIEL LAROTONDA

Definition 2.4. A Cartan–Hadamard manifold is a simply connected complete Finsler
manifold M of semi-negative curvature.

The question of whether the distance function is convex or not in a Cartan–Hadamard
manifold was positively answered in [29]; we state this result.

Theorem 2.5. Let M be a Cartan–Hadamard manifold; let α and β be two geodesics.
Then the distance map f : [0, 1] → [0,+∞) given by

f(t) = d(α(t), β(t))

is convex.

Remark 2.6. Let (X, d) be a metric space, which is also a geodesic length space in the
sense that the distance of X can be computed via the infimum of the length of the rectifiable
arcs joining given endpoints in X (see [23, Section 2.2]). A geodesic length space is globally
nonpositively curved in the sense of Busemann if, for given geodesic arcs α and β starting at
x ∈ X, the distance map

t �→ d(α(t), β(t))

is a convex function. Then, by the theorem above, any Cartan–Hadamard manifold (M,d),
where d is the rectifiable metric given by the Finsler norms, can be regarded as a metric space
of nonpositive curvature in the sense of Busemann.

3. Metric problems

We begin this section with an elementary inequality (which can be found in the setting of
Riemannian manifolds in [25, Chapter IX, Corollary 3.10]). It will be useful later; it compares
the distance in M with the distance in the tangent linear space. We include a proof for the
convenience of the reader. In the context of positive invertible operators (see the Appendix) it
is known as the exponential metric increasing property.

Lemma 3.1. Let M be a Cartan–Hadamard manifold, let x ∈ M and let v, w ∈ TxM . Then
we have

‖v − w‖x � d(expx(v), expx(w)).

Proof. Let γ be any piecewise smooth curve in M joining expx(v) to expx(w). Then, by
Theorem 2.1, there exists a piecewise smooth curve Γ ⊂ TxM such that γ = expx(Γ), with
Γ(0) = v and Γ(1) = w. Now, since the differential of the exponential map is an isomorphism,
it follows that

‖w − v‖x = ‖Γ(0) − Γ(1)‖x =
∥∥∥∥
∫1

0

Γ̇(t) dt

∥∥∥∥
x

�
∫1

0

‖Γ̇(t)‖x dt =
∫1

0

‖(expx)−1
∗Γ (γ̇)‖x dt.

The last quantity inside the integral sign is, by (2.1), less than or equal to

‖γ̇(t)‖expx(Γ) = ‖γ̇(t)‖γ ,

and hence ‖w − v‖x � L(γ). Since γ is arbitrary, we obtain the asserted inequality.

 1460244x, 2010, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s/pdp042 by C

O
N

IC
E

T
 C

onsejo N
acional de Investigaciones, W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



MANIFOLDS OF SEMI-NEGATIVE CURVATURE 675

Problem 3.2. If one asks for equality to hold in the above lemma, then this imposes
a rigidity condition. In Theorem 4.13 we study this problem, in the setting of homogeneous
spaces. We would like to know if the following assertions hold in the general setting (here R(·, ·)
indicates the curvature tensor of M derived from the spray):

(1) R(v, w)span(v,w) ≡ 0 implies that equality holds in Lemma 3.1;
(2) If the tangent norms are strictly convex, and equality holds, then R(v, w) restricted to

span(v, w) vanishes.
This problem is closely related to [36, Problem 1.2].

Remark 3.3. Let x ∈ M . Given v, w ∈ TxM , for r > 0 let

sx(r, v, w) =
r‖v − w‖x − d(expx(rv), expx(rw))

r2d(expx(v), expx(w))
.

Milnor [34] observed that, in the Riemannian setting, sectional curvature can be obtained via
the limiting procedure

sx(v, w) =
1
6

lim
r→0+

sx(r, v, w).

Hence this limit (provided it exists) can be used as a suitable definition of curvature. In the
present setting, by the inequality in Lemma 3.1, one has

sx(r, v, w) � 0 for any r > 0.

Thus it seems only natural to ask if the limit exists, and if there are lower bounds. If M = G/K
is an homogeneous space, then the answer is affirmative; see Paragraph 4.1.3.

3.1. Uniform convexity and minimizers

Definition 3.4. Let (E, ‖ · ‖) be a Banach space. The modulus of convexity of E is the
nonnegative number

δE(ε) = inf{1 − 1
2‖x + y‖ : ‖x‖, ‖y‖ � 1, ‖x − y‖ � ε}.

A Banach space is uniformly convex if δE(ε) > 0 for any ε ∈ (0, 2]. A uniformly convex Banach
space is strictly convex (cf. Remark 2.3).

Remark 3.5. Assume that E is strictly convex. Then the unique short piecewise smooth
curves of E are the straight segments [18, Lemma 2.10]. That is, if γ is a piecewise smooth
curve in E joining 0 to v, and γ has length ‖v‖, then γ(t) = tv. See [18] also for examples of
infinitely many smooth curves joining given endpoints, in the setting of Banach spaces with a
norm that is not strictly convex.

Proposition 3.6. Let M be a Cartan–Hadamard manifold. If the norm of TM is strictly
convex, then the geodesics of M are the unique piecewise smooth short paths in M .

Proof. Let γ be a short curve in M , with γ(0) = x and γ(1) = y. Let Γ ⊂ TxM be such that
expx(Γ) = γ and Γ(0) = 0. Then L(Γ) � L(γ) = d(x, y) by (2.2). Let v = Γ(1) ∈ TxM and let
α(t) = expx(tv). Then we have

d(x, y) � L(α) =
∫1

0

‖α̇‖α dt = ‖v‖x
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676 CRISTIAN CONDE AND GABRIEL LAROTONDA

since α is a geodesic, and then L(Γ) � ‖v‖x. Since Γ joins 0 to v in TxM , by Remark 3.5, we
obtain that Γ(t) = tv, or in other words γ(t) = expx(tv).

Definition 3.7. We call M a p-uniformly convex Cartan–Hadamard manifold if there
exists a positive constant KM and a number p � 2 such that

2
(

1
Kp

M

‖v‖p
x + ‖w‖p

x

)
� ‖v + w‖p

x + ‖v − w‖p
x, (3.1)

for any x ∈ M and any v, w ∈ TxM .

By a result of Ball, Carlen and Lieb [8], a uniformly convex Banach space E has modulus
of convexity of power type p � 2 (that is, δE(ε) � Cεp) if and only if there exists a constant
KE > 0 such that a weak Clarkson inequality like (3.1) holds. Hence we assume that all the
tangent spaces of M are of power type p, with KTxM uniformly bounded by KM . This condition
guarantees uniform convexity and, in particular, strict convexity of the tangent norms.

This is a convenient generalization of the parallelogram law for the Riemannian metric of
Riemann–Hilbert manifolds, since it induces a strong convexity result analogous to the Gauss
lemma. Among the simplest examples of uniformly convex Banach spaces of power type p are
the usual Lp measure spaces of functions that were the original concern of Clarkson [14], and
their noncommutative counterpart, the Bp(H) spaces of compact Schatten operators.

In this section we prove the existence and uniqueness of minimizers in p-uniformly convex
Cartan–Hadamard manifolds, and give a geometrical characterization of them. In what follows,
for a given curve γ : I → M , we define γ(t) = γt for any t ∈ I. Then, if γ is a geodesic, γ1/2 is
the midpoint between γ0 and γ1.

Theorem 3.8. Let M be a p-uniformly convex Cartan–Hadamard manifold. Let x, y, z ∈
M and let γ be the geodesic joining y to z in M . Then we have

1
(2KM )p

d(y, z)p � 1
2
(d(x, y)p + d(x, z)p) − d(x, γ1/2)p. (3.2)

Proof. Let a = γ1/2 ∈ M . Note that d(a, z) = 1
2L(γ). Let v, w ∈ TaM be such that y =

expa(−v), z = expa(v) and x = expa(w). Then, by Lemma 3.1, we have

d(x, z)p = d(expa(w), expa(v))p � ‖v − w‖p
a

and also

d(x, y)p = d(expa(w), expa(−v))p � ‖v + w‖p
a.

Adding these quantities and using the definition of p-uniform convexity, we obtain the stated
inequality, since ‖v‖a = d(a, z) and ‖w‖a = d(a, x).

Remark 3.9. Let (X, d) be a geodesic length space [23]. Then X is said to be nonpositively
curved in the sense of Alexandrov if, for any x ∈ X and any geodesic segment γ ∈ X, we have

1
4L(γ)2 � 1

2 (d(x, γ0)2 + d(x, γ1)2) − d(x, γ1/2)2.

Nonpositive curvature in the sense of Alexandrov implies nonpositive curvature in the sense of
Busemann (see Remark 2.6 above for the definition of Busemann nonpositive curvature).
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MANIFOLDS OF SEMI-NEGATIVE CURVATURE 677

Definition 3.10. If (X, d) is a geodesic length space and there exists a positive constant K
such that (3.2) holds for any geodesic γ joining y, z ∈ X, then we say that X is an Alexandrov
p-space.

Let (X, d) be an Alexandrov p-space. A set C ⊂ X is called convex if, for given x, y ∈ C, the
unique geodesic γx,y of X joining x to y is fully contained in C.

Hence the semi-parallelogram law on M (Theorem 3.8) gives a link with the spaces of
nonpositive curvature as studied by Alexandrov, Ballman, Busemann, Gromov and others; see
[1, 13, 23]. Alexandrov p-spaces lie somewhere in between Busemann spaces and Alexandrov
spaces, since the metric of the manifold fulfills a strong inequality a la Alexandrov, but one
does not have the quadratic exponents.

Problem 3.11. Evidently Banach–Finsler manifolds M of semi-negative curvature with
a p-uniformly convex tangent norm are Alexandrov p-spaces, and in that setting the distance
between geodesics starting at a common point is a convex function. Is each Alexandrov p-space
(X, d) nonpositively curved in the sense of Busemann, for p > 2? The proof for p = 2 (see [23,
Corollary 2.3.1]) only gives

d(α(t), β(t))p � t2d(α(1), β(1))p +
(

1 − 1
Kp

)
(L(α)p + L(β)p).

for two geodesics starting at x ∈ X. Even for K = 1 this is not sufficient.

We now obtain the existence of (unique) minimizers from a convex set to any given point
outside it in the same fashion as in [23, Chapter 3], where it is done for Alexandrov spaces.

Theorem 3.12. Let (X, d) be an Alexandrov p-space. Let C ⊂ X be a convex closed set
in X and let x ∈ X. Then there exists a unique point xC ∈ C such that

d(xC , x) = min
y∈C

d(y, x) = d(C, x).

We call xC the best approximation of x in C.

Proof. Let D = d(C, x) be the distance between C and x. Let xn be a decreasing minimizing
sequence in C, that is limn→∞ d(xn, x) = D and

d(xn, x) � d(xn+1, x)

We claim that {xn} is a Cauchy sequence in C. Let γn,m : [0, 1] → M be the short geodesic
joining xn to xm in M , which is contained in C. Let m > n and let xn,m ∈ C be the middle
point of γn,m. Then, by the semi-parallelogram law in Theorem 3.8, we have

1
2
(d(xn, x)p + d(xm, x)p) − d(xn,m, x)p � 1

(2KM )p
d(xn, xm)p,

and D � d(xn,m, x) since C is convex, and hence

1
2
(d(xn, x)p + d(xm, x)p) − Dp � 1

(2KM )p
d(xn, xm)p,

which proves the claim.

 1460244x, 2010, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s/pdp042 by C

O
N

IC
E

T
 C

onsejo N
acional de Investigaciones, W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



678 CRISTIAN CONDE AND GABRIEL LAROTONDA

To prove uniqueness, assume that x1 and x2 are minimizers in C and let x12 be the middle
point. If we replace them again in the semi-parallelogram law, then we obtain

0 =
1
2
(Dp + Dp) − Dp � 1

2
(d(x1, x)p + d(x2, x)p) − d(x12, x)p � 1

(2KM )p
d(x1, x2)p.

Let (X, d) be an Alexandrov p-space, let x0 ∈ X and λ > 0 and let F : X → R ∪ {∞} be any
function. We define the Moreau–Yoshida approximation Fλ of F as follows:

Fλ = inf
y∈X

{λF (y) + d(x0, y)p}.

It is not hard to see, using (3.2), that if F is convex, lower semi-continuous, bounded from
below and not identically +∞, then, for every λ > 0, there exists a unique yλ ∈ X such that

Fλ = λ F (yλ) + d(x0, yλ)p. (3.3)

See [23, Lemma 3.1.2] for the details (done there for p = 2). Then the following result, using
our semi-parallelogram laws, has a proof almost identical to that in [23, Theorem 3.1.1], and
therefore we omit it.

Theorem 3.13. Let (X, d) be an Alexandrov p-space and let F : X → R ∪ {∞} be a convex
lower semi-continuous function that is bounded from below and not identically +∞. Let yλ be
constructed as in (3.3). If d(x0, yλn

) is bounded for some sequence λn → +∞, then {yλ}λ>0

converges to a minimizer of F as λ → ∞.

3.1.1. Bruhat–Tits fixed point theorem. The existence and uniqueness of minimal balls
is guaranteed by the generalized semi-parallelogram laws (Theorem 3.8), and from there one
obtains Bruhat–Tits fixed-point theorem and its usual corollaries. The proofs are straight-
forward and identical to the proofs of the case p = 2 (see for instance, [26, Section 3]), and
therefore we omit them. The contents of this section are related to [36, Problem 1.3(2)]. In
the following propositions M is an Alexandrov p-space (in particular, a Cartan–Hadamard
manifold with a p-uniformly convex tangent norm).

Proposition 3.14. Let S be a bounded subset of M . Then there exists a unique closed
ball Br(s1) ⊂ M of minimal radius r containing S. The center s1 ∈ S is called the circumcenter
of S.

Theorem 3.15 (Bruhat–Tits). Let G be a group of isometries of M . Suppose that G has a
bounded orbit (for instance, if G is finite). Then the orbit of G has a fixed point, for instance,
the circumcenter.

3.2. Metric splittings via convex submanifolds

In this section, we give a geometrical characterization of the best approximation xC ∈ C ⊂ M ,
where C is a convex and closed submanifold of a Cartan–Hadamard manifold M , and we state
a straightforward splitting of M via such submanifolds.

Definition 3.16. Let X be a Banach space and let S ⊂ X be a linear subspace. The
Birkhoff orthogonal S⊥ of S is given by

S⊥ = {v ∈ X : ‖v‖ � ‖v + s‖ for any s ∈ S}.
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MANIFOLDS OF SEMI-NEGATIVE CURVATURE 679

The Birkhoff orthogonal is the analog of the usual orthogonal in Hilbert spaces. However the
Birkhoff orthogonal does not necessarily have a linear structure [22].

Remark 3.17. Let C ⊂ M be a convex submanifold of a Cartan–Hadamard manifold. Let
z ∈ C and let x = expz(v), with v Birkhoff orthogonal to TzC. Since (by virtue of the convexity
of C), for any y ∈ C, we can write y = expz(s), with s ∈ TzC, it follows that

d(x, z) = ‖v‖z � ‖v − s‖z � d(expz(v), expz(s)) = d(x, y)

by Lemma 3.1. Thus if x ∈ M is reached by an orthogonal direction, then it has a closest point
in C.

Proposition 3.18. Let C ⊂ M be a submanifold of a Cartan–Hadamard manifold M . Let
x ∈ M and let z ∈ C. If z is the best approximation of x in C, then the initial speed of the
geodesic α joining z to x in M is orthogonal to TzC in the sense of Birkhoff. In addition, if C
is a convex submanifold, then these conditions are equivalent.

Proof. Assume that d(z, x) � d(y, x) for any y ∈ C, and we consider v = α̇(0), where α is
the short geodesic joining z to x in M . Let α̃(t) = α(1 − t) be the geodesic joining x to z.
Then α̃(t) = expx(t exp−1

x (z)) by the uniqueness of geodesics; thus exp−1
x (z) = ˙̃α(0) = −α̇(1),

and also P x
z (α)(v) = α̇(1) by parallel translation properties. Hence P x

z (α)v = − exp−1
x (z).

Let Av : TzM → TzM be the linear isomorphism given by P z
x (exp−1

x )∗z (recall that x =
expz(v)). Then Av is a contraction by the semi-negative curvature condition (2.1), and we
claim that Avv = v: the curve γ(t) = expx(P x

z (t − 1)v) is a geodesic of M with initial data
γ(0) = z and γ(1) = x, and hence γ(t) = α(t) and then we have

v = γ̇(0) = (expx)∗−P x
z vP x

z v,

which in turn implies that
P z

x (exp−1
x )∗zv = v.

Let w ∈ TzC and let β ⊂ C be any smooth curve such that β(0) = z, and ˙β(0) = w. Consider
the convex function g(t) = d(β(t), x): if z is the best approximation of x in C, then g′(0+) � 0.
Let vt = exp−1

x (β(t)). Then we have

g(t) = ‖vt‖x = ‖P z
x (α̃)vt‖z = ‖ − v + Avwt + o(t2)‖z � ‖ − v + Avwt‖z + o(t2),

since P z
x (α̃)v0 = P z

x (α̃) exp−1
x (z) = −v and v̇0 = (exp−1

x )∗zw. Now, since g(0) = ‖v‖z, it follows
that

0 � g′(0+) � ‖ − v + Avw‖z − ‖v‖z

by the convexity of the norm, and hence ‖v‖z � ‖ − v + Avw‖z for any w ∈ TzC. Then, since
v = Avv, it follows that

‖v‖z � ‖ − Avv + Avw‖z = ‖Av(−v + w)‖z � ‖v − w‖z

because Av is a contraction, and this shows that v is Birkhoff orthogonal to TzC. The last
assertion of the proposition follows from Remark 3.17.

Remark 3.19. In [37], Porta and Recht prove a splitting theorem for inclusions N ⊂ M
of C∗-algebras. In their proof, a key element is the natural linear supplement of the tangent
spaces of the submanifold, given by a conditional expectation E : M → N . However, in the
setting of p-uniformly convex Banach spaces, it is natural to replace linear supplements with
Birkhoff orthogonals.
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680 CRISTIAN CONDE AND GABRIEL LAROTONDA

Since the orthogonal directions in the tangent bundle play a relevant role, we define the
normal of C by

NC = {(x, v) : x ∈ C, v ∈ TxC⊥} ⊂ TM.

We denote by exp : TM → M , with exp(x, v) = expx(v) the exponential map of M .

Theorem 3.20. Let M be a p-uniformly convex Cartan–Hadamard manifold and let C be
a convex closed submanifold. Then exp : NC → M is a bijection that induces a differentiable
structure on NC which makes it diffeomorphic to M .

Proof. Let x ∈ M and let z ∈ C be the unique minimizer (Theorem 3.12), with D =
d(x,C) = d(x, z). Let α be the unique geodesic in M joining z to x. Let v be the initial
speed of α. Then x = expz(v). Note that ‖v‖z = D, and also that v is Birkhoff orthogonal
to TzC by the previous proposition; hence x = exp(z, v) and the map exp is surjective.
On the other hand, assume that M � x = expy(w) = expz(v) with (z, v), (y, w) ∈ NC . Let
D = d(x,C) = ‖v‖z = ‖w‖y. Then by convexity d(x, γ1/2) � D, and by inequality (3.2), we
obtain

1
(2KM )p

d(y, z)p � 1
2
(d(x, y)p + d(x, z)p) − d(x, γ1/2)p

=
1
2
Dp +

1
2
Dp − d(x, γ1/2)p � 0,

hence y = z and thus exp is injective. With the induced differentiable structure, exp is a global
isomorphism onto M , since its differential is everywhere invertible by hypothesis.

Corollary 3.21. Let C ⊂ M be a convex closed submanifold of a p-uniformly convex
Cartan–Hadamard manifold and let x ∈ M . Then there exists a unique z ∈ C and v ∈ TzC

⊥

such that ‖v‖z = d(x,C) and x = expz(v).

4. Homogeneous spaces

In this section we assume that M 
 G/K is an homogeneous reductive space, quotient of
Banach–Lie groups. The assumption on p-uniform convexity of the tangent norms is dropped.
First we recall basic facts, and then we include some considerations for the benefit of the reader.

A Banach–Lie group G with an involutive automorphism σ is called a symmetric Lie group
in [36]. Let g be the Banach–Lie algebra of G and let K = Gσ = {g ∈ G : σ(g) = g} be the
subgroup of σ-fixed points. Then the Banach–Lie algebra k of K is a closed complemented
subspace of g; the complement is given by the following closed subspace:

p = {v ∈ g : σ∗1v = −v},
since the Lie algebra k matches the set of σ∗1-fixed points (here and in what follows, 1 is
the neutral element of G). Hence K is a Banach–Lie subgroup of G, and the quotient space
M = G/K carries the structure of a Banach manifold. We indicate with q : G → M , g �→ gK
the quotient map and with Exp : g → G the exponential map of G. We use the short notation
ev = Exp(v) for v ∈ g whenever possible. Then q ◦ Exp : p → M is the natural chart around
o = q(1) ∈ M given by the exponential map of G, q ◦ Exp = expo ◦ q∗1, and a general geodesic
of M = G/K is given by

α(t) = getvK = q(getv)

for some v ∈ p. In particular, note that M is geodesically complete.
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MANIFOLDS OF SEMI-NEGATIVE CURVATURE 681

Let h ∈ G and let μh : M → M stand for μh(q(g)) = q(hg) = q(Lhg). Then we have

(μh)∗q(g)q∗g = q∗hg(Lh)∗g.

A generic point in M is denoted by q(g) for g ∈ G, and we identify p with ToM , and hence a
generic vector in Tq(g)M is indicated by (μg)∗ov for v ∈ p.

We use Adk to denote both the automorphism of g given by Adk(g) = kgk−1, and also its
differential (Adk)∗1 which is an element of B(g), the bounded linear operators acting on g.
Note that σ(Adk etv) = Adke−tv for any v ∈ p and k ∈ K; thus σ∗1Adkv = −Adkv, and hence
p is AdK-invariant.

Remark 4.1. Since σ is a group automorphism, it follows that σ∗1 is a Lie algebra
homomorphism, and the relations

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k

follow. In particular, p is ad k-invariant, as mentioned.
The bundle G ×K p identifies with TM via (g, v) �→ (q(g), (μg)∗ov), and the action of K is

given by (g, v) �→ (gk−1, Adkv).
Assume that f = gk for some k ∈ K, let x = q(g) = q(f), and assume that (μg)∗ov =

(μgk)∗ow ∈ TxM . From

(μg)∗ov = (μgk)∗ow =
d

dt

∣∣∣
t=0

q(gketw)

=
d

dt

∣∣∣
t=0

q(gAdketw) =
d

dt

∣∣∣
t=0

q(getAdkw) = (μg)∗oAdkw

we obtain v = Adkw. These considerations indicate that a natural way to make of M a Finsler
manifold is by

‖(μg)∗ov‖q(g) := ‖v‖p,

where ‖ · ‖p is any Adk-invariant norm on p. This definition makes parallel translation isometric,
since from [36, p. 135] it follows that parallel translation along a geodesic α(t) = q(getv) is
given by

P t
0(α) = (μgetvg−1)∗q(g).

Then the maps μh : M → M are tautologically isometries since

(μh)∗q(g)(μg)∗o = (μhg)∗o,

and the set I(G) = {μg}g∈G is a subgroup of the path-component of the identity of Aut(M)
which acts transitively on M .

Remark 4.2. Assume that G is connected. Then M = G/K is a connected and geodesically
complete Finsler manifold with spray. Assume that M has semi-negative curvature and let
exp : TM → M , such that

(g, v) −→ expq(g)((μg)∗ov) = q(gev)

stand for the exponential map of M , where we identified TM with G ×K p. In this context,
Theorem 2.1 says that any element x ∈ M can be written as x = q(gev) for some v ∈ p.

Remark 4.3. From now on, whenever possible, we omit the isomorphism (μg)∗o that
identifies p with TxM when x = q(g), and we write expx(v) = q(gev) for x ∈ M and v ∈ p
when there is no possibility of confusion. Let B(p) stand for the bounded linear operators
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682 CRISTIAN CONDE AND GABRIEL LAROTONDA

of (p, ‖ · ‖p). In [36, Lemma 3.10], the formula for the differential of the exponential map is
computed in a homogeneous space. Let F (z) = z−1 sinh z and recall the usual expression for
the exponential of the differential map

Exp∗v = (Lev )∗1

(
1 − e−ad v

ad v

)

for v ∈ g the Banach–Lie algebra of a Banach–Lie group G. Then we have

(expo)∗v = (μev )∗o
sinh ad v

ad v
= (μev )∗oF (ad v)

for any v ∈ p, since q∗ev = (μev )∗oq∗1, and q∗1 is essentially the identity on p and has kernel k.

We recall some related results for our general framework.

Remark 4.4. If Z is a Banach space, then an operator A ∈ B(Z) is called dissipative if

Re ϕ(Az) � 0

for some (or equivalently, any) ϕ ∈ Z∗ such that ϕ(z) = ‖z‖ and ‖ϕ‖ = 1. This condition is
equivalent to the fact that 1 − sA is expansive and invertible for any s > 0 (see [31]).

What follows is a useful semi-negative curvature criterion for homogeneous spaces, [36,
Proposition 3.15, Theorem 2.2].

Proposition 4.5. Let M = G/K be a homogeneous space with a norm ‖ · ‖p : p → R�0

that is AdK-invariant, and hence M can be regarded as a Finsler manifold. Then the following
statements are equivalent:

(i) M has semi-negative curvature;
(ii) for each v ∈ p, the operator Tv = −(adv)2|p is dissipative;
(iii) for each v ∈ p, the operator 1 + (adv)2|p is expansive and invertible;
(iv) for each v ∈ p, we have that F (ad v) = (sinh ad v/ad v) p is expansive and invertible in p.

Remark 4.6. By mimicking the proof of [36, Proposition 3.15], it is not hard to see
that any entire function G, with purely imaginary roots and such that G(0) = 1, induces by
functional calculus a bounded operator G(ad v) ∈ B(p), that is invertible and expansive and,
in particular, its inverse a contraction. We use this fact repeatedly for G(z) = cosh(z). See [28]
for further details on this technique.

We recall two more results on the fundamental group of M and polar decompositions from
[36, Theorems 3.14, 5.1]

Theorem 4.7. Let (G, σ) be a connected symmetric Banach–Lie group and let K = Gσ

be the subgroup of σ-fixed points. If M = G/K has semi-negative curvature, then we have the
following.

(i) The exponential map q ◦ Exp : p → M is a covering of Banach manifolds and

Γ = {z ∈ p : q(ez) = q(1)}
is a discrete additive subgroup of p ∩ Z(g), with Γ 
 π1(M) and M 
 p/Γ. Here Z(g) denotes
the center of the Banach–Lie algebra g. If v, w ∈ p and q(ev) = q(ew), then v − w ∈ Γ.
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MANIFOLDS OF SEMI-NEGATIVE CURVATURE 683

(ii) The polar map m : p × K → G, given by (v, k) �→ evk, is a surjective covering map whose
fibers are given by the sets {(v − z, ezk) : v ∈ p, z ∈ Γ, k ∈ K}.

4.1. Local metric structure and totally geodesic submanifolds

In what follows we assume that M = G/K is a complete and connected manifold of semi-
negative curvature. This whole section is dedicated to the study of the local metric structure
of M and the totally geodesic submanifolds of M .

4.1.1. Local convexity of the geodesic distance. First, by [23], we prove local convexity
results for the geodesic distance (recall that Theorem 2.5 was proved in [29] in the context of
simply connected manifolds).

Remark 4.8. Recall that Γ = exp−1
o {o} is a discrete additive subgroup of p ∩ Z(g), since

the differential of the exponential map is an isomorphism. Let κM ∈ (0,+∞) stand for the
maximum of the positive numbers r such that 0 ∈ p is the unique point of Γ in the open ball
of radius r around it. Note that κM = +∞ if and only if M is simply connected.

Note that ‖v − z0‖p < κM/2 for some z0 ∈ Γ means that ‖v − z0‖p < ‖v − z‖p for any z ∈
Γ − {z0}. This implies that, for any x, y ∈ M and d(x, y) < κM/2, there exists a unique v ∈ p
such that ‖v‖p = d(x, y) and y = expx(v). Indeed, take any v′ such that expx(v′) = y and then
replace v′ with v = v′ − z0, where z0 is the element of Γ closer to v′.

Moreover, α(t) = expx(tv) is the unique short geodesic joining x to y in M , for if β(t) =
expx(tw) is another geodesic, we consider z = v − w ∈ Γ, and if z �= 0, then we have

d(x, y) = L(α) = ‖v‖p < ‖v − z‖p = ‖w‖p = L(β) = d(x, y),

which is a contradiction. Note that κM is the diameter of the geodesic balls of (M,d).
With similar argumentation one can show that, for any given v, w ∈ p, if we put x = q(ev),

y = q(evew), then d(x, y) is given by ‖w − z0‖p, where z0 ∈ Γ is one of the (possibly many,
even infinite) elements of Γ closer to w. Then α(t) = q(evet(w−z0)) is a short geodesic joining
x to y.

Proposition 4.9. Let x, x′ ∈ M and let y = expx(v), y′ = expx(v′) = expx′(w), such
that d(x, y) = ‖v‖p, d(x, y′) = ‖v′‖p, d(x′, y′) = ‖w‖p. Let 0 < R < κM/4. Then we have the
following.

(i) If z0 ∈ Γ is closer to v − v′ than any other z ∈ Γ, then

‖v − v′ − z0‖p � d(y, y′).

In particular, if y, y′ ∈ B(x,R), then

‖v − v′‖p � d(y, y′).

(ii) If y, y′ ∈ B(x,R), then f : [0, 1] → [0,+∞)

f(t) = d(expx(tv), expx(tv′)),

which gives the distance between the two geodesics starting at x ∈ M , is a convex function.
(iii) The distance function between the two geodesics joining x to y and x′ to y′, given by

g(t) = d(expx(tv), expx′(tw)),

is also convex, provided that y, y′ ∈ B(x,R) and d(x′, y′) < R.
(iv) In particular, if γ is the short geodesic joining x′ to y′, then h(t) = d(x, γ(t)) is convex

and γ ⊂ B(x,R), provided that x′, y′ ∈ B(x,R).
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684 CRISTIAN CONDE AND GABRIEL LAROTONDA

Proof. We can assume that x = o. Let α be any piecewise curve joining y to y′ in M . Let
β be the piecewise smooth lift of α to p 
 ToM such that β(0) = v. Then there exists zα ∈ Γ
such that β(1) = v′ − zα. Hence we have

‖v − v′ − z0‖p � ‖v − v′ + zα‖p = ‖β(1) − β(0)‖p � L(β) � L(α),

where the last inequality is due to Remark 2.2. This proves the first assertion, since if y, y′ ∈
B(x,R), then ‖v − v′‖p � 2R < κM/2 and also z0 = 0, which proves (i).

We could prove (ii). Let α be a short geodesic joining y to y′, namely L(α) = d(y, y′) < 2R �
κM/2. If β ⊂ TxM is the lift of α such that β(0) = v, then

‖β(1) − v′‖p � ‖β(1) − β(0)‖p + ‖v − v′‖p � 2d(y, y′) < κM ,

and hence β(1) = v′. It will suffice to prove statement (ii) for t = 1/2, since f is continuous
and a standard argument with the dyadic numbers will complete the proof. Let α(t) = q(eβ/2).
Then certainly f(1/2) = d(q(ev/2), q(ev′/2)) � L(α) since α joins the same endpoints. Note that

α̇ = 1
2F (ad β/2)β̇,

and on the other hand, we have

α̇ = F (ad β)β̇ = 2F (ad β/2) cosh(ad β/2)β̇.

Hence α̇ = 1
2 cosh(ad β/2)−1α̇. By Remark 4.6, ‖α̇‖α � 1

2‖α̇‖α, and hence we have

L(α) � 1
2L(α) = 1

2d(y, y′) = 1
2f(1),

which proves (ii).
To prove (iii), note that g(t) � f(t) + f ′(t), where f is the function of item (ii) and f ′ is the

corresponding function for the geodesics starting at y′ and ending at x, x′, respectively. Then
f and f ′ are convex functions and we have

g(1/2) � 1
2 (f(1) + f ′(1)) = 1

2 (g(1) + g(0)).

The last statement follows choosing y = x, and then we have

h(t) = d(x, γ(t)) � td(x, x′) + (1 − t)d(x, y′) < R.

4.1.2. A formula for the geodesic distance. We use log : G ∩ U → g to denote the inverse
function of the exponential map of G (restricted to a suitable neighborhood U of 1 ∈ G to
obtain a diffeomorphism).

Since d(expx(rv), expx(rw)) = d(o, q(e−rverw)) for any x ∈ M and v, w ∈ p, and for small
r ∈ R, we have

d(expx(rv), expx(rw)) = 1
2‖ log(e−rve2rwe−rv)‖p.

Indeed, if γ(r) is a continuous lift of q(e−rverw) to p with γ(0) = 0, then ‖γ(r)‖p =
d(o, q(e−rverw)) and on the other hand we have

e2γ(r) = e−rve2rwe−rv.

Hence if r is small enough to ensure that the exponential is a local diffeomorphism, then we
have

2γ(r) = log(e−rve2rwe−rv).

Corollary 4.10. Let x ∈ M and v, w ∈ p. Let

R(v, w) = 1
12 [v + w, [w, v]] = 1

12

[
ad 2

w(v) − ad 2
v(w)

]
.
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MANIFOLDS OF SEMI-NEGATIVE CURVATURE 685

Then for small r ∈ R, we have

d(expx(rv), expx(rw)) = 1
2‖ log(e−rve2rwe−rv)‖p = 1

2‖ log(e−rwe2rve−rw)‖p

= ‖r(w − v) + r3R(v, w) + o(r4)‖p,

where log denotes the analytic inverse of the exponential map of G, defined in a suitable
neighborhood of 1 ∈ G.

Proof. The first two equalities follow from the previous discussion. Iterating the Baker–
Campbell–Hausdorff formula, one obtains

d(expx(rv), expx(rw)) = 1
2‖2r(w − v) + r3 2

12 [v + w, [w, v]] + o(r4)‖p

= ‖r(w − v) + r3 1
12 [v + w, [w, v]] + o(r4)‖p,

which holds for r small enough.

4.1.3. Sectional curvature. With the tools of the previous section we now return to the
subject matter of Remark 3.3.

Proposition 4.11. Let x ∈ M and v, w ∈ p. Let r > 0 and

sx(r, v, w) =
r‖v − w‖p − d(expx(rv), expx(rw))

r2d(expx(v), expx(w))
.

Then sx(v, w) = limr→0+ sx(r, v, w) exists and we have

0 � sx(v, w) � 1 − ‖v − w + R(v, w)‖p

‖v − w‖p
� −‖R(v, w)‖p

‖v − w‖p
.

In particular if R(v, w) = 0, then sx(v, w) = 0 for any x ∈ M .

Proof. Note first that by Corollary 4.10, we have

lim
r→0+

1
r
d(expx(rv), expx(rw)) = ‖w − v‖p.

Since a norm is a convex function, then

lim
r→0+

1
r2

(‖w − v‖p − ‖w − v + r2R(v, w) + o(r2)‖p

)

exists and it is infact equal to −Jv−w(R(v, w)), that is, (minus) the subdifferential of the norm
at the point v − w, computed in the direction of R(v, w). Moreover, we have

‖x‖p − ‖x − y‖p � Jx(y) � ‖x + y‖p − ‖x‖p.

For instance see [7, Proposition 4.1]. Then we have

lim
r→0+

1
r2

‖w − v‖p − ‖w − v + r2R(v, w) + o(r2)‖p � ‖v − w‖p − ‖w − v + R(v, w)‖p,

and thus sx(v, w) = limr→0+ sx(r, v, w) exists, is nonpositive, and by the computation above

sx(v, w) � 1 − ‖v − w + R(v, w)‖p

‖v − w‖p
.

The right-hand inequality stated in the proposition follows straight from the triangle
inequality.
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686 CRISTIAN CONDE AND GABRIEL LAROTONDA

4.1.4. On the distortion of the metric. We now assume for convenience that M 
 G/K is
simply connected. In our present setting, if we choose x = o, our concern now is the inequality
stated as follows:

‖v − w‖p � d(q(ev), q(ew)), (4.1)

where v, w ∈ p. We have seen that it implies that sectional curvature in G/K is nonpositive. If
v, w ∈ p commute, then the exponential of the linear span of v, w is a two-dimensional flat in M ,
and clearly equality holds in (4.1); this condition [v, w] = 0 is equivalent (by Jacobi’s theorem)
to the commutativity of the local flows of the Jacobi fields V and W (induced by v and w,
respectively). In the infinite-dimensional setting, one obtains a weaker notion made explicit in
the following theorems. The definitions and considerations of Remark 3.5 are used here.

Proposition 4.12. Let v, w ∈ p. If M = G/K is a Cartan–Hadamard manifold and the
norm ‖ · ‖p is strictly convex, then

‖v − w‖p = d(q(ev), q(ew))

implies that ad 2
v(w) = ad 2

w(v) = 0.

Proof. Let α be the short geodesic of M joining q(ev) with q(ew), α(t) = q(evetz) and
q(evez) = q(ew), where z is the unique lift to p of q(e−vew); note that ‖z‖p = d(q(ev), q(ew)) =
‖v − w‖p. Let γ be the unique lift to p of α, γ(0) = v and γ(1) = w; by Remark 2.2 we have

L(γ) � L(α) = ‖v − w‖p.

Since the norm of p is strictly convex, it must be γ(t) = (1 − t)v + tw, and hence we have

q(e(1−t)v+tw) = q(evetz).

Differentiating at t = 0 we obtain

(μev )∗oq∗1
1 − e−ad v

ad v
(w − v) = (μev )∗oq∗1z

by Remark 4.3, that is

F (ad v)(w − v) = z,

where F denotes the entire function F (z) = z−1 sinh(z) as before. Then ‖F (ad v)(w − v)‖p =
‖z‖p = ‖w − v‖p. If ϕ ∈ p∗ is the unique norming functional of w − v, since −ad 2

v is dissipative
by Proposition 4.5, it follows that

2‖w − v‖p = 2ϕ(w − v) � ϕ(2(w − v) +
1
π2

ad 2
v(w − v)) �

∥∥∥∥2(w − v) +
1
π2

ad 2
v(w − v)

∥∥∥∥
p

,

that is

2‖w − v‖p �
∥∥∥∥w − v +

(
1 +

1
π2

ad 2
v

)
(w − v)

∥∥∥∥
p

.

On the other hand, we have

‖w − v‖p �
∥∥∥∥
(

1 +
1
π2

ad 2
v

)
(w − v)

∥∥∥∥
p

� ‖F (ad v)(w − v)‖p = ‖w − v‖p

since

F (z) =
∏
n�1

(
1 +

z2

n2π2

)
=

(
1 +

z2

π2

) ∏
n�2

(
1 +

z2

n2π2

)
,
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MANIFOLDS OF SEMI-NEGATIVE CURVATURE 687

and each factor is an expansive operator, thus we have

‖w − v‖p =
∥∥∥∥
(

1 +
1
π2

ad 2
v

)
(w − v)

∥∥∥∥
p

.

Then ∥∥∥∥w − v +
(

1 +
1
π2

ad 2
v

)
(w − v)

∥∥∥∥
p

= ‖w − v‖p +
∥∥∥∥
(

1 +
1
π2

ad 2
v

)
(w − v)

∥∥∥∥
p

,

and since the norm is strictly convex and both elements have the same norm, it must be

w − v =
(

1 +
1
π2

ad 2
v

)
(w − v) = w − v +

1
π2

ad 2
v(w − v).

Interchanging w and v also gives ad 2
w(v) = 0.

Theorem 4.13. Let v, w ∈ p. Let M = G/K be a Cartan–Hadamard manifold and we
assume the following:

(i) [v, [v, w]] = [w, [v, w]] = 0;
(ii) ‖v − w‖p = d(q(ev), q(ew)).

Then (i) implies (ii), and if the norm of M is strictly convex, then (ii) is equivalent to (i).

Proof. The previous proposition gives (ii) ⇒ (i). On the other hand, if [v, [v, w]] =
[w, [v, w]] = 0, then by the Baker–Campbell–Hausdorff formula, we have

e−vew = ew−v−(1/2)[v,w] = ew−ve−(1/2)[v,w]

since higher-order commutators vanish. Thus q(e−vew) = q(ew−v), and if α(t) = q(evet(w−v)),
then α is the unique geodesic joining q(ev) to q(ew) in M , and hence d(q(ev), q(ew)) = ‖w − v‖p.

Remark 4.14. In the finite-dimensional setting, if [v, [v, w]] = [w, [v, w]] and B : g × g
denotes the Killing form of g (that is, B(x; y) = Tr(ad x ad y), where Tr denotes the usual
trace of B(g)), then we have

B([v, w]; [v, w]) = B(v; [w, [v, w]) = B(v; [v, [v, w]]) = B([v, w]; [v, v]) = 0.

Thus if g is semi-simple, the condition [v, [v, w]] = [w, [v, w]] implies that [v, w] = 0. From
Proposition 4.12 it follows that such a condition is guaranteed if

‖v − w‖p = d(q(ev), q(ew)),

and thus in this setting the (apparently weaker) metric condition is equivalent to the
commutativity of local flows and then to the presence of a two-dimensional flat. This line
of reasoning can be extended to the infinite-dimensional setting in the presence of a trace
(Hilbert–Schmidt operators or L∗-algebras); see [5] for full details.

Problem 4.15. Find necessary and sufficient conditions on the norm of p in order to ensure
that if v, w ∈ p and [v, [v, w]] = 0, then [v, w] = 0.

4.1.5. Totally geodesic submanifolds. Some of the results in the following proposition can
be originally found in [35], in the setting of the group of positive invertible n × n matrices. They
express the standard relation between totally geodesic submanifolds and Lie triple systems.
In the finite-dimensional (Riemannian) setting, the standard reference would be the book of
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688 CRISTIAN CONDE AND GABRIEL LAROTONDA

Helgason [21]. In [38], the authors study exponential sets in C∗-algebras with similar techniques
and recently, the results in [35] were extended to Hilbert–Schmidt operators [27].

Proposition 4.16. [(Exponential sets)] Let M = G/K be a connected manifold of semi-
negative curvature, where ToM 
 p. Let s ⊂ p be a closed linear space and let C = q(es). Then
we call C an exponential set because the following conditions are equivalent:

(i) [[v, w], s] ∈ s for any v, w, s ∈ s;
(ii) ad 2

s(s) ⊂ s for any s ∈ s;
(iii) F (ad v) = (sinh ad v/ad v) ∈ B(p) is an isomorphism of s for any v ∈ s;
(iv) if v, w ∈ s and β ⊂ ToM 
 p is a lift of α(t) = q(evetw) such that β(0) ∈ s, then β ⊂ s.

Proof. Let v, w, s ∈ s. Then we have

[[v, w], s] = −ad2
v−w(s) + ad2

v(s) + ad2
w(s)

by the Jacobi identity. This shows that (ii) is equivalent to (i).
Assume that (ii) holds; then certainly (iii) holds since the series expansion of F (z) =

z−1 sinh(z) has only even powers of z. If (iii) holds, then replacing v with tv yields

s � st = F (ad tv)w = w + 1
6 t2ad 2

v w + o(t4),

and hence 1
6ad 2

vw = limt→0((st − w)/t2) ∈ s.
Assume that (ii) holds and let v, w ∈ s. Consider the flow Fv,w : p → p given by

Fv,w(z) =
ad z

sinh(2 ad z)
cosh ad v(w).

Then Fv,w is a Lipschitz map, and if (ii) holds, then Fv,w(s) ⊂ s. We claim that if β(t) ∈ p

is the smooth lift of q(evetw) with β(0) = v, then β̇ = Fv,w(β), and this will prove that β ⊂
s by the uniqueness of the solution of the differential equation ẋ = Fv,w(x) in the Banach
space (s, ‖ · ‖p). To prove the claim β̇ = Fv,w(β), we write eγ = evetwk for some k(t) ∈ K. The
derivative of q(eβ) gives

(μeβ )∗oq∗1
1 − e−ad β

ad β
β̇,

and the derivative of q(evetw) gives

(μevetw)∗oq∗1w = (μevetw)∗ow = (μeβ )∗o(Adk−1w).

Then we have

q∗1
1 − e−ad β

ad β
β̇ = Adk−1w,

or since 1 − ex = 1 − cosh(x) + sinh(x) and q∗1(k) = {0} (and q∗1 is the identity on p), it follows
that

sinh(ad β)
ad β

β̇ = e−βevwe−veβ = e−ad βead vw.

Multiplying by ead β we obtain
e2 ad β − 1

ad β
β̇ = ead vw,

and applying q∗1 to both sides, we obtain
sinh(2 ad β)

ad β
β̇ = cosh(ad v)w,

showing that β̇ = Fv,w(β).
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MANIFOLDS OF SEMI-NEGATIVE CURVATURE 689

Assume that (iv) holds and let γs ⊂ s be as above; then q(eγs) = q(esvetw). Then by the
computation above, with t → 0, we obtain

s � γ̇s(0) =
ad sv

sinh ad sv
w = w − 4

3
s2ad 2

v w + o(s4).

Then − 4
3ad 2

v w = lims→0((γ̇s(0) − w)/s2) ∈ s, showing that (ii) holds.

Corollary 4.17. Let C = q(es) be an exponential set in M and let V ∈ p be an open ball
of radius strictly less than κM/2. Then we have the following:

(i) the charts (V ∩ s, expx V ∩s), for x ∈ C, give an atlas of C which makes of C an immersed
differentiable manifold C ⊂ M , with a topology that is possibly finer than the topology
of M ;

(ii) TxC = (μes)∗os for any x = q(es) ∈ C. In particular expx(TxC) = C for any x ∈ C, that
is, C is totally geodesic in M .

Proof. For the first statement note that expx(s) ⊂ C by Proposition 4.16, and that expx V

gives an isomorphism expx V : V → expx(V ) ⊂ M by Remark 4.8. Then the proposed charts are
bijective and, moreover, the transition maps give isomorphisms between open neighborhoods
of s since the exponential of M is a local isomorphism and s is a closed linear subspace of p
that (by Proposition 4.16) is stable for the action of the differential of the exponential map at
x = q(ev), given by F (ad v) = (sinh ad v/ad v) by Remark 4.2. Then C with the topology and
differentiable structure induced by the atlas is an immersed submanifold since s ⊂ p is closed.

The second assertion is elementary, and its proof follows combining (i) with Proposition 4.16.

Definition 4.18. Let [s, s] stand for the closure of the linear span of the elements [v, w] ∈ g,
where v, w ∈ s. Then s ∩ [s, s] = {0} since s ⊂ p and [s, s] ⊂ k. We agree to call a Banach–Lie
algebra gC ⊂ g involutive if σ∗1gC = gC , and a connected Banach–Lie group GC ⊂ G involutive
if σ(GC) = GC , or equivalently, if its Lie algebra is involutive.

Let p ∈ B(p) be an idempotent, i.e. p2 = p. Let s = Ran(p) and s′ = Ran(1 − p), and hence
p = s ⊕ s′. In this case, we say that s is split in p. We say that C = q(es) is a reductive
submanifold if C is totally geodesic and, in addition, ad 2

s(s
′) ⊂ s′.

See Remark 4.37 for a brief discussion on these definitions in the classical (Riemannian,
finite-dimensional) setting; see also item (vi) in the following proposition.

Remark 4.19. If GC ⊂ G is a connected involutive Banach–Lie group, with Banach–Lie
algebra gC ⊂ g, then σ allows us to write gC = pC ⊕ kC , where pC = p ∩ gC and kC = k ∩ gC .
Then q(GC) = q(epC ) ⊂ M is a totally geodesic immersed submanifold.

Proposition 4.20. Let M = G/K be a connected manifold with semi-negative curvature.
Let s ⊂ p be a closed linear space. Assume that ad 2

s(s) ⊂ s and let gs = s ⊕ [s, s]. Then we
have the following:

(i) gs is an involutive Banach–Lie algebra and it can be enlarged to a connected involutive
Banach–Lie group Gs ↪→ G;

(ii) let Ks = K ∩ Gs. If C = q(es), then Gs/Ks 
 C, and C is a totally geodesic immersed
submanifold of M ;

(iii) the group Gs acts isometrically and transitively on C;
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690 CRISTIAN CONDE AND GABRIEL LAROTONDA

(iv) M -parallel transport along geodesics in C preserves tangent vectors of C;
(v) C is a split submanifold if and only if s is split in p;
(vi) let ks = [s, s] and let KC ↪→ Gs stand for the Banach–Lie group generated by ks. Then

C is reductive if and only if AdKC
is a group of isometries of both s and s′;

(vii) if C is an embedded submanifold of M , then we find that Ks is a Banach–Lie subgroup
of Gs, that KC is the connected component of the identity of Ks and that Gs/Ks 
 C
as homogeneous spaces.

Proof. That gC is a Lie algebra follows from the Jacobi identity. Since it is a subalgebra of
g, which is the Banach–Lie algebra of the Banach–Lie group G, it can be integrated as claimed
[40], and this settles (i).

To prove (ii), note that if g ∈ Gs, then g =
∏

esieki , where si ∈ s and ki ∈ [s, s]. Then q(g) =
q(

∏
es′

i), where s′i ∈ s since

ekiesi+1eki+1 = eAd
eki

(si+1)ekieki+1 ,

and on the other hand Ade[v,w]s = ead[v,w]s ∈ s if v, w ∈ s by Proposition 4.16. Then there
exists s ∈ s such that q(g) = q(es) ∈ C by Proposition 4.16. Then q Gs gives the isomorphism of
Gs/Ks with C. That C is a totally geodesic immersed submanifold follows from Corollary 4.17.

To prove (iii), note that the transitive and isometric action of Gs is given by the maps μg,
with g ∈ Gs: if v ∈ s, then we have

μg(q(ev)) = q(gev) = q
(∏

esiekiev
)

= q(es′
iev′

)

by the argument above, where s′i, v
′ ∈ s, and then μg(q(ev)) ∈ C by Proposition 4.16.

To prove (iv), recall (Remark 4.1) that M -parallel transport along α(t) = q(esetv) is given by

(μeseve−s)∗q(es).

Then, if s, v ∈ s, parallel transport along α from α(0) = q(es) to α(1) = q(esev) of a vector
(μes)∗ow ∈ TxC gives (μesev )∗ow. By Proposition 4.16, there exists l ∈ s and k ∈ K such that
el = esev, and then we have

P 1
0 (α)(μes)∗ow = (μel)∗oAdkw.

However, Adkw = e−ad lead sead vw ∈ p ∩ gs, and hence Adkw ∈ s, which proves that P 1
0 (α)

maps Tα(0)C to Tα(1)C.
Item (v) is obvious: C is a split submanifold if and only if s is split in p.
To prove (vi), note that each k ∈ KC can be written as a finite product k =

∏
eli , with

li ∈ [s, s]. Then C is reductive if and only if s and s′ are ad [s,s]-invariant.
Finally, if C is an embedded submanifold of M , then qs = qs gives the topological

identification Gs/Ks = C, and inspection of the action of qs
∗1 shows that Ks is a Banach–Lie

subgroup of Gs with Banach–Lie algebra [s, s].

Proposition 4.21 (Locally convex sets). Let C = q(es) be an exponential set in M . Then
we call C a locally convex set because the following statements are equivalent:

(i) There exists 0 < ε < κM/2 such that if x, y ∈ C, d(x, y) < ε and α(t) = q(evetz) is the
unique short geodesic of M joining x to y, then z ∈ s and, moreover, α ⊂ C.

(ii) There exists 0 < δ < κM/2 such that d(Γ − Γ ∩ s, s) � δ.
(iii) There exists 0 < R < κM/2 such that if U = {v ∈ p : ‖v‖p < R}, then expx(U) ∩ C =

expx(U ∩ s) for any x ∈ C.
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MANIFOLDS OF SEMI-NEGATIVE CURVATURE 691

Proof. Assume that (ii) does not hold. Then, given 0 < ε < κM/2, there exists z0 ∈ Γ − s
such that d(z0, s) < ε/2. Take s ∈ s such that ‖s − z0‖p � ε. Let w = s − z0 /∈ s, x = o and
y = q(ew) = q(es) ∈ C. Then d(x, y) = ‖w‖p = ε by Remark 4.8, and hence α(t) = q(etw) is
the unique short geodesic of M joining x to y. However, α does not have initial speed in s, and
thus (i) does not hold.

Now assume that (ii) holds for some 0 < δ < κM/2 and let x = q(es) ∈ C. Take R = δ, and
note that the inclusion expx(U ∩ s) ⊂ expx(U) ∩ C always holds due to Proposition 4.16. Let
v ∈ U , and assume that q(esev) ∈ C, namely q(esev) = q(ew), with w ∈ s. Then there exists
s′ ∈ s (again due to Proposition 4.16) such that q(ev) = q(e−sew) = q(es′

). Then there exists
z ∈ Γ such that s′ − v = z. If z ∈ s, then we are done since q(esev) = q(eses′−z) ∈ expx(U ∩ s).
If z /∈ s, then δ � ‖s′ − z‖p = ‖v‖p < R = δ, which is absurd, and hence z ∈ s. This shows that
(ii) implies (iii).

Assume that (iii) holds for some R > 0 and let ε = R. Let x = q(ev) and y = q(ew) ∈ C
with d(x, y) < ε, let α(t) = q(evetz) be the unique short geodesic of M joining x to y, namely
‖z‖p = d(x, y) and let q(evez) = q(ew). Then, due to (iii), there exists s ∈ U ∩ s such that
q(evez) = q(evel), and hence there exists z0 ∈ Γ such that z − l = z0. Since ‖z0‖p � ‖z‖p +
‖l‖p < 2R, it follows that z0 = 0 and z = l ∈ s. That α ⊂ C follows from Proposition 4.16, and
thus we have shown that (iii) implies (i).

Corollary 4.22. Let C = q(es) be a locally convex set in M and let U ⊂ p be an open
ball around 0 of radius R, where R is as in Proposition 4.21. Then we have the following:

(i) The set C is an embedded submanifold of M , and expx U∩s : U ∩ s → C ∩ expx(U) is
a topological isomorphism when C is given the subspace topology. It is also a diffeomorphism
that gives an atlas that makes of M an immersed embedded submanifold of C.

(ii) With the induced spray and metric, C is a Banach–Finsler manifold with spray of
semi-negative curvature, with the exponential map expC

x = expx s given by restriction. The
fundamental group of C is given by Γs = Γ ∩ s, and C ⊂ M is a closed metric subspace.

(iii) If Ks = K ∩ Gs, then Ks is a Banach–Lie subgroup of Gs, and C 
 Gs/Ks as
homogeneous spaces.

Proof. That C is an embedded submanifold follows from the fact that if V ⊂ U is open in
p, then expx(V ) ∩ C = expx(V ∩ s), because expx(V ) ⊂ expx(U) and then (consider x = q(ev)
with v ∈ s) q(evez) ∈ C for z ∈ V implies that q(ez) = q(es) for some s ∈ U ∩ s, and thus z = s
since z, s ∈ U and 2R < κM .

That expx U∩s : U ∩ s → C ∩ expx(U) is a diffeomorphism follows from Proposition 4.21.
The second assertion follows from the fact that the norm of C is compatible since C and

M share the topology, and the exponential map of C is just the restriction of the exponential
map of M , and then at each point its differential is an invertible expansive operator. Then
Theorem 4.7 applies.

Now we prove that C ⊂ M is a closed subspace. If xn → x with xn ∈ C, then we take n0

such as d(xn, x) < R/2 for any n � n0. Let xn0 = q(evn0 ), and consider zn = μ−1
xn0

xn, and z =
μ−1

xn0
x. Since d(xn, xn0) < R, it follows that there exists vn ∈ s ∩ U such that xn = q(evn0 evn)

and ‖vn‖p = d(zn, o) < R. Then zn = q(evn) ∈ C, d(zn, z) → 0 and then d(zn, zm) < R. Hence
‖vn − vm‖p � d(zn, zm) by Proposition 4.9. Since s is complete, it follows that there exists
v0 ∈ s such that vn → v0. Let z0 = q(ev0) ∈ C. Then we have

d(z, z0) � d(z, zn) + d(zn, z0) = d(x, xn) + d(q(evn), q(ev0)),

and hence z = z0 ∈ C; thus x = μxn0
(z) ∈ C.

The last assertion follows from Proposition 4.20, since C is an embedded submanifold.
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692 CRISTIAN CONDE AND GABRIEL LAROTONDA

Proposition 4.23 (Convex sets). Let C = q(es) be a locally convex set in M . Then we
call C a convex set because the following statements are equivalent:

(i) C is geodesically convex: if x, y ∈ C, then any geodesic of M joining x to y is entirely
contained in C;

(ii) Γ is an additive subgroup of s;
(iii) For any x ∈ C, we see that expx(v) ∈ C implies that v ∈ s. In particular expx s is a

global chart of C, and C is an immersed embedded submanifold of M .

Proof. First assume that C is convex and let z ∈ Γ. Then α(t) = q(etz) joins o to o, and
hence α ⊂ C. In particular, since ToC = s by Corollary 4.22, we have α̇(0) = z ∈ s, and thus
Γ ⊂ s.

Assume now that Γ ⊂ s, let x = q(es) ∈ C and let v ∈ p such that q(esev) ∈ C, namely there
exists w ∈ s such that q(esev) = q(ew). Then, by Proposition 4.16, there exists s′ ∈ s such that
q(ev) = q(e−sew) = q(es′

). Since v − s′ ∈ Γ ⊂ s, it follows that v ∈ s.
Let x, y ∈ C and let α(t) = q(evetz) be a geodesic of M joining x = q(ev) to y. If (iii) holds,

then at t = 1 we obtain z ∈ s and then we have α ⊂ C by Proposition 4.16.

Corollary 4.24. Let C = q(es) be a convex submanifold in M . Then if v, w ∈ s and
β ⊂ ToM 
 p is any lift of α(t) = q(evetw), we have β ⊂ s.

Proof. Let β ∈ p be any lift of α(t) = q(evetw). If v, w ∈ s, then α ⊂ C by Proposition 4.16
and, moreover, q(eβ(0)) = q(ev) ∈ C. If C is convex, then (iii) holds in the above proposition,
and if we put x = o, then we obtain β(0) ∈ s, and we have β ⊂ s by Proposition 4.16.

4.2. Splitting theorems for expansive submanifolds

In this section, we prove straightforward generalizations of the results due to Corach, Porta
and Recht in [17, 37, 38] for C∗-algebras, and hence we would like to refer to these splitting
results as CPR splittings.

In what follows, we assume that M = G/K is connected, complete and of semi-negative
curvature. We also assume that C = q(es) is a locally convex reductive submanifold of M .

Definition 4.25. If C = q(es) is a locally convex reductive submanifold, and in addition
‖p‖ = 1, then we say that C is an expansive reductive submanifold of M .

Remark 4.26. Let p ∈ B(p) be an idempotent with ‖p‖ = 1. Then p = s ⊕ s′, where s =
Ran(p), s′ = Ker(p) and

‖s‖p = ‖p(s + s′)‖p � ‖s + s′‖p

for any s ∈ s and s′ ∈ s′. This shows that ‖p‖ = 1 if and only if s is a subset of the Birkhoff
orthogonal of s′, and there is a Banach space isometric isomorphism p/s′ 
 s when p/s′ is given
the quotient norm. Moreover, it easy to check that the following statements are equivalent:

(1) ‖p‖ = 1;
(2) s is the Birkhoff orthogonal of s′;
(3) 1 − p = Qs, where Qs indicates the metric projection to s.

Obviously the same assertions hold if we replace p with 1 − p and s with s′.
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MANIFOLDS OF SEMI-NEGATIVE CURVATURE 693

Definition 4.27. Vectors in s′ are normal directions, and a geodesic expx(tv) starting at
x ∈ C is a normal geodesic if v ∈ s′.

Lemma 4.28. Let 0 < R � κM/8 and let x0 ∈ C. Let x, y ∈ B(x0, R) ∩ C and let v, w ∈ s′

such that ‖v‖p, ‖w‖p < R. Let f : [0,+∞) → [0,+∞) be the distance between the two normal
geodesics, given by

f(t) = d(expx(tv), expy(tw)).

Then, if C is expansive, f is increasing. If f is increasing for any such x, y ∈ C and v, w ∈ s′,
then C is expansive.

Proof. As always we assume that x0 = o. Consider x = q(er) and y = q(es), with
‖s‖p, ‖r‖p < R. Then f(t) = d(q(eretv), q(esetw)) is a convex function by Proposition 4.9, and
it is increasing if and only if

f ′(0+) = lim
t→0+

f(t) − f(0)
t

� 0.

Let l0 ∈ s be such that q(el0) = q(e−res) and let ‖l0‖p = d(x, y) (such element exists by
Proposition 2.1). Let k ∈ K be such that el0k = e−res and let

β(t) = q(e−tve−resetw) = q(e−tvel0etw′
),

where w′ = Adk w ∈ s′. Note that d(o, β(t)) = f(t) � t‖v‖p + R + t‖w‖p < κM/2. Then, if
we consider lt ∈ p the smooth lift of β(t) to the ball B(0, κM/2) in p, we have q(elt) =
q(e−tvel0etw′

), and ‖lt‖p = d(o, β(t)) = f(t) since ‖lt‖p < κM/2.
Let ϕ0 ∈ p∗ be a linear functional such that ‖ϕ0‖ = 1 and ϕ0(l0) = ‖l0‖p = d(x, y), and let

ϕ = ϕ0 ◦ p. Then ϕ(s′) = {0}. Let g(t) = ϕ(lt). Note that g(0) = ϕ(l0) = f(0). If C is expansive,
then ϕ(lt) � f(t). Then we have

f(t) − f(0)
t

� g(t) − g(0)
t

,

for t > 0, and we will show that g′(0) = 0 to prove that f is increasing. From q(elt) =
q(e−tvel0etw′

) we obtain

sinh ad l0
ad l0

l̇0 = q∗1(−e−ad l0v + w′) = w′ − cosh(ad l0)v,

and hence we have

l̇0 = F−1(ad l0)w′ − H(ad l0)v,

with F (z) = z−1 sinh(z) and H(z) = z coth(z), which are both series in z2. Then we have

g′(0) = ϕ(l̇0) =
∑

αkϕ(ad 2k
l0 w′) −

∑
βkϕ(ad 2k

l0 v) = 0

since ad 2
l0(s

′) ⊂ s′.
Assume now that f is increasing for x = o and v = 0, and for given l0 ∈ s and w0 ∈ s′,

consider y = expx(l0) ∈ C. Assume first that ‖l0‖p, ‖w0‖p < R. Consider w = Adk−1w0. Then,
in the notation of the first part of the proof, w′ = w0 and

f(t) = ‖lt‖p = ‖l0 + tl̇0 + o(t2)‖p � ‖l0 + tl̇0‖p + o(t2),

and if f is increasing we have

0 � f ′(0+) � lim
t→0+

‖l0 + tl̇0‖p − ‖l0‖p

t
� ‖l0 + l̇0‖p − ‖l0‖p
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694 CRISTIAN CONDE AND GABRIEL LAROTONDA

by the convexity of the norm. By the computation above, l̇0 = F−1(ad l0)w0. Then

‖l0‖p � ‖l0 + F−1(ad l0)w0‖p = ‖F−1(ad l0)(l0 + w0)‖p � ‖l0 + w0‖p,

since F−1 is a contraction. If now l ∈ s and w ∈ s′, replacing them with a convenient positive
multiple, we obtain that ‖l‖p � ‖l + w‖p, and this shows that ‖p‖ = 1.

Lemma 4.29. The sets

sR ⊕ s′R = {v ∈ p : v = s + s′, s ∈ s, s′ ∈ s′, ‖s‖p, ‖s′‖p < R}
are open neighborhoods of 0 ∈ p.

Proof. Let s + s′ ∈ sR ⊕ s′R with ‖s‖p = R − δ and ‖s′‖p = R − δ′, and let

ε = min
{

δ

‖p‖ ,
δ′

1 + ‖p‖
}

.

We claim that B(s + s′, ε) ⊂ sR ⊕ s′R. Let t + t′ ∈ B(s + s′, ε); then

‖t‖p � ‖t − s‖p + ‖s‖p � ‖p‖‖t − s + t′ − s′‖p + R − δ < ‖p‖ε + R − δ < R,

and on the other hand we have

‖t′‖p � ‖t′ − s′‖p + R − δ′ � ‖t′ − s′ + t − s‖p + ‖t − s‖p + R − δ′

< ε + ‖p‖ε + R − δ′ < R.

Lemma 4.30. Let x0 = q(es0) ∈ C, R > 0 and

ΩR
x0

= {expy(v), y ∈ C, d(x0, y) < R, v ∈ s′, ‖v‖p < R}.
Let Ex0 : p → M be given by

Ex0(s + s′) = q(es0eses′
) = expy((μg)∗os

′),

where y = q(es0es) ∈ C and g = es0es. Then there exists ε > 0 (and strictly smaller than κM/8)
such that Ex0 : sε ⊕ s′ε → Ωε

x0
is a diffeomorphism, and in particular Ωε

x0
⊂ M is open. The set

NCε = {expy(v) : y ∈ C, v ∈ s′, ‖v‖p < ε}
is an open neighborhood of C in M .

Proof. Let α(t) = t(s + s′) with s + s′ ∈ p. Then Ex0 ◦ α(t) = q(es0etsets′
), and hence we

have
(Ex0)∗0(s + s′) = s + s′,

and thus by the inverse function theorem there exists an open neighborhood U of 0 ∈ p and
an open neighborhood V of x0 ∈ M such that Ex0 restricted to them is a diffeomorphism.
Shrinking, we can assume that U = sε ⊕ s′ε and then Ωε

x0
= Ex0(U). The last statement is due

to the fact that NCε =
⋃

x0∈C Ωε
x0

.

Remark 4.31. Assume that C is locally convex, reductive and expansive. Let expy(v) =
expy′(v′) ∈ Ωε

x0
, with y, y′ ∈ B(x0, R) and v, v′ ∈ s′ε. If ε < κM/8, then by Lemma 4.28, it is

clear that y = y′. Moreover v − v′ ∈ Γ but since ‖v − v′‖p � 2ε, it follows that v = v′.
Let πx0 : Ωε

x0
→ C ∩ B(x0, ε) be the local projection to C, such that πx0(expy(v)) = y. Then

by Lemma 4.30, if α ⊂ Ωε
x0

is the short geodesic starting at z = q(es0eses′
) with initial speed
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MANIFOLDS OF SEMI-NEGATIVE CURVATURE 695

w ∈ p and ‖w‖p = L(α), then α(t) = q(es0estevt) for some smooth curves st ∈ s and vt ∈ s′,
with s0 = s and v0 = s′. Hence πx0 ◦ α(t) = q(est), and it follows that (πx0)∗zw = F (ad s)ṡ0.
Since πx0 is a contraction by Lemma 4.28, it follows that

d(q(es0es), q(es0est)) = d(πx0(z), πx0(α(t))) � d(z, α(t)) = Lt
0(α) = t‖w‖p.

If γ is a smooth curve in s such that γ(0) = 0, q(eγ) = q(e−sest) and ‖γ‖p = d(q(e−s), q(est)),
then from t‖w‖p � ‖γ(t)‖p it follows that ‖F (ad s)ṡ0‖p � ‖w‖p, or equivalently, ‖(πx0)∗z‖ � 1.

Theorem 4.32. Let x0 ∈ C, let ε be as in Lemma 4.30 and consider

Ωx0 = {expy(v) : y ∈ C, d(y, x0) < ε, v ∈ s′}.
Let k ∈ N0 and let ηk : Ωε

x0
→ Ωx0 be ηk(expy(v)) = expy(2kv). Then the differential of ηk is

an expansive invertible operator. In particular, ηk is a local isomorphism.

Proof. As always we assume that x0 = o. Let z = expy(v) = q(esev) ∈ Ωε
x0

and let α(t) =
q(esevetw) for s + v ∈ sε ⊕ s′ε. Then for t small enough, α(t) ∈ Ωε

x0
, and so we consider β = η ◦ α

to compute η∗zw = β̇(0). Let st + vt ∈ sε ⊕ s′ε be such that α(t) = q(estevt), with s0 = s and
v0 = v. Then a straightforward but tedious computation yields

w =
sinh ad v

ad v
v̇0 + cosh(ad v)

sinh ad s

ad s
ṡ0 − sinh(ad v)

(
1 − cosh ad s

ad s

)
ṡ0.

Replacing vt with 2kvt yields

(ηk)∗zw =
sinh 2kad v

ad v
v̇0 + cosh(2kad v)

sinh ad s

ad s
ṡ0 − sinh(2kad v)

(
1 − cosh ad s

ad s

)
ṡ0.

Using the trigonometric identities sinh(2z) = 2 sinh(z) cosh(z), sinh2(z) + 1 = cosh2(z) and
cosh(2z) = cosh2(z) + sinh2(z), we obtain

(ηk)∗zw = 2 cosh(2k−1ad v)(ηk−1)∗zw − F (ad s)ṡ0.

From the previous remark, the last term matches with (πx0)∗zw. Now by Remark 4.6,
cosh(2k−1ad v) is an expansive invertible operator of p, and hence we have

(ηk)∗zw = cosh(2k−1ad v)
[
2(ηk−1)∗z − cosh−1(2k−1ad v)(πx0)∗z

]
w.

The proof is on induction on k. If k = 0, then there is nothing to prove since η0 = id. Then
assume that (ηk−1)∗z is expansive and invertible for any z ∈ Ωε

x0
. Then we have

(ηk)∗zw = cosh(2k−1ad v)(ηk−1)∗z

[
2 − (ηk−1)−1

∗z cosh−1(2k−1ad v)(πx0)∗z

]
w.

If u ∈ p and ϕ ∈ p∗ is any unit norming functional for u, then if we consider

Ak = (ηk−1)−1
∗z cosh−1(2k−1ad v)(πx0)∗z,

we obtain

ϕ (Aku − u) � ‖Aku‖p − ϕ(u) � ‖u‖p − ‖u‖p = 0,

which shows that Ak − 1 is a dissipative operator on p, and by Remark 4.4, the operator

1 − (Ak − 1) = 2 − (ηk−1)−1
∗z cosh−1(2k−1ad v)(πx0)∗z

is expansive and invertible in p. Then (ηk)∗z is also expansive and invertible. In particular ηk

is a local isomorphism by the inverse function theorem.
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696 CRISTIAN CONDE AND GABRIEL LAROTONDA

Theorem 4.33. Let C = q(es) be a locally convex expansive reductive submanifold in M .
Then Ωx0 is an open neighborhood of expx0

(s′) in M and

NC = {expx(v) : x ∈ C, v ∈ s′}
is an open neighborhood of C in M . The inequality d(ηkx, ηky) � d(x, y) holds for x, y ∈ Ωx0

sufficiently close.

Proof. Since Ωx0 = ∪k∈N0ηkΩε
x0

, it follows that Ωx0 is an open set in M . Clearly NC
contains C, and on the other hand NC is the union of open sets NC = ∪x0∈CΩx0 .

If α is a short geodesic joining ηkx to ηky, and x and y are close enough, then α ⊂ Ωx0 and
β = η−1

k ◦ α is a smooth curve in Ωε
x0

(for some ε > 0) joining x to y. Then we have

d(x, y) � L(β) � L(α) = d(ηkx, ηky).

Theorem 4.34 (CPR splittings for Cartan–Hadamard manifolds). Let C = q(es) be a
reductive expansive submanifold in M and assume that M is simply connected. Then, if v, w ∈
s′ and x, y ∈ C, the distance function f : [0,+∞) → [0,+∞) given by

f(t) = d(expx(tv), expy(tw))

is increasing. For each k ∈ N0, the map ηk : NCε → NC given by ηk expx(v) = expx(2kv) is
injective, and it is an isomorphism onto its image, with expansive differential. Moreover, NC =
M , namely

M = {expx(v) : x ∈ C, v ∈ s′},
and hence for any v ∈ p there exists a unique s ∈ s and a unique s′ ∈ s′ such that q(ev) =
q(eses′

). The projection map π : M → C is contractive for the geodesic distance.

Proof. If M is simply connected, then C is a closed, convex, embedded immersed submani-
fold of M by Corollary 4.22. In Lemma 4.28, we can take R = +∞ since κM = +∞. This proves
the first assertion, and moreover, it shows that ηk is injective. Then NC = ∪k∈N0η

kNCε ⊂ M
is an open set in M , and moreover π : NC → M is contractive by Remark 4.31, since
π(expy(v)) = π(expy(λv)) for real λ, and then the argument in that remark applies. To finish,
we claim that NC is closed in M , considering xn ∈ NC such that xn → x ∈ M . Then any xn

can be uniquely written as xn = expyn
(vn), with yn ∈ C and vn ∈ s′. Since π is a contraction

it follows that yn is a Cauchy sequence in C, and since C is closed in M , it follows that there
exists y0 ∈ C such that lim yn = y0. Then, by Lemma 3.1, we have

‖vn − v0‖p � d(q(evn), q(ev0)) = d(expyn
(vn), expyn

(v0)) = d(xn, expyn
(v0)).

Letting n → ∞ gives vn → v0 ∈ s′, and then x = lim xn = lim expyn
(vn) = expy0

(v0) ∈ NC.

Problem 4.35. We extend the results of Theorem 4.34 to arbitrary Cartan–Hadamard
manifolds (that is, the general setting of Subsection 3.1).

The relationship between this last result and Theorem 3.20 of Subsection 3.2 is presented in
the following theorem.

Theorem 4.36. Let C = q(es) ⊂ M be an expansive reductive submanifold, let z ∈ NC,
z = expx(v) for some x ∈ C, v ∈ s′ and assume that ‖v‖p = d(x, z) � κM/8. Then x is (locally)
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MANIFOLDS OF SEMI-NEGATIVE CURVATURE 697

the best approximation to z in C if and only if ‖1 − p‖ = 1. In that situation, clearly we find that

d(z, C ∩ B(z, κM/8)) = ‖v‖p.

Proof. Assume first that ‖1 − p‖ = 1. Since the action of Gs is transitive and isometric on
C, we can assume that x = o, and hence z = q(ev). Let y = q(er) ∈ C, with r ∈ s such that
‖r‖p = d(x, y) � κM/8. Then d(z, y) � κM/4 and

d(x, z) = ‖v‖p = ‖(1 − p)(v − r)‖p � ‖v − r‖p � d(q(ev), q(er)) = d(x, y),

where the last inequality follows from Proposition 4.9.
On the other hand, if d(x, o) � d(x, y) for any y ∈ C ∩ B(x, κM/8), consider the function

f(t) = d(q(ev), q(ets)), with f : [0,+∞) → (0,+∞) and s ∈ s, with ‖s‖p � κM/8. Then the
claim implies that f has a local minimum at t = 0. In particular, f ′(0+) � 0. As in the proof of
Lemma 4.28, we obtain f(t) = ‖γ(t)‖p, where q(eγ) = q(e−vets), with γ(0) = −v and γ̇(0) =
G(ad v)s. Hence we have

0 � f ′(0+) � ‖ − v + G(ad v)s‖p − ‖v‖p,

and then ‖v‖p � ‖ − v + s‖p for any s ∈ s small enough, and thus replacing v and s with
convenient multiples, we obtain ‖1 − p‖ = 1.

Remark 4.37. In the setting of finite-dimensional (Riemannian) symmetric spaces M =
G/K, a symmetric submanifold C ⊂ M is a submanifold such that there exists an involutive
isometry ε0 of M such that ε0(K) = K, ε0(C) = C and (ε0)∗(v) = (−1)jv, with j = 0 if v ∈
ToC

⊥ and j = −1 if v ∈ ToC. In this context, it is easy to see that a submanifold is symmetric if
the supplement s′ of its tangent space s at o = q(1) is a Lie triple system, that is ad s′(s′) ⊂ s′.
A submanifold C ⊂ M is called reflective if it is both totally geodesic and symmetric. In the
Riemannian setting, if s′ = s⊥, one also has the dual relations given by

ad 2
s′(s) ⊂ s, ad 2

s(s
′) ⊂ s′

due to the fact that ad 2
v is self-adjoint for any v ∈ p. Hence any reflective submanifold is

reductive.
In our infinite-dimensional setting, it is natural to consider, given a Cartan–Hadamard

manifold M = G/K, a second involutive automorphism τ of G which commutes with σ. Let

u+ = {v ∈ g : τ∗1v = v}, u− = {v ∈ g : τ∗1v = −v}.
Then if we consider s = p ∩ u− and s′ = p ∩ u+, the conditions

ad 2
s(s) ⊂ s, ad 2

s(s
′) ⊂ s′ (4.2)

are automatically fulfilled, and thus C = q(es) is a reductive submanifold according to our
previous Definition 4.25.

If we define τ0 : M → M as the involution given by τ0(q(g)) = q(τ−1(g)), then if M is simply
connected, we can compute τ0(q(ev)) = q(e−τ∗1v) for any v ∈ p, and C is the set of τ0-fixed
points. If τ0 is an isometry of M , since this is equivalent to the fact that τ∗1 p is an isometry of
p, it follows that the reductive submanifold C ⊂ M is expansive according to Definition 4.25,
due to the fact that the projection p onto s is given by p = (1 − τ∗1 p)/2. Moreover, since
1 − p = (1 + τ∗1 p)/2, it implies that the normal bundle gives the best approximation from C.
Hence isometric involutions τ that commute with σ induce reductive submanifolds for which
Theorems 4.34 and 4.36 apply, inducing a metric splitting as in Corollary 3.21 of Subsection 3.2.
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698 CRISTIAN CONDE AND GABRIEL LAROTONDA

Remark 4.38. If C = q(es) is a reflective submanifold, in the sense that

ad 2
s(s) ⊂ s, ad 2

s(s
′) ⊂ s′, ad 2

s′(s) ⊂ s, ad 2
s′(s′) ⊂ s′,

then one obtains that NC = {expx(v) : x ∈ C, v ∈ s′} is open in M with a more direct proof.
One has to observe that if v = s + s′ ∈ p and w = t + t′ (here s, t ∈ s and t, t′ ∈ s′ as usual),
then the map E : p → M , of Lemma 4.30 given by E(v) = q(eses′

) has its differential in the
form of a block matrix relative to s ⊕ s′ given by

E∗vw =

⎛
⎜⎜⎜⎝

cosh(ad s′)
sinh(ad s)

ad s
0

sinh(ad s′)
(cosh(ad s) − 1)

ad s

sinh(ad s′)
ad s′

⎞
⎟⎟⎟⎠

⎛
⎝ t

t′

⎞
⎠ .

Then E is a local isomorphism at any v ∈ p, and thus E(p) is open in M .

4.2.1. CPR splittings for Banach–Lie groups. Let (G, σ) be an involutive Banach–Lie
group. Let τ = σ∗1, g = p ⊕ k be the τ -decomposition of g. Assume that the Banach–Lie algebra
g has a compatible norm b that makes −ad 2

v p dissipative for each v ∈ p. We say that (G, τ)
satisfies semi-negative curvature. According to Proposition 4.5, this last condition is equivalent
to the fact that M = G/K is a Banach–Finsler manifold with spray of semi-negative curvature.

Combining Neeb’s result on the polar map (Theorem 4.7) with Theorem 4.34, we obtain our
fundamental result on polar decompositions relative to reductive submanifolds.

Corollary 4.39. Let C = q(es) be an expansive reductive submanifold of a Cartan–
Hadamard homogeneous space M = G/K. Then the map

(q(es), s′, k) �−→ eses′
k

induces an isomorphism C × s′ × K 
 G.
Assume that C is also reflective. If we put C ′ = q(es′

), then C ′ is a reductive submanifold
of M and we obtain an isomorphism as follows:

G 
 C × C ′ × K.

If g = eses′
k ∈ G, then one obtains ‖s‖p = d(q(g), C ′). Moreover ‖s′‖p = d(q(g), C) if and only

if ‖1 − p‖ = 1, that is, if and only if C ′ is also expansive.

4.3. Positive elements

For a symmetric Banach–Lie group (G, σ) one has the natural involution ∗ : G → G given by
g∗ = σ(g−1) = σ(g)−1. It allows one to write down the quotient map in a concrete way as
P : G → G, such that P (g) = gg∗ (note that the isotropy of 1 ∈ G is just K = the fixed-point
set of σ). Thus M := P (G) 
 G/K has a natural structure of Finsler manifold with spray,
under the usual hypothesis.

The set P (G) is the set of positive invertible elements when G is one of the so-called classical
Banach–Lie groups (see the Appendix). In this picture, the geodesics of M are given by

α(t) = eve2tzev.

Let Gs stand for the set of invertible self-adjoint elements, g∗ = g, that is

Gs = {g ∈ G : σ(g) = g−1}.
Then the natural action of G on Gs is a �→ gag∗.
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MANIFOLDS OF SEMI-NEGATIVE CURVATURE 699

If G = B(H)× is the subgroup of invertible elements of B(H) (the bounded linear operators
on a Hilbert space H), then this action defines Banach homogeneous spaces Gs,a, the orbits
of a ∈ Gs; the existence of smooth local sections is essentially given by the square root of
B(H); see [17, Proposition 1.1] for the details. Via polar decomposition, one has the projection
π : Gs → Ks, where Ks is the set of reflections of G, that is, the set of self-adjoint elements of
K. That is, we write g = evk, where v ∈ p and k ∈ K (see Theorem 4.7), and for g ∈ Gs, we
consider π(g) = k. If G = B(H)×, then this fibration π has very nice properties, for instance,
its differential is a contraction [17, Theorem 5.1], a fact related to the geodesic structure of
the group of reflections Ks.

Appendix. Examples and applications

Here we indicate some applications to operator theory. We concentrate on operators ideals
and we omit other relevant examples such as bounded symmetric domains and JB∗-algebras.
See [36, Section 6] for a further discussion on these topics. An account of the applications for
finite von Neumann algebras analogous to those studied in [3] in the Riemannian situation,
can be found in [16].

A.1. Operator algebras

Let B(H) stand for the set of bounded linear operators on a separable complex Hilbert space
H, with the uniform norm denoted by ‖ · ‖. Let ‖ · ‖I : B(H) → R+ ∪ {∞} be a norm and let
I stand for the set of operators with finite norm, that is

I = {x ∈ B(H) : ‖x‖I < ∞}.
Further it is assumed that

(1) ‖xyz‖I � ‖x‖ ‖y‖I ‖z‖ for any y ∈ I and x, z ∈ B(H).
(2) (I, dI) is a complete metric space, where dI(x, y) = ‖x − y‖I .
Then I is a complex self-adjoint ideal of compact operators in B(H); the standard reference

on the subject is the book of Gohberg and Krein [19]. If y �→ y∗ denotes the usual involution of
B(H), then it is easy to check whether ‖y∗‖I = ‖y‖I and further whether the norm is unitarily
invariant in the sense that

‖uyv‖I = ‖y‖I
for any y ∈ I and u, v ∈ B(H) unitary operators.

Remark A.1. Elementary examples of symmetrically normed ideals are given by the
Schatten ideals Bp(H) of operators, defined by the p-norms in B(H) (1 � p < ∞) by

‖v‖p
p = tr|v|p = tr((v∗v)p/2),

where tr is the infinite trace of B(H). Elements of Bp(H) are compact operators whose spectra
are lp summable. One has the inequalities

‖v‖ � ‖v‖p � ‖v‖q � · · · � ‖v‖1

for p � q, and the inclusions

B1(H) ⊂ · · · ⊂ Bq(H) ⊂ Bp(H) ⊂ · · · ⊂ K(H),

where K(H) denotes the ideal of compact operators. The trace map (v, w) �→ tr(vw∗) induces
the duality Bp(H)∗ = Bq(H) for 1/p + 1/q = 1 and 1 < p < ∞. Moreover, K(H)∗ = B1(H) and
B1(H)∗ = B(H). The Bp(H) spaces are 2-uniformly convex for p ∈ (1, 2] and p-uniformly convex
for p ∈ [2,+∞), due to McCarthy’s inequalities [32].
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700 CRISTIAN CONDE AND GABRIEL LAROTONDA

Let GI stand for the group of invertible operators in the unitized ideal, that is

GI = {1 + x : x ∈ I, Sp(1 + x) ⊂ R
∗},

where Sp denotes the usual spectrum of an element in B(H). Equivalently

GI = {g ∈ B(H)× : g − 1 ∈ I}.
Then GI is a Banach–Lie group (one of the so-called classical Banach–Lie groups [20]), open
in I with the inherited topology, and I identifies with its Banach–Lie algebra; it suffices to
prove that a neighborhood of 1 ∈ GI is isomorphic to I. To prove these statements, consider
the usual analytic logarithm: for ‖g − 1‖I < 1 consider log(g) =

∑
k(1 − g)n. Then if g ∈ GI

is such that ‖g − 1‖I < 1, we have x = log(g) ∈ I and ex = g.
Let Ih stand for the set of self-adjoint elements in I and consider MI the cone of positive

invertible elements in the unitized ideal, that is, elements with positive spectrum given by

MI = {1 + x : x ∈ Ih, Sp(1 + x) ⊂ (0,+∞)}.
Consider the involutive automorphism σ : GI → GI given by g �→ (g∗)−1. Let UI ⊂ GI

stand for the unitary subgroup of fixed points of σ. Its Banach–Lie algebra is the set of skew-
adjoint elements of I, and I = Ih ⊕ iIh. The quotient space GI/UI can be identified with MI

via q : GI → MI given by q(g) = gg∗ as in Subsection 4.3.
We claim that the unitarily invariant norm of I makes of (GI , σ) a semi-negative curvature

group. We use the criteria of Proposition 4.5 as follows:

‖eiad xv‖I = ‖Adeixv‖I = ‖eixve−ix‖I = ‖v‖I
for any x, v ∈ Ih; then 1 − it ad x is expansive and invertible for any t > 0, and hence 1 + t ad 2

x

is expansive and invertible for any t > 0, proving that −ad 2
x is dissipative for any x ∈ Ih.

Thus the positive cone MI 
 GI/UI can be regarded as a complete manifold of semi-
negative curvature, since it is geodesically complete. Moreover, since Z(I) = {0} for a proper
ideal I, it follows that MI is simply connected and exp : Ih → MI is an isomorphism.

The unique geodesic of MI joining positive invertible a, b ∈ MI is short and is given by

γa,b(t) = a1/2(a−1/2ba−1/2)ta1/2.

Its length is given by ‖ ln(a−1/2ba−1/2)‖I , and the exponential map at a ∈ MI is given by

expa(v) = a1/2 exp(a−1/2va−1/2)a1/2,

whenever v ∈ TaMI 
 Ih. In particular we have

d(a, b) = ‖ ln(a1/2b−1a1/2)‖I .

The semi-negative curvature condition is the (well known for matrices; for instance see [10])
exponential metric increasing property as follows:

‖ ln(a−1/2ba−1/2)‖I � ‖ ln(a) − ln(b)‖I .

The convexity of the geodesic distance between two geodesics starting at a = 1 apparently is
given by the following inequality:

‖ ln(a−t/2bta−t/2)‖I � t‖ ln(a−1/2ba−1/2)‖I .

This inequality seems to be new in this general context, but for B(H) it was extensively studied
and is known as one of the equivalent forms of the Löwner–Heinz theorem on monotone operator
maps [30]. For the p-norms of B(H) it is stated as follows:

tr((B1/2AB1/2)rp) � tr((Br/2ArBr/2)p), r � 1,

an inequality due to Araki [6]. As it is, it was generalized to the noncommutative Lp(M, τ)-
spaces of a semi-finite von Neumann algebra M by Kosaki [24]. In the context of the uniform
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MANIFOLDS OF SEMI-NEGATIVE CURVATURE 701

norm, the relation between this inequality and the convexity of the geodesic distance in the
positive cone of B(H) was studied in [2].

When I = Bp(H), and p > 1, we can apply the results of Subsection 3.1 to convex closed sets.
In particular, if C ⊂ M is a convex submanifold, one obtains splittings as in Corollary 3.21.
These examples were studied for p = 2 (the Riemann–Hilbert situation) in [27, 41]. The
nonuniformly convex situation, when p = 1, was studied in [15].

In this setting, the standard example of a convex submanifold is given by C = q(es), where
s equals the real Banach–Lie algebra of self-adjoint diagonal operators (relative to a fixed
orthonormal basis {ei} of H), and s′ are the co-diagonal self-adjoint operators.

Remark A.2. If we decompose a tangent vector v ∈ Ih, v = w + z and ‖v‖I = ‖w‖I +
‖z‖I , then the curve

δ(t) =
{

e2tw, t ∈ [0, 1/2],
ewe(2t−1)z, t ∈ [1/2, 1]

is piecewise smooth and joins 1 to ev in MI ; moreover L(δ) = ‖w‖I + ‖y‖I = L(exp(tv)); thus
δ is a minimizing piecewise smooth curve joining 1 to ev, and it is not a geodesic unless w and
z are aligned. This shows that Proposition 3.6 is false for p = 1 and p = ∞ (whose norm is not
strictly convex). For example, consider

v = 1
2p1 + 1

2 (p1 + p2)

with pi mutually orthogonal one-dimensional projections in B(H). Then x = 1
2p1 and y =

1
2 (p1 + p2) commute, and ‖v‖∞ = 1 = 1/2 + 1/2 = ‖x‖∞ + ‖y‖∞.

A.2. Inclusions of C∗-algebras

Let A ⊂ B(H) be a C∗-subalgebra and let E : B(H) → A be a conditional expectation with
range A. Let H stand for the linear supplement of A given by E , that is, H = ker E . Then
‖E‖ = 1 and E is a bi-module map, that is, E(nmn′) = nE(m)n′ for any n, n′ ∈ A.

In [37], the authors studied inclusions of C∗-algebras N ⊂ M with a conditional expectation
E : M → N . In that setting, one has the inclusions PN ⊂ PM of cones of positive invertible
elements; the tangent spaces are the sets of self-adjoint elements of N and M , respectively.
The projection p = EMh

: Mh → Nh provides a reductive supplement H = ker p for Nh, and
moreover ‖p‖ = 1. The exponential map provides a splitting of the positive cone PM of M via
the positive cone PN of N as a convex submanifold and H as the normal bundle. In such a
situation, the norm of 1 − E can be as large as 2. The purpose of this short section is to extend
this situation to the Finsler norms of the p-Schatten ideals, applying the results of the previous
sections.

Let p � 1 and consider Ap = A ∩ Bp(H), and Ep = EBp(H). In certain situations one can
ensure that E(B1(H)) ⊂ B1(H). A sufficient condition is that E maps finite rank operators into
finite rank operators, a condition that is easy to check in most situations. Throughout, it is
assumed that the expectation is compatible with the trace, that is Tr(Ex) = Tr(x) for any
x ∈ B1(H). The example to have in mind is that of a maximal abelian subalgebra A given
by the diagonal operators in some fixed orthonormal base of H. In this case the conditional
expectation is given by compression to the diagonal.

Note that by duality (since ‖E‖ = 1) we have

‖E1(x)‖1 = sup
‖z‖�1

|tr(E(x)z)| = sup
‖z‖�1

|tr(E(x)E(z))| = sup
‖w‖�1,w∈A

|tr(E(x)w)|

= sup
‖w‖�1,w∈A

|tr(xw)| � sup
‖w‖�1

|tr(xw)| = ‖x‖1.
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702 CRISTIAN CONDE AND GABRIEL LAROTONDA

Thus ‖E1‖ � 1, and since E1 is a projection, it follows that ‖E1‖ = 1. The essence of the
argument is the fact that E (as a Banach space linear operator) is self-dual. Then 1 − E is
also self-dual, and with the same proof, one also has ‖1 − E1‖ � ‖1 − E‖.

From the fact that Bp(H) can be obtained via complex interpolation from the pair
(B1(H),B(H)) (for instance see [39]) and that B1(H) is dense in each Bp(H) (since finite rank
operators are dense), it follows that the restriction Ep defined above matches the interpolated
conditional expectation.

Now we observe that, for p = 2, this restriction is an orthogonal projection: indeed, we have

‖E2(z)‖2
2 = Tr(E(z)E(z)∗) = Tr(E(z)E(z∗)) = Tr(z∗E(z))

� Tr(z∗z)1/2Tr(E(z)E(z)∗)1/2 = ‖z‖2‖E2(z)‖2

by the Cauchy–Schwarz inequality for the trace inner product. With the same argument, one
obtains ‖1 − E2‖ = 1.

From these facts (using interpolation again), for any p ∈ [1, 2], it follows that

‖Ep‖ = 1 and ‖1 − Ep‖ � ‖1 − E‖2/p−1.

Then by duality, we see that

‖Ep‖ = 1 and ‖1 − Ep‖ � ‖1 − E‖1−2/p

holds for any p ∈ [2,∞).
Certainly [A,A] ⊂ A since A is an associative subalgebra, and hence evidently

ad 2
Ah

(Ah) ⊂ Ah.

However, also note that, since E is a bi-module map, [A, ker E ] ⊂ ker E . Thus C = exp(Ah)
is a reductive submanifold of the positive cone of B(H). Hence by restricting the conditional
expectation to the self-adjoint part of the p-Schatten ideals, one sees that the positive cone
of the (unitized) subalgebra Ap has a natural structure of a reductive expansive submanifold
in Bp(H). Thus one obtains splittings of the respective classical Banach–Lie groups invoking
Corollary 4.39:

Theorem A.3. Let A ⊂ B(H) be a C∗-algebra with a conditional expectation E : B(H) →
A compatible with the trace, such that E(B1(H)) ⊂ B1(H). Let p � 1 and let Ap = A ∩ B(H).
Then, for each invertible element g, with

g ∈ Gp(H) = {g ∈ B(H)× : g − 1 ∈ Bp(H)},
there exist unique operators u, gA, vp such that we have the following

(i) u is a unitary operator and

u ∈ Up(H) = {u ∈ U(H) : u − 1 ∈ Bp(H)};
(ii) gA is invertible and

gA ∈ A×
p = {g ∈ B(H)× : g − 1 ∈ Ap};

(iii) vp ∈ Bp(H)h and E(vp) = 0;
(iv) the operator g can be decomposed as follows:

g = gAevpu,

which gives the isomorphism

Gp(H) 
 A×
p × (ker E ∩ Bp(H)h) × Up(H).

If ‖1 − E‖ = 1, then ‖vp‖p = d(
√

gg∗,A+
p ), where d indicates the geodesic distance in the

positive cone, and A+
p denotes the positive cone of the (unitized) subalgebra Ap of Bp(H).
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Equivalently, if we write g = ev with v ∈ Bp(H)h and gA = eZA with ZA in the self-adjoint part
of Ap, then ZA is the unique minimizer of the nonlinear functional ϕ : (Ap)h → R+ given by

ϕ : z �−→ ‖ ln(ev/2e−zev/2)‖p.

These factorizations, in the context of n × n real matrices, for the Riemannian metric induced
by the trace, stem back to Mostow [35], where he uses the semi-parallelogram law to obtain
the best approximant, bringing new light on the real linear group.
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