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1. INTRODUCTION: 
WHEN MATHEMATICS 
ANTICIPATES PHYSICS

Every scientist throughout his live probably come
across the ideas of the mathematician Hermann Weyl
and the physicist Paul Dirac. They attracted (and do
attract up to now) the attention of everybody not
merely as great scientists but also as great hunters for
beauty. “My work has always tried to unite the true with
the beautiful and when I had to choose one or the other,
I usually chose the beautiful”,—wrote Weyl [1, 3].

“Physical laws should have mathematical
beauty”,—wrote Dirac on the blackboard in the Mos�
cow University in the fall of 1955. The reason for the
mysteries that most of the time truth and beauty are
the same, is that there need not to be conflict between
them, discusses D.J. Gross in his essay [1, 2] in detail:
“… the mathematical structures that mathematicians
arrive at are not artificial creations of the human mind
but rather have a naturalness to them as if they were as
real as the structures created by physicists to describe the
so�called real world. Mathematicians, in other words,
are not inventing new mathematics, they are discovering
it … we might expect that physical and mathematical
structures would share the characteristics that we call
beauty. Our minds have surely evolved to find natural
patterns pleasing”. As is it well known, in 1937 the bril�
liant Italian physicist Ettore Majorana proposed a new
representation [4] corresponding to the celebrated
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Dirac equation, where the components of the bispinor
solution are related by complex conjugation. However,
in the middle of his personal troubles, he could not
have foreseen the whirlwind of activity that would fol�
low: not only in particle physics, that was his domain,
but also in nanoscience and condensed matter physics.
The particles described by these solutions (the so
called Majorana fermions) were strange objects of the
physical contemporary research. The recent storm of
activity in condensed matter physics has focused on
the “Majorana zero modes”: i.e. emergent Majorana�
like states occurring at exactly zero energy that have a
remarkable property of, being their own antiparticles
(self�conjugated). Sometimes, this property is
expressed as an equality between the particle’s cre�
ation and annihilation operators. As explained more
fully below there exists the general idea that any ordi�
nary fermion can be thought of as composed of two
Majorana fermions: this is only a partial picture. The
real fact is that there exists a particular representation
where a fermion effectively can be represented as
bilinear combination of two states of fractionary spin,
as was demonstrated by the author in [5] and other
researchers in different contexts.

On the other hand and with other motivations,
Aharonov and Casher proved two theorems for the
case of a 2�D magnetic field [6]. The first theorem
states that an electron moving in a plane under the
influence of a perpendicular inhomogeneous mag�
netic field has N ground�energy states, where N is the
integral part of the total flux in units of the flux quan�
tum Φ0 = 2π/e ≡ hc/e (m = 1). The corresponding
Dirac equation for the Aharonov–Casher–Theorem
(ACT) configuration is [1]:

 (1)

The interesting remark of Aharonov and Casher is that
if we introduce the transformation

(2)

this transformation (phase) permits us to eliminate
explicitly the magnetic field from the Dirac equation
where φ satisfies the relations

 (3)

and ϕ is eigenfunction of σz (σzϕs = sϕs). Having
accounted that B(x, y) = ∂xAy – ∂yAx then

 (4)

Asymptotically for r → ∞ (r ≡ ) we have
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where
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is the total magnetic flux through the (x, y)�plane, r0 is
some real constant that plays the role of minimal
length. Consequently we immediately obtain

 (7)

where w = x + isy and ψs(w) is an entire function of w
because after the elimination of the magnetic field
from the Eq. (1) it takes the simplest form

(8)

To make ϕs to be square integrable function, we should
consider Φs > 0 and ψs has to be a polynomial whose
degree is not greater than N – 1, where N = {Φ/Φ0},
obtaining N independent solutions for ψs: 1, w, w2, ….,
wN – 1.Through this paper the same procedure as for
the ACT configuration will be performed, however it
will be in the interesting case of “in plane” (parallel)
magnetic field.

The plan of this paper is as follows. In Section II we
obtain the conditions whether the magnetic field par�
allel to the charge transport can be “removed” as in the
case of the ACT. The conditions fulfilled by the solu�
tion: types of spinors and flux quantization also are in
Section II. In Section III, the origin and conditions
whether the quantum Hall effect appears from the “in
plane” magnetic field are explicitly shown. In Section IV
we obtain as solution of our problem the coherent
states belonging to the Metaplectic group. These solu�
tions fulfill the symmetries and algebra of Majorana
states: the relation with supersymmetry are briefly
described. Finally, Section V is devoted to give our
concluding remarks and perspectives.

2. MAGNETIC FIELD “IN PLANE”

Now the magnetic field B, in contrast to the ACT
configuration described before, is parallel to the plane
defined by x, y axis (usually denominated: “B in
plane”) where we have the dynamics of the particle.
Explicitly the Dirac equation with the magnetic field
parallel takes the following form:

 (9)
here, the subscripts B, ⊥ and z denote the direction of
the B field in the plane, the direction of the compo�
nent of the potential vector in the plane (obviously,
perpendicular to the B direction) and the direction of
component of the potential vector coincident with the
z axis, respectively.

Defining ω the angle of the magnetic field with
respect to the x axis in the plane x – y, the transforma�
tion (2) takes in this case, the following general form.

 (10)
with
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Equation (9) explicitly written (taking into account
(10)) is

 (13)

It is easily seen that, when ω = 0 B coincides with x�axis
and when ω = π/2, B coincides with the y�axis. The
Lie algebraic relation holds:

 (14)

as expected.
Operating similarly as in the ACT configuration

(but having account for the new transformation and
physical situation) we obtain the conditions where the
magnetic field can be eliminated. Precisely, using
expression (10) in (9) we obtain explicitly the follow�
ing non trivial conditions:

(15)
The first equation is precisely as in the ACT case,

but for the second one the interpretation is more
involved. The interpretation suggests, in principle, a
complex structure for the field φ: for example in a dou�
blet form. The doublet can be written as:

 (16)

then, the previous expressions belong to:

 (17)

Notice that above condition suggests consequently the
introduction of 2 real functions u and v as

 (18)

in such a manner that the conditions to remove the
magnetic field are automatically fulfilled if

 (19)

Remark 1. Notice that (18) is a Majorana condition over
φ that appears as a consequence of the magnetic field
parallel (in a sharp contrast to that in the ACT case).

A. Structure of the Magnetic Field: 
Conditions over A and φ

The magnetic field can be effectively generated
(B = � ∧ A) from the vector potential components of
our problem, namely Az and A⊥.

Then, the “in plane” magnetic field is:

 (20)
where the simplest possibility was taken: A ≠ A(xB) (e.g.
the vector potential does not depend on the direction
of the magnetic field, only on the plane defined by x⊥
and xz). From (10) we have:

 (21)
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(where the total transversal flux to the plane per unit of
longitude was used). Then, φ is immediately obtained

(22)

Putting the arbitrary constant C = 0 for simplicity, the
behaviour of the exponential function in (10) belongs to

 (23)

with l0 some real constant with units of length (its
physical meaning will be analyzed later). Similarly as
in the ACT case, the following condition must be ful�
filled in order that ϕ be normalizable and square inte�
grable:

 (24)

(sB is the spin in the B direction) due to

 (25)

In the above expression, the function ψ depends on the
spin and on some complex variable w to be determined
from the Dirac�Weyl equations.

B. Majorana, Dirac–Weyl States 
and Discrete Coordinates: Conditions over ψ(s, z)

The simple Dirac–Weyl equation, obtained
through the transformation (10) introduced before, is

 (26)

To solve the equation a quantization should be
imposed on the flow (strictly on the product φσB). This
fact will induce an automatic discretization over the
“in plane” transverse coordinate x⊥ as:

 (27)

If the above condition holds, we obtain:

 (28)

This expression is very important: this is a simple 2
dimensional Dirac equation without Aμ. The particular
phase introduced through (10) plus the quantization
condition nullify the effect of the magnetic field.

C. Analysis of the Solution

Taking account of the specific form of the above
equations there are two possibilities for the solution ψ.
These possibilities are related with the spin degrees of
freedom as follows:

(i) σBψ(s, z) = sψ(s, z) (eigenspinor of σB).
This case is compatible with the assumption that

the state is eigenvector of the spin in the magnetic field
direction. The Dirac equation is reduced to

 (29)
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with � as the charge conjugation operator. Then,
ψ(s, z) (and for instance ϕ(s, z)) must fulfill the Majo�
rana condition:

 (30)

Similarly as in the AC case, ψ(s, z) is an entire

function of z = xB + x⊥ but the states solution is of

Majorana type.

(ii) σzψ(s, z) = sψ(s, z) (eigenspinor of σZ).

In this case the spin remains as in the ACT situation
(e.g. in the z direction). Now the Dirac equation is
reduced to

 (31)

Similarly as in the AC case, ψ(s, z) is an entire function
of z = xB + isx⊥, and the state solution is Dirac–Weyl.

Remark 2. The specific form of the Eq. (29) shows
that the result is not accidental: the states are Majorana.
The inclusion of the charge conjugation operator �, due
to the symmetry of the physical scenario, enforces the
Majorana condition over the state solution.

3. QUANTUM HALL EFFECT 
AND THE “IN PLANE” MAGNETIC FIELD

We can to expect that if the plane where the charges
are moving is finite, an “in plane” current transversal
to the magnetic field B must appear (e.g. in the x⊥
direction) This current will be quantized due to the
condition (27). In consequence, the quantization
condition can be explicitly written as:

(32)

where  = σ⊥x⊥ is a new matrix valuated coordinate
whose meaning will be analyzed later.

An explicit formula for the Hall current can be
consistently obtained from the expression for the sur�
face current:

(33)

(n: unitary vector normal to the interface surface).
This current is obviously perpendicular to the mag�
netic field “in plane” (e.g. x⊥ direction). Due to the
quantization condition, the Hall current also is quan�
tized leading to the Quantum Hall Effect (QHE)

 (34)

where  is a unitary vector in the x⊥ direction.
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A. Generalized Momentum Operator 
and Majorana Conditions

The interpretation of the non standard Dirac
equation:

 (35)

can be elucidated rewritten it as

 (36)

then, the question that immediately appears from (36)

is: what is the operator ? The answer is obvious if
we use the algebra (14) and the definition of the charge
conjugation operator as a function of the sigma matri�
ces. Consequently:

 (37)

Remark 3. As in ordinary non abelian gauge theories,

the operator  in (37) seems to be equipped with a

non abelian vector potential  ≡ –�Az.

4. DIRAC–MAJORANA OSCILLATOR: 
SUSY, ALGEBRA AND PARASTATISTICS

A relativistic fermion under the action of a linear
vector potential usually called the Dirac oscillator [7].
The standard Dirac oscillator can be exactly solved in
one, two and three dimensions. It has in the non�rela�
tivistic limit the associated Klein–Gordon equations
describing a harmonic oscillator in the presence of a
strong spin�orbit coupling, and the first experimental
realization of this system was reported recently [8].
Motivated by these important reasons plus the possi�
bility to analyze the (super) symmetries into the
obtained spectrum, our goal in this section is to rewrite
conveniently the Dirac equation corresponding to the
“in plane” magnetic field configuration in the form of
the Dirac oscillator.

Our starting point is as follows: in 2 dimensions
we have

 (38)

Introducing the corresponding creation and annihila�
tion operators as
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we can redefine and rearrange the operators in order to
put the Hamiltonian in the simpler form:
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where the energy is given in  units and we have

defined  Explicitly

 (41)

The first important observation is that the Hamilto�
nian (56) has the suggestive fashion of the BHZ phe�
nomenological model [7]. This BHZ model was a “by
hand” attempt to explain the topological insulator
mechanism. Then, we are able to bring a natural
explanation to the topological insulators described in
[7] from a pure phenomenological viewpoint.
Expanding the state ϕ in the n basis and taking into
account that it must be invariant under i� (≡ –σ2)we
obtain the following expression

 (42)

However, the coefficients An are not independent. A2k

and A2k + 1 are related to the two first coefficients A0 and
A1 corresponding to the states |0〉 and |1〉 respectively,
provided again that the following quantization condi�
tion over the ω arises:

 (43)

Consequently, the normalized state solution takes the
following form:

 (44)

(   = ±1) as is easily seen |ϕ〉 is a coherent state of
Klauder–Perelomov/Barut–Girardello type. It can be
generated by a displacement operator D and under
normalization, it is eigenstate of the annihilation
operator a. The coefficients A0 and A0 are arbitrary, in

principle, with the property   = ±1. This fact
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permits us to have two eigenstates of the annihilation
operator a with different parity behaviour under such

operator: A0 = ±A1 ⇒ |ϕ±〉 = 

then:

 (45)

Remark 4. Notice the important fact that the states
solution |ϕ〉) are independent of the energy. It is a char�
acteristic of the Majorana states that commonly appear
in quantum transport in nanostructures.

A. Relation with Supersymmetric Models

The dynamics of the |Ψ〉 fields were extensively
studied in supersymmetric models. In previous [5],
was demonstrated that the analysis of the particular
representation that we are interested in can be simpli�
fied considering these fields as coherent states in the
sense that are eigenstates of a2 [5]:

 (46)

From a technical point of view these states are a one
mode squeezed states constructed by the action of the
generators of the SU(1,1) group over the vacuum. For
simplicity, we will take all normalization and fermi�
onic dependence into the functions f(ξ). Explicitly
(supposing in principle no time dependence, e.g. t = 0)

 (47)

where |α±〉 are the CS basic states in the subspaces

λ =  and λ =  of the full Hilbert space [5]. In the

case of the physical state spanning the full Hilbert
space, the Heisenberg–Weyl (HW) realization for the
states Ψ must be used:
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fectly the Majorana fermion behaviour that is phe�
nomenologically obtained [9].

5. CONCLUDING REMARKS
 

In this article we have shown how mathematics can
predict physical effects and describe various phenom�
ena with great precision and reliability. Through this let�
ter we have given examples accompanied with new
results using as the physical scenario to describe the
quantum transport of charged particles a two�dimen�
sional space with a parallel magnetic field. With the
consistent mathematical description of the problem,
quantum effects that have been inconsistently explained
through empirical/phenomenological methods (“by
hand”) are now easily explained as the quantum Hall
effect and the rise of Majorana states in low dimensional
structures with particular field conditions.
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 [1] We denote the fixed reference system as X, Y, Z and the coor�
dinates in plane by x1, x2, x3.


