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a b s t r a c t

We investigate the classical limit of the dynamics of a semiclassical system that represents
the interaction between matter and a given field. The concept of Fisher Information
measure (F ) on using as a quantifier of the process, we find that it adequately describes
the transition, detecting the most salient details of the changeover. Used in conjunction
with other possible information quantifiers, such as the Normalized Shannon Entropy
(H) and the Statistical Complexity (C) by recourse to appropriate planar representations
like the Fisher Entropy (F × H) and Fisher Complexity (F × C) planes, one obtains a
better visualization of the transition than that provided by just one quantifier by itself.
In the evaluation of these Information Theory quantifiers, we used the Bandt and Pompe
methodology for the obtention of the corresponding probability distribution.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Since the introduction of the decoherence concept in the early 1980s, by, among others, Zeh and Zurek [1–3], the
emergence of the classical world from its quantal substratum mechanics has become a subject of much interesting work
an intense discussion. In this work we will embark on such a discussion by revisiting the classical limits of a special five-
dimensional model that represents a matter–field interaction and whose dynamics, that has received exhaustive attention
in the past years, describes a bona fide quantum–classical transition (QCT). This QCT can be, interestingly enough, visualized
by recourse to a special model’s parameter, whose numerical evolution between the value one and infinitymakes themodel
to represent a strictly quantum system at first, then a semi-quantumone, and eventually a purely classical one. The pertinent
stages of such evolution are well known.

What do we intend to do then? Our goal is to tackle the description of these stages not with dynamical tools (this has
been already abundantly done) but with statistical and information theoretic ones pertaining to the field of nonlinear time-
series analysis, which will hopefully yield novel insights into the associated physics. In this sense, an important step was
effected in Ref. [4] that revolves around the utilization of Shannon’s entropy. Here we will show that the conjunction of
several information quantifiers significantly improves the descriptive power of the information theory approach and does
yield interesting physics insights.
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2. The classical limit of quantummechanics (a special semiclassical model)

It is clear thatmuch quantum insight is to be gained from semiclassical perspectives. Several methodologies are available
(WKB, Born–Oppenheimer approach, etc.). Themodels of Refs. [5–7], consider two interacting systems: one of themclassical,
the other quantal. This makes sense whenever the quantum effects of one of the two systems are negligible in comparison
to those of the other one. Examples include Bloch equations, two-level systems interacting with an electromagnetic field
within a cavity, collective nuclear motion, etc. We will here deal with a special bipartite system that represents the zero
mode contribution of a strong external field to the production of charged meson pairs [6,7], whose Hamiltonian reads

Ĥ =
1
2


p̂2

mq
+

PA2

mcl
+ mqω

2x̂2


, (1)

where (i) x̂ and p̂ are quantum operators, (ii) A and PA classical canonical conjugate variables and (iii) ω2
= ωq

2
+ e2A2 is

an interaction term that introduces nonlinearity, ωq being a frequency. The quantitiesmq andmcl are masses corresponding
to the quantum and classical systems, respectively. As shown in Ref. [7], in dealing with Eq. (1) one faces an autonomous
system of nonlinear coupled equations

d⟨x̂2⟩
dt

=
⟨L̂⟩
mq

,

d⟨p̂2⟩
dt

= −mq ω2
⟨L̂⟩,

d⟨L̂⟩
dt

= 2


⟨p̂2⟩
mq

− mq ω2
⟨x̂2⟩


,

dA
dt

=
PA
mcl

,

dPA
dt

= −e2mq A⟨x̂2⟩ (2)

where L̂ = x̂p̂ + p̂x̂. The system of Eq. (2), follows immediately from Ehrenfest’s relations [8]. Here (1) is of semiclassical
nature. Were it of purely quantal one, Eq. (2) would cease to be a closed system.

To study the classical limit we also need to consider the classical counterpart of the Hamiltonian given by Eq. (1)

H =
1
2


p2

mq
+

PA2

mcl
+ mqω

2x2


, (3)

where all the variables are classical. Recourse to Hamilton’s equations allows one to find the classical version of Eq. (2).
These equations are identical in form to Eq. (2) after suitable replacement of quantum mean values by classical variables,
i.e., ⟨x̂2⟩ ⇒ x2, ⟨p̂2⟩ ⇒ p2 and ⟨L̂⟩ ⇒ L = 2xp. The classical limit is obtained by letting the ‘‘relative energy’’

Er =
E

I1/2ωq
→ ∞, (4)

(Er ≥ 1), where E is the total energy of the system and I is an invariant of the motion described by the system of equations
previously introduced (Eq. (2)), related to the Uncertainty Principle

I = ⟨x̂2⟩⟨p̂2⟩ −
⟨L̂⟩2

4
≥

h̄2

4
. (5)

A classical computation of I yields I = x2p2 − L2/4 ≡ 0. Thus, I vanishes when it is evaluated using the classical variables
A and PA, for all t , i.e. I(A, PA) = 0, a fact that exhibits the self-consistency of our methodology. Er is of course a relative
energy. It compares the actual one with the pseudo-energy EI = I1/2ωq, related to the Uncertainty Principle. For E ≫ EI the
classical limit obtains.

Ameasure of the degree of convergence between classical and quantum results in the limit of Eq. (4) is given by the norm
N of the vector 1u = u − ucl [8],

N1u = |u − ucl|, (6)

where the three components vector u = (⟨x̂2⟩, ⟨p̂2⟩, ⟨L̂⟩) is the ‘‘quantum’’ part of the solution of the system defined by
Eq. (2) and ucl = (x2, p2, L) its classical counterpart.

A detailed study of this model was performed in Ref. [7]. The main results of this reference, pertinent for our discussion,
can be succinctly detailed as follows: in plotting diverse dynamical quantities as a function of Er (as it grows from unity to
∞), one finds an abrupt change in the system’s dynamics for a special value of Er , to be denoted by Er cl = 21.55264. From this
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value onwards, the pertinent dynamics starts converging to the classical one. It is thus possible to assert that Er cl provides
us with an indicator of the presence of a quantum–classical ‘‘border’’. The zone Er < Er cl, corresponds to the semi-quantal
regime [7]. This regime, in turn, is characterized by two different sub-zones. One of them is an almost purely quantal one,
in which the microscopic quantal oscillator is just slightly perturbed by the classical one, and the other section exhibits a
transitional nature (semi-quantal). The border between these two sub-zones can be well characterized by a relative energy
value ErP

= 3.3282. A significant feature of this point resides in the fact that, for Er ≥ ErP , chaos is always found. The relative
number of chaotic orbits (with respect to the total number of orbits) grows with Er and tends to unity for Er → ∞ [7].

Thus, as Er grows from Er = 1 (the ‘‘pure quantum instance’’) to Er → ∞ (the classical situation), a significant series of
morphology changes is detected, specially in the transition zone (ErP

≤ Er ≤ Er cl). The concomitant orbits exhibit features
that are not easily describable in terms of Eq. (6), which is a global measure of the degree of convergence in amplitude (of
the signal). What one needs instead is a statistical type of characterization, involving simultaneously the notions of entropy,
statistical complexity [4,9,10], and Fisher Information.

3. Information quantifiers

3.1. Fisher information measure and Shannon entropy

Given a continuous probability distribution function (PDF) f (x), its Shannon Entropy S is Ref. [11]

S[f ] = −

∫
f ln(f ) dx, (7)

a measure of ‘‘global character’’ that it is not too sensitive to strong changes in the distribution taking place on a small-sized
region.

Such is not the casewith Fisher’s InformationMeasure (FIM)F [12,13],which constitutes ameasure of the gradient content
of the distribution f , thus being quite sensitive even to tiny localized perturbations. It reads [12]

F [f ] =

∫
|∇⃗f |2

f
dx. (8)

FIM can be variously interpreted as a measure of the ability to estimate a parameter, as the amount of information that
can be extracted from a set of measurements, and also as a measure of the state of disorder of a system or phenomenon
[12,14]. Its most important property is the so-called Cramer–Rao bound, that we recapitulate in one-dimension, for the
sake of simplicity. The classical Fisher information associated with translations of a one-dimensional observable x with
corresponding probability density f (x) is Ref. [15]

Ix =

∫
dx f (x)


∂ ln f (x)

∂x

2

, (9)

which obeys the above referred to the Cramer–Rao inequality

(1x)2 ≥ I−1
x (10)

involving the variance of the stochastic variable x [15]

(1x)2 = ⟨x2⟩ − ⟨x⟩2 =

∫
dx f (x) x2 −

∫
dx f (x) x

2

. (11)

We insist in remarking that the gradient operator significantly influences the contribution of minute local f -variations to
FIM’s value, so that the quantifier is called a ‘‘local’’ one. Note that Shannon’s entropy decreases with skewed distribution,
while Fisher’s information increases in such a case. Local sensitivity is useful in scenarios whose description necessitates
appeal to a notion of ‘‘order’’ (see below).

Now let P = {pi; i = 1, . . . ,N} be a discrete probability distribution set, with N the number of possible states of the
system under study. The concomitant problem of loss of information due to the discretization has been thoroughly studied
(see, for instance, [16–18] and the references therein) and, in particular, it entails the loss of FIM’s shift-invariance, which is
of no importance for our present purposes. In the discrete case, Shannon’s quantifier is evaluated via

S[P] = −

N−
i=1

pi ln(pi), (12)

and we define a ‘‘normalized’’ Shannon entropy as H[P] = S[P]/Smax, where the denominator obtains for a uniform
probability distribution.
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For the FIM-computation Measure we follow the proposal of Ferri and coworkers [19] (among others)

F [P] =
1
4

N−1−
i=1

2
(pi+1 − pi)2

(pi+1 + pi)
. (13)

If our system is in a very ordered state and thus is represented by a very narrow PDF, we have a Shannon Entropy S ∼ 0 and a
Fisher’s InformationMeasure F ∼ Fmax. On the other hand, when the system under study lies in a very disordered state one
gets an almost flat PDF and S ∼ Smax while F ∼ 0. Of course, Smax and Fmax are, respectively, the maximum possible values
for Shannon’s Entropy and Fisher’s Information Measure. One can state that the general behavior of the Fisher Information
Measure is opposite to that of the Shannon Entropy [20].

3.2. Statistical complexity

The complexity degree of dynamical systems has no universal definition, however statistical complexity can be
understood as a measure that captures not only the system’s randomness but also considers its physical components
(structural correlations) [21]. In this work, we use a particular form of statistical complexity measure that is cast as the
product of the normalized Shannon Entropy and the normalized Jensen–Shannon divergence. We call it the MPR-Statistical
Complexity [22], a variant of the measure originally introduced in the pioneer reference [23]. An important property of this
measure is that it presents ‘‘zero’’ value for the extreme cases given by complete order and total random behavior.

The MPR-Statistical Complexity is defined by

C[P] = Q[P, Pe] · H[P], (14)

where, to the probability distribution P , we associate the normalized entropic measure H[P] = S[P]/Smax, with Smax =

S[Pe] (0 ≤ HS ≤ 1). We take here the disequilibrium Q to be defined in terms of the extensive Jensen divergence [24]
according to

Q[P, Pe] = Q0{S[(P + Pe)/2] − S[P]/2 − S[Pe]/2}. (15)

with

Q0 = −2


N + 1
N


ln(N + 1) − 2 ln(2N) + lnN

−1

, (16)

a normalization constant that makes 0 ≤ Q ≤ 1. This SCM-version [24,25] is (i) able to grasp essential details of the
dynamics, (ii) an intensive quantity, and (iii) capable of discerning among different degrees of periodicity and chaos.

3.3. Probability distribution function and Bandt–Pompe approach

An important issue for the evaluation of the information quantifiers is the proper determination of the underlying
probability distribution function P , associated to a givendynamical systemor time series.Many schemeshave beenproposed
for a proper selection of it. We can mention, among others: (a) frequency count [26] (b) procedures based on amplitude
statistics (histograms) [27], (c) binary symbolic dynamics [28], (d) Fourier analysis [29], and (e) wavelet transform [30,31].
Their applicability depends on particular characteristics of the data. In all these cases the global aspects of the dynamics can
be somehow captured, but the different approaches are not equivalent in their ability to discern all the relevant physical
details. One must also acknowledge the fact that the above techniques are introduced in a rather ad hoc fashion and are not
directly derived from dynamical properties of the system under study,. This can be adequately effected, for instance, by recourse
to the Bandt–Pompe ordinal-patterns methodology [32].

The symbolic methodology proposed by Bandt and Pompe is based on the details of the series time delay reconstruction
procedure (the ordinal patterns present in the time series). Here, causal, dynamic information should be expected to help
getting better results. The probability distribution P is obtained once we fix the embedding dimension D and the time
delay τ [32]. Furthermore, the ordinal pattern probability distribution is invariant with respect to nonlinear monotonous
transformations. Thus, nonlinear drifts or scalings artificially introduced by a measurement device do not modify the
quantifier estimations, a relevant property for the analysis of experimental data. These are themain advantageswith respect
to more conventional methods based on range partitioning.

We used this methodology here (for details of the Bandt–Pompe methodology, see [25,33]). The probability distribution
P is obtained oncewe fix the embedding dimensionD and the embedding delay τ . The former parameter plays an important
role for the evaluation of the appropriate probability distribution, since D determines the number of accessible states, given
byD!. Moreover, it was established that the lengthN of the time seriesmust satisfy the conditionN ≫ D! in order to achieve
a proper differentiation between stochastic and deterministic dynamics [22]. In particular, Bandt and Pompe [32] suggest
for practical purposes to work with 3 ≤ D ≤ 7. With respect to the selection of the other parameter, Bandt and Pompe
specifically considered an embedding delay τ = 1 in their foundational paper [32]. In the present work the value D = 5
was selected, since we deal time series of at least N = 5000 data-points, the condition N ≫ D! is clearly satisfied. We take
the customary time delay τ = 1 [32].
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Fig. 1. Fisher Information F vs. Er for a broad Er range. See the desired convergence to classicality.
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Fig. 2. Fisher Information F vs. Er for a range for which the regions of the process can be clearly appreciated. Fisher’s information distinguishes and
correctly describes our three zones: quantal, transition, and classical. They are delimited by special Er values, namely, ErP

= 3.3282 and Er cl = 21, 55264.

4. Results and discussion

Our data-points emerge as the solutions of Eq. (2), fromwhichwe extract the values of ⟨x2⟩ and the (classical) values of x2
at the time t (for a fixed Er ). We have also performed these calculations replacing the above values for those corresponding
to ⟨p2⟩ − p2 together with ⟨L⟩ − L. The replacements lead to entirely similar final results. We pass now to a description of
them.

In obtaining our numerical results we chose mq = mcl = ωq = e = 1 for the system’s parameters. For the initial
conditions needed to tackle our system (Eq. (2)) we fixed E and then varied I so as to obtain our different Er -values.
Additionally, we set ⟨L⟩(0) = L(0) = 0, A(0) = 0 (both in the quantum and the classical instances).

Classical curves are generated varying x2(0) within the interval (0, 2E). Quantal ones for each I-value (and associated
Er ), varying ⟨x2⟩(0) within the interval (E −

√
E2 − I, E +

√
E2 − I) with I ≤ E2. We have considered curves contain up to

50000 points for each [x2(0), ⟨x2⟩(0)] pair.
Figs. 1–3 depict results corresponding to E = 0.6 and ⟨x2⟩(0) in the interval x2(0) < ⟨x2⟩(0) ≤ 0.502,with x2(0) = 0.012.

We consider 5000 data-points per initial condition and take 41 different values of I . Particular care has been devoted to the
curves here displayed, because they have also been studied using different tools, namely, entropy and statistical complexity,
evaluated by employing either the wavelet approach or the Bandt and Pompe method with different probability space
metrics [4,9,10]. The conceptual characteristics of the results are independent of the initial conditions and of the number of
points employed to construct our time series.

Fig. 1 depicts the Fisher Information F vs. Er for a large range of the latter’s variation. Fig. 2 amplifies things in a range
long enough that allows one to visualize the three zones of the transition process. We find, as a first result, that F evaluated
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Fig. 3. Plot of the (a) F × H-plane and (b) the F × C-plane. The three relevant regions are visible. Figure (b) exhibits a third relevant Er point, called
EM
r , where maximum complexity is attained. This Er -value divides approximately into two sections the transitional region, namely, one in which the

quantum–classical mixture characterizes a phase–space with more non-chaotic than chaotic curves and other for which this feature is reversed.

according to Eq. (13), correctly distinguishes indeed the three well-known physical sections of our process, i.e., quantal,
transitional, and classic region, as delimited by, respectively, ErP and Er cl. Notice please the abrupt change in the slope of
the curve of Fig. 2 taking place at ErP . The transition zone is clearly demarcated between that point and Er cl. From there on
F tends to its classical value at the same time as the quantum solutions of Eq. (2) begin to converge towards their classical
counterparts (Fig. 1). As a second result we notice that Fisher’s information measure (FIM) aptly describes our three zones
(see Fig. 2). FIM ismaximal in the quantum region, characterized by quasi-periodic solutions of Eq. (2), and aminimum in the
classic sector, where the dynamics is chaotic. Intermediate FIM-values are found in the transitional zone, where periodicity
and chaos coexist.

Fig. 3(a) displays the so-called Fisher–Shannon F × H-plane while Fig. 3(b) does so for a different plane, the Fisher
Complexity F × C-one The reader is referred to similar (but different) representations, corresponding to (i) H and (ii) C
vs. Er in Ref. [4]. Classical and quantum regions occupy the right-hand and the left-hand side of the graphs, respectively.
The transition region corresponds to an intermediate planar location. According to Fig. 3(a), classicality is associated to high
entropy and low FIM, a situation that reverses itself in the quantum region. The transition zone becomes clearly delimited
between points Er cl and ErP . In turn, according to Fig. 3(b) both classicality and the quantum domain are associated to low
complexity. C is instead high in the transitional region. We will return in the Conclusions to this point.

Continuing with Fig. 3(b), we see that the transition zone is again clearly visible between points Er cl and ErP . A third
relevant Er -value is noticeable in Fig. 3(b), namely, the one at which an absolute maximum of C is found, at EM

r = 8, 0904.
There, great instabilities in the system’s dynamics ensue, as the solutions of Eq. (2) [7] experience a complex process.
Indeed, EM

r divides into two sections the transitional region: (i) one in which the quantum–classical mixture characterizes a
phase–space with more non-chaotic than chaotic curves and (ii) other, in which this feature is reversed [7]. Note in Fig. 3(b)
that from EM

r -eastwards a significant slope change.
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5. Conclusions

In the present work we have studied the classical–quantal frontier problem by using the Fisher Information. We dealt
with the dynamics generated by a semiclassical Hamiltonian that represents the zeromode contribution of a strong external
field to the production of charged meson pairs [6,7].

The highlights of the road towards classicality are described by recourse to the relative energy Er given by Eq. (4). As Er
grows from Er = 1 (the ‘‘pure quantum instance’’) to Er → ∞ (the classical situation), a significant series of morphology
changes is detected for the solutions of the system of nonlinear coupled equations Eq. (2) [7]. The concomitant process takes
place in three stages: quantal, transitional, and classic, delimited, respectively, by special values of Er , namely, ErP and Er cl.

We find, as first result, that the Fisher Information F correctly distinguishes the three well-known physical zones or
sections of our process, i.e., quantal, transitional, and classic, as delimited by, respectively, ErP and Er cl. Second, FIM correctly
describes the three process regions, takingmaximal values in the quantum region characterized by quasi-periodic dynamics
and minimal ones for classicality, that has associated to it chaotic dynamics. FIM takes intermediate values in the transition
sector, where quasi-periodicity coexists with chaos. The two planar representations here studied, namely, F × H-plane
and F × C-one (Fig. 3) allows one to easily visualize the physics-associated Er -evolution, making it plain the existence of
three different zones.

Finally, our results seem to indicate that wherever the underlying dynamics is known to obey well-established rules
(classical or quantum ones), the complexity quantifier adopts low values. However, if the underlying behavior rules are not
clear (or unknown), a high complexity becomes the signature of such state of affairs.
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