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Analyzing complex networks evolution through Information Theory quantifiers
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A methodology to analyze dynamical changes in complex networks based on Information Theory
quantifiers is proposed. The square root of the Jensen–Shannon divergence, a measure of dissimilarity
between two probability distributions, and the MPR Statistical Complexity are used to quantify states
in the network evolution process. Three cases are analyzed, the Watts–Strogatz model, a gene network
during the progression of Alzheimer’s disease and a climate network for the Tropical Pacific region to
study the El Niño/Southern Oscillation (ENSO) dynamic. We find that the proposed quantifiers are able
not only to capture changes in the dynamics of the processes but also to quantify and compare states in
their evolution.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

There are a huge number of dynamical systems that can be
modeled through networks, and that is why the importance of hav-
ing a proper characterization methodology able to capture either
their structural and dynamical properties. Until now, Information
Theory quantifiers have been poorly explored as tools to study
complex networks behavior, only a small number of works have
been reported using the concept of entropy [1,2] and complex-
ity [3]. In this work, we propose the use of complexity measures
and the square root of the Jensen–Shannon divergence to charac-
terize the evolution of networks by means of their degree distribu-
tion. Our work is motivated by two real applications, the analysis
of the evolution of the El Niño/Southern Oscillation (ENSO) phe-
nomenon and the analysis of the gene-network progression during
the development of Alzheimer’s disease. Both cases can be mod-
eled through networks. In the first case, coordinates in a gridded
dataset are considered nodes, and edges are defined by correla-
tions between pairs of data points. In a similar way, a gene net-
work will consider each gene as a node and links will be created
depending on the gene-expression correlation values. Those types
of networks are well known to possess complex network attributes
[4–6] and can be modeled with a fixed number of nodes during
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their evolution process (grid points and genes considered). To first
test our methodology we use the Watts–Strogatz (WS) model [7].

The degree of a node in a network is the number of edges in-
cident to it. As not all nodes have the same number of edges, the
spread in the number of edges a node has, is characterized by a
distribution function P (k), which gives the probability that a ran-
domly selected node has exactly k edges [8]. Then, P (k) is defined
as nk/n, being “n” the total number of nodes in the network.

The WS model starts with a regular network, and during sub-
sequent steps, each edge can be rewired to a randomly chosen
vertex with a given probability p. By using this model, several in-
termediate states from the initial regular network (all nodes with k
incident edges) to a random network are obtained. At each step of
the process, the probability p is increased and the network walks
towards a random graph. The probability of not rewiring a specific
edge of the regular lattice is then given by (1 − p) + p.(k + 1)/n,
that is, the sum of the probability of not allowing that edge to
change plus the probability that the chosen target node is already
linked to the edge (this change is therefore prohibited). This result
can be generalized for the complete network: the probability of a
regular network not changing its structure in one step of the pro-
cess is P = ((1 − p) + p.(k + 1)/n)nk/2. The binomial condition of
the process should lead to a Poisson distribution, but the fact that
the model considers an on going evolution of the network, that is,
changes in the network remain for the following steps, alters the
shape of the final average degree probability distribution.

An alternative model, which we call herein modified WS (mWS)
is also considered. The difference between the WS and mWS mod-

http://dx.doi.org/10.1016/j.physleta.2010.12.038
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:Laura.Carpi@studentmail.newcastle.edu.au
mailto:rosso@fisica.ufmg.br
mailto:Patricia.Saco@newcastle.edu.au
mailto:martin.ravetti@dep.ufmg.br
http://dx.doi.org/10.1016/j.physleta.2010.12.038


802 L.C. Carpi et al. / Physics Letters A 375 (2011) 801–804
els, is that on the latter the changes at each step are not retained,
that means that every step of the process starts from the regular
lattice. It is interesting noticing that, the modification of the model
does not alter the small-world properties of the process. However
the average degree distribution converges to a true Poisson, with
parameter k for the extreme case of p = 1.

In the experiments here presented, the average degree distri-
bution is obtained for all the intermediate network structures of
the WS and mWS models. The Shannon entropy (S), the square
root of Jensen–Shannon divergence (J 1/2) and the MPR Statistical
Complexity (C ) are computed for all intermediate structures.

2. Information Theory quantifiers

2.1. Shannon entropy

Shannon entropy measures the degree of heterogeneity of the
network [1]. Its zero value corresponds to the state of having com-
plete knowledge of the process. In our particular case, it means
that the average degree of the network is known (regular lattice).
On the other hand, the maximum entropy value occurs when our
knowledge of the system is minimum (uniform random network).
The entropy of the degree distribution P (k) can be described as
S = −∑

k P (k) ln P (k) [9].

2.2. Jensen–Shannon divergence

The Jensen–Shannon divergence is a measure of the dissim-
ilarity between two probability distributions. It presents ultra-
metricity properties: (1) positive values, (2) symmetry and (3) a
zero value for equal probability distributions. The only missing
property to obtain a metric is the triangle inequality that can be
achieved by taking its square root [10,11]. As we are interested in
quantify and compare states in a network evolution, we use J 1/2.

To obtain a characterization of the evolution of the WS model
using the J 1/2 we need to choose a reference Probability Distribu-
tion Function (PDF). Three alternatives are here analyzed: a Poisson
distribution (Po with λ = k), the uniform distribution Pe , and the
PDF corresponding to the regular lattice Pr . Both Pe and Pr are
extreme and invariant cases, Pe corresponds to the asymptotic
random network stage and Pr to the initial stage of the process.
Poisson was chosen as it is the PDF reached by the Erdös–Rényi
random model [12] and it has been used by many authors as pos-
sible average degree distribution. The use of the regular lattice is
interesting as it is the only extreme case that can be achieved by
a single real network. On the other hand, for practical purposes
the uniform PDF is appealing as its values are independent of the
number of edges of the network.

We propose in this work the use of the J 1/2[P , Pref ] as a form
of characterization of small-world networks (Pref = {Po, Pe, Pr}).
The J is given by,

J [P , Pref ] = S
[
(P + Pref )/2

] − S[P ]/2 − S[Pref ]/2

Figs. 1 and 2 display the J 1/2[P , Pref ] values for the WS and the
mWS models. These figures show that the average path length (L)
and the clustering coefficient (C ) have similar behavior for both
models and their values are in agreement with those presented
in [7]. As J 1/2[P , Pr] and J 1/2[P , Pe] are extreme cases in the
progression, they present unique values for each probability p in-
dependently of the model considered. The J 1/2[P , Po] only has
unique values when using the mWS model. In the WS model, what
it seems to be a change of tendency shows in fact, the average
degree distribution of the network getting closer to a Poisson dis-
tribution until p = 0.5, and diverging again from it after p = 0.5,
confirming the results by Newman et al. [13]. This occurs because
Fig. 1. Normalized characteristic path length (L(p)/L(0)), normalized cluster-
ing coefficient (C(p)/C(0)), and square root of the Jensen–Shannon divergence
J 1/2[P , Pref ] for the WS model. The initial stage is a regular lattice of 1000 nodes,
each one with degree 10. For each value of probability p (horizontal axis), 50 trials
were averaged to compute the degree distribution. J 1/2[P , Pref ] is obtained from
the average degree distribution using Pref = {Po, Pe, Pr}.

Fig. 2. Same as Fig. 1 but considering the mWS model.

the WS model retains all the changes of previous steps. The ex-
periment here performed contemplates networks with 1000 nodes
and k = 10 as discussed in the seminal article of Watts and Stro-
gatz [7].

2.3. Statistical complexity

The complexity of dynamical systems has no universal defini-
tion, however statistical complexity can be understood as a mea-
sure that captures not only the system’s randomness but also con-
siders its physical components (structural correlations) [14]. In this
work, we use a statistical complexity measure that is obtained by
the product of the normalized Shannon entropy and the normal-
ized Jensen–Shannon divergence, namely, MPR [15]. An important
property of this measure is that it presents “zero” value for the
extreme cases given by the regular lattice and the uniform distri-
bution.

The statistical complexity is defined by [15] as Ce = C[P , Pe] =
H[P ] · Q [P , Pe] in which H[P ] = S[P ]/Smax is the normalized
Shannon entropy (0 � H � 1) and Q [P , Pe] = Q max · J [P , Pe] is
the normalized disequilibrium (0 � Q � 1). The disequilibrium
represents the distance between the PDF of the current state of
the system and the PDF of reference (the uniform PDF in this
case). We can also use the PDF of the regular lattice as refer-
ence, Cr = C[P , Pr] = H[P ] · (1 − Q [P , Pr]), in which Q [P , Pr] =
Q max · J [P , Pr]. Note that the corresponding PDFs Pr and Pe are
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Fig. 3. MPR Statistical Complexity versus normalized Shannon entropy quantifiers
are shown for intermediate states of the WS model for varying values of k (see
different colors and symbols in the inset notation), considering both references, the
PDF of a regular network (kr ) and a uniform distribution (ke ). MPR (C ) is estimated
using a PDF of a regular lattice Cr , and a uniform distribution Ce , as the PDF of
reference. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this Letter.)

extreme cases, having the same disequilibrium constant, given by
Q max = J −1[Pe, Pr].

Fig. 3 shows that the complexity values for the intermediate
states of the WS model (and for all k) define a single curve. The
maximum complexity value seems to be independent of the num-
ber of edges (k). However, networks with larger number of edges
(larger k) achieve the maximum complexity at earlier stages of
the evolution process (lower p). This maximum complexity value
occurs when normalized entropy is equal to normalized disequilib-
rium and reflects some sort of network structure similarity.

3. Application to real networks

3.1. Gene networks – Alzheimer’s disease

In [16], a group of patients in different stages of Alzheimer’s
disease (AD) was categorized into four groups, not AD (notAD), in-
cipient AD (incAD), moderate AD (modAD) and severe AD (sevAD).
The diagnosis was performed post mortem by analyzing the lat-
est Mini-mental state exam (MMSE) and counting neurofibrillary
tangles (NFT) from hippocampus’ tissue samples. In a recent pub-
lication [17], and using the same data set, a thorough analysis of
genes correlated with cognitive decline with AD was performed.
From a total of 22,000 gene expression values and by using a
bioinformatics approach, a list of genes presenting high-consensus
with established markers of progression of AD was identified [17].
In this application we are interested in analyzing the network of
genes and its evolution during the development of the disease.

Arbitrarily fixing the number of genes to 500, we consider four
networks, one for each stage of the disease. Each node represents
a gene expression vector with dimensionality equal to the number
of samples (patients). The network topology is defined by comput-
ing the Spearman correlation coefficient between all pair of genes.
A link connecting two nodes is used when their correlation value
is greater than a given threshold (0.9). For the notAD network 781
edges are considered, 1312 edges for incAD, 966 for modAD and
953 for sevAD. For this application, the uniform distribution was
chosen as reference PDF to compute J 1/2 because of its inde-
pendence to the number of edges, allowing a common point of
reference. The networks show a noticeable behavior, together with
the development of the disease, they seem to evolve toward a ran-
dom network. This situation occurs until a moderate AD condition
is reached (Fig. 4), afterwards the severe AD condition appears to
be more regular. These results are highly consistent with AD phys-
Fig. 4. Square root of the Jensen–Shannon divergence using as reference a uni-
form distribution J 1/2(P , Pe) and MPR Statistical Complexity for different stages
of Alzheimer’s disease. Results are obtained from the analysis a 500 gene network.

iology and morphology evolution. The hippocampus is one of the
first regions affected by the disease; in early AD the hippocampus
can loss more than 38% of its volume [18]. At a late stage of the
disease there is a severe hippocampal shrinkage; the patient has
already lost most of its cognitive functions, and as expected a more
regular network is found, the correlated genes are widespread in
the hippocampal region. The complexity values also reveal an in-
teresting behavior. A peak is presented for incipient AD networks.
Revealing that, just from the beginning of the disease the gene
network seems to reflect the abnormal condition.

3.2. Climate networks – ENSO

The use of networks as a tool for the study of climate processes
is recent [4,19–24]. In climate networks, nodes are identified with
spatial grid points of a climate data set and edges are added be-
tween pairs of nodes depending on the degree of statistical in-
terdependence between the corresponding pairs of anomaly time
series taken from the climate data set [24].

For this analysis, we consider the Tropical Pacific (120E◦–70W ◦ ,
20N◦–20S◦) monthly averaged surface air temperature (SAT) re-
analysis data set [25], represented by 1156 grid points (nodes). We
chose this data to maintain consistency with previous works [4,
23], and because it captures the dynamics on the interface be-
tween ocean and atmosphere due to heat exchange [24]. This
dataset is therefore appropriate to investigate the evolution of the
El Niño/Southern Oscillation (ENSO). The ENSO cycle takes from 3
to 4 years (average), its warm and cold phases are called El Niño
and La Niña, respectively. The horizontal line represents the aver-
age value J 1/2 = 0.3324 over the 62 years.

The network topology is obtained by computing the Spearman
correlation coefficient between all pairs of nodes. An edge con-
necting two nodes is created when their correlation value exceeds
a given threshold. The evolution of the network topology is cap-
tured by considering annual sliding windows without overlapping.
Temporal changes are then analyzed by computing the square root
of the Jensen–Shannon divergence and the MPR Statistical Com-
plexity using the degree distribution for each network.

The determination of a good threshold depends not only on the
characteristic to be analyzed but also on the size of the considered
network. For this particular case, the considered region is small
and highly connected. A high value threshold will work as a filter,
pruning not useful information and revealing small differences in
the network topology. For that reason we chose a threshold of 0.9.
An interesting discussion about the choice of a threshold in climate
networks can be found in [24,26].

Fig. 5 shows that the J 1/2 captures the ENSO cyclic behavior.
Though, the degree distribution is characterized by maintaining
approximately the same distance to the reference PDF (uniform
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Fig. 5. Square root of the Jensen–Shannon divergence using as reference a uniform
distribution J 1/2(P , Pe) for the Tropical Pacific region (1156 nodes). SNO and SNA
represent strong events for El Niño and La Niña, NO and NA represent moderate
events for El Niño and La Niña respectively.

distribution) throughout the studied period. All of La Niña and El
Niño events display J 1/2 values below and above average, respec-
tively. The average value for the 62 years is 0.3324 (central line).
Therefore, El Niño appears to be closer to a regular network, and
it is therefore less efficient in transferring information because of
its higher characteristic path length. The concept of efficiency is
particularly interesting for climate analysis as it can be used as a
measure to investigate the effects of local events at global scale.
Efficiency can be estimated as the inverse of the characteristic
path length [27,28]. As random networks have lower characteris-
tic path length values then, if the J 1/2[P , Pref ] is used considering
a uniform PDF as the reference distribution, lower values of the
J 1/2[P , Pe] will indicate a more efficient network. The contrary
happens when the chosen PDF of reference corresponds to a reg-
ular lattice (i.e., larger values for more efficient networks). This
result is consistent with previous findings [21], but unlike those
works here we use a quantifier that “captures” and “measures” the
continuous temporal changes of the network due to ENSO.

The evolution of the Statistical Complexity measure for the case
of the ENSO phenomena shows a very similar behavior to that
shown in Fig. 5 for the J 1/2. The reason for this is that the entropy
values for the Tropical Pacific network do not change significantly
with time. In this case, changes in the Jensen–Shannon divergence
values (J values) drive the observed changes in the MPR Statistical
Complexity and therefore the MPR Statistical Complexity evolution
graph has a similar shape as the one presented for the J 1/2.

4. Final remarks

We have proved in this work how the use of Information The-
ory quantifiers can characterize the progression of a system rep-
resented by a network. One of the advantages of using the J 1/2

and C is that the existence of disconnected nodes does not in-
terfere in their computation. Depending on the ratio between the
number of nodes and neighbors (n/k), the network may become
disconnected during the process, this is common on real world ap-
plications. When this happens the average path length, must be
treated [29]. Another important feature of the J 1/2 is its metric
property. It can be used, not only as a tool to measure how far
the network structure is from the chosen reference, but also to
compare different states during its evolution, or to measure the
distance between two different network structures.

In the applications here presented, the J 1/2 and C were capa-
ble to reflect the structural changes during the evolution of these
processes; describing the progression from a regular to a random
network in the Watts–Strogatz model, highlighting the most im-
portant structural changes in the progression of Alzheimer’s dis-
ease, and discriminating structures related to El Niño and La Niña
events when studying the Tropical Pacific region. We show that
the use of these Information Theory quantifiers is a powerful tool
to study the evolution of a wide range of natural phenomena that
can be modeled through networks.
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