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a b s t r a c t

This study explores temporal changes in the dynamics of the Holocene ENSO proxy record
of the Laguna Pallcacocha sedimentary data using two entropy quantifiers. In particular, we
analyze the possible connections between changes in entropy and epochs of rapid climate
change (RCC). Our results indicate that the dynamics of the ENSO proxy record during
the RCC interval 9000–8000 BP displays very low entropy (high predictability) that is
remarkably different from that of the other RCCs of the Holocene. Both entropy quantifiers
point out to the existence of cycles with a period close to 2000 years during themid-to-late
Holocene.Within these cycles, we find a tendency for entropy to increase (predictability to
decrease) during the two longer RCC periods (6000–5000 and 3500–2500 BP) whichmight
be associated with the reported increased aridity of the low tropics.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

El Niño/Southern Oscillation (ENSO), an occasional shift in winds and ocean currents centered in the South Pacific region,
is linked to anomalous global climate patterns responsible for producing worldwide socio-economical impacts. Interest on
the future behaviour of ENSO under the influence of enhanced greenhouse gases has led to renewed research into its long
term history. Though several proxy records of ENSO have become recently available [1, and the references therein] the
understanding of its complex dynamics over millennial time scales is still limited.
In this work we study the dynamics of the Holocene proxy ENSO record corresponding to the Laguna Pallcacocha

sedimentary data [2,3]. Specifically, we analyze temporal changes in dynamics over the last 11000 years using entropy
quantifiers. The proxy record (Fig. 1) was obtained from the analysis of clastic laminae deposition in two 8 m sediment
cores retrieved from the Pallcacocha Lake in Ecuador. Moy and coworkers [2] explain that during warm ENSO events,
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Fig. 1. ENSO proxy data from the Laguna Pallcacocha in Ecuador [2,3].

convective precipitation triggers erosion and debris-flow activity, increasing the sediment load contributed to the lake. They
assumed that the light-colored, inorganic clastic sediment laminae in the sediment corewere deposited during ENSO-driven
episodes. This hypothesis was based on the observation that light-colored laminae deposited in the more recent 200 years
generally correlated with known moderate to severe El Niño events from instrumental and historical records. To quantify
the distribution of the light-colored laminae in the lake sediments, the surface of the core sections was digitally scanned
and the red color intensity was used to generate the record of ENSO variability. Then, an age model based on radiocarbon
chronology was used to create the time series of red color intensity for the Holocene.
As is explained by Moy et al. [2,3], the age model for the new record is based on the same radiocarbon chronology

used by Rodbell et al. [4]. The laminae dated by AMS 14C of terrestrial microfossils in Ref. [4] record are distinctive and
could be confidently identified in the new cores. By creating a composite section from overlapping drives, Moy et al. were
able to improve on the original age model. They adopted the constant carbon accumulation model and an event model to
allocate time betweendated intervals [4,5]. The constant carbon accumulationmodel assumes that the rate of organic carbon
deposition has remained nearly constant between radiocarbon-dated intervals through the Holocene, and this continuous
sedimentation was punctuated by nearly instantaneous clastic depositional events.
The original Pallcacocha Lake data [3] has been interpolated to a sample time of one year using a cubic Hermite

polynomial. The corresponding time series of M = 11 000 data has been considered in the analysis and is displayed in
Fig. 1 (Tsample = 1 year). Using wavelet analysis on this proxy record, Moy et al. [2] found a millennial-scale oscillation
coherent throughout the Holocene but displaying less significant variance in the early Holocene. They identified a shift in
variance around 5000 BP, from a 1500 yr period in the middle/early Holocene to a 2000 yr period in the late Holocene.
Wang and Tsonis [6] found that this proxy exhibits long-range correlations extending to timescales of half a millennium
which explains the presence of long lasting extreme (El Niño or La Niña) events. Tsonis [7] analyzed the record using several
nonlinear dynamic techniques and concluded that the shift in behaviour around 5000 BP could be explained as a bifurcation
in the dynamics given by a transition from chaotic to hyper-chaotic dynamics. In our work using entropy quantifiers, we
also find evidence of a shift in dynamics and cyclic behaviour. In addition, we have been able to localize these cycles in time
and to analyze connections between changes in entropy and epochs of rapid climate change (RCC) during the Holocene [1,
8].

2. Methodology: the Shannon entropy measure and its evaluation

One approach to exploring changes in the dynamics of the proxy ENSO time series is through the use of entropy
quantifiers originally derived in Information Theory. Information Theory was initially developed to deal with compression
and communication of data and has significantly contributed to fields such as statistical mechanics, computer science,
statistical inference, and nonlinear dynamics. It has also been used to analyze changes in the dynamics of natural processes
in neurosciences, ecology, economics and various fields of geosciences. A key quantifier in this theory is entropy, the
fundamental basis of the second law of thermodynamics and a measure of the randomness, uncertainty or disorder of a
physical process. For a given time series X = {xt , t = 1, . . . ,M} of lengthM , the Shannon entropy [9] is defined as:

S[P] = −
N∑
j=1

pj · ln pj (1)

where P = {pj : j = 1, . . . ,N} the probability distribution function (PDF) describing the empirical distribution of X ,
and N is the number of possible states. If S[P] = 0 we are in a position to predict with certainty which of the possible
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outcomes j whose probabilities are given by the pj will actually take place. Our knowledge of the underlying process
described by the probability distribution is, in this instance, maximal. On the other hand, our ignorance is maximal for a
uniform distribution, Pe = {1/N, . . . , 1/N}, and in this case S[Pe] = Smax = ln(N). The ‘‘normalized Shannon entropy’’ is
defined as H[P] = S[P]/Smax.
A key point for the estimation of S[P] is the identification of the probability distribution function, P , thatmore adequately

describes the dynamical properties of the system or time series under study. Many procedures have been proposed for
a proper selection of P , for instance techniques based on amplitude statistics (histograms), symbolic dynamics, Fourier
analysis, and wavelet transforms [10–12, and the references therein]. The various approaches are all able to capture the
global aspects of the dynamics, but they are not equivalent in their ability to discern physical details [10].
In this work we use two different approaches to capture different aspects of the dynamics. The first approach is broadly

used, and computes the PDF (P) using a histogram of amplitudes. In this case, the empirical PDF is obtained by classifying
each value in the time series (xt ) into a number of equally spaced and non-overlapping bins. Hereafter, we will denote the
normalized Shannon entropy obtained using amplitude histograms as H(Hist). A drawback of this approach is that it does not
account for the temporal organization (or ‘‘causality’’) of consecutive values in the time series.
The second approach that we use corresponds to that introduced by Bandt and Pompe and evaluates the PDF associated

with a time series data using a symbolization technique [13,14]. The symbolic data is created by ranking and reordering
the values of the (embedded) time series (see methodology below). Causal information is, consequently, incorporated
into the construction process that yields P and leads to noticeable improvements in the performance of information
quantifiers [12,15]. Hereafter,wewill refer to the normalized Shannon entropy estimated using the Bandt& Pompe approach
simply as permutation entropy and denoted by H(BP).
The procedure for the determination of P using the Bandt & Pompe approach involves the following steps [13,14]: (a) For

the time series X = {xt : t = 1, . . . ,M} we choose an embedding dimension D > 1. (b) We assign to each ‘‘time s’’ a
D-dimensional vector of values corresponding to times s, s− 1, . . . , s− (D− 1) generated by

(s) 7→ (xs−(D−1), xs−(D−2), . . . , xs−1, xs). (2)

Clearly, the greater the value of D, themore information on ‘‘the past’’ that is incorporated into these vectors. (c) Each vector
classified into one of D! possible ordinal patterns given by the permutation π = (r0, r1, . . . , rD−1) of (0, 1, . . . ,D − 1)
defined by

xs−rD−1 ≤ xs−rD−2 ≤ · · · ≤ xs−r1 ≤ xs−r0 . (3)

In order to get a unique result we consider that ri < ri−1 if xs−ri = xs−ri−1 . Thus, for all the D! possible permutations π of
order D, the probability distribution P = {p(π)} is defined by

p(π) =
]{s|s ≤ M − D+ 1; (s) has type π}

M − D+ 1
(4)

where the symbol ] stands for ‘‘number’’.
The advantages of the Bandt & Pompe method are (i) simplicity, (ii) fast calculation process, (iii) robustness in

the presence of noise, and (iv) invariance with respect to nonlinear monotonous transformations. The Bandt & Pompe
methodology is not restricted to time series representative of low dimensional dynamical systems but can be applied to
any type of observational time series (regular, chaotic, noisy), with a very weak stationary assumption (for k = D, the
probability for xt < xt+k should not depend on t).
The embedding dimension D plays an important role in the construction of the probability distribution because it

determines the number of accessible states D!. Also, it conditions the minimum acceptable length M � D! of the time
series needed to obtain reliable statistics. Bandt and Pompe suggest, for practical purposes, to work with 3 ≤ D ≤ 7.
To facilitate the discussion in the following section, we give a short interpretation of the permutation entropy quantifier.

The Bandt & Pompe PDF is estimated by classifying sequences of D data points (in our case annual events) according to the
order of their temporal relative magnitudes. Let us assume in the following that D = 5 and M = 1000. For example,
if the relative magnitude of the events is as follows: highest, lowest, third lowest, fourth lowest, second lowest, then this
sequencewill be classified into a pattern by ranking and reordering the sequence as follows: event 2 ≤ event 5 ≤ event 3 ≤
event 4 ≤ event 1, and labeled ‘‘ordinal pattern 25341’’. There areD! possible ordinal patterns, corresponding to the possible
permutations of relative magnitude of sequences of D events. To obtain the empirical Bandt & Pompe distribution, the 996
successive sequences of five data points in the 1000 data series are classified into the possibleD! ordinal patterns (in our case
D! = 120).H(BP) = 1 (highest value) means that the relativemagnitude of sequences of five ordered events is unpredictable
(all patterns are equally possible) while a low value means that they are more predictable as some patterns appear more
frequently than others. Recent research has shown that some of the possible D! ordinal patterns might be missing in an
observational time series. Missing order patterns have been shown to appear in chaotic time series and in random time
series with long term correlations (persistence) [16,17]. A large number of missing patterns means that ordinal patterns are
more predictable and will result in a low permutation entropy.
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Fig. 2. Entropy quantifiers for the ENSO proxy time series using a sliding timewindow of 1000 data values and a lag of 100 data values between successive
windows. To compute the amplitude histogram we consider Nbin = 100 in the interval [38.06, 243.06]. The Bandt and Pompe PDF was estimated using
ordinal patterns of length of D = 5. The grey bands correspond to the major periods of Holocene rapid climate change (RCC).

3. Results

The evolution of the normalized Shannon entropy corresponding to the proxy ENSO data (Fig. 1) was evaluated using
both amplitude histograms and the Bandt & Pompe methodology to obtain the two entropy quantifiers (H(Hist) and H(BP))
described in the previous section. We computed the evolution of the quantifiers through time using a sliding time window
of 1000 data (1000 years) values with a lag of 100 data (100 years) values between successive windows. A sliding window
was used to allow for a better localization of changes in the dynamics of ENSO through time. The amplitude histogram was
evaluated using Nbins = 100 in the interval [38.06, 243.06] (defined by theminimum andmaximum amplitude values of the
complete time series).
ENSO is a climate pattern that occurs across the tropical pacific ocean on average every five years, but over a periodwhich

varies from three to seven years. Then for the estimation of the Bandt & Pompe PDF, we used a length of patterns (embedding
dimension) of D = 5. This is the same value used by Tsonis et al. for the embedding dimension in the characterization of
this ENSO proxy time series using nonlinear dynamics metrics tools [6,7].
The pattern and window lengths were selected to obtain a good temporal localization of changes in the dynamics (up to

a millennial time scales) without compromising the data needs to obtain reliable statistics for the permutation entropy
quantifier. We should point out that the results obtained when we considered D = 4 and D = 6, were similar to those
shown below, however, in the last case, it was necessary to increase the window length in order to satisfy the condition
M � D!.
The main difference between both entropy measures is that, unlike H(Hist),H(BP) is invariant with respect to strictly

monotonous distortions of the data. We should point out that the present proxy data is based on ‘‘red color intensity’’ of
sedimentary data and related to rainfall by a function which is unknown but very likely to be nonlinear. However, due to its
invariance, H(BP) applied to any other data series that is strictly monotonously related to ‘‘red color intensity’’ would yield
the same results. Therefore, in general, ordinal data processing tools based on ranked numbers would lead to results that
are more robust (and useful) for proxy data analysis than those obtained using tools based on metric properties.
Fig. 2 displays the results of both entropy quantifiers. We also show in this figure, as grey bands, the major periods

of Holocene rapid climate change (RCC) defined by Denton and Karlén [8] from glacier fluctuation records (tuned to
high-resolution GISP2 record). RCC periods were identified by Denton and Karlén [8] at 9000–8000 BP, 6000–5000 BP,
4200–3800 BP, 3500–2500 BP, 1200–1000 BP, and since 600 BP. These periods have been frequently used as a framework
for the examination of Holocene climate variability [1, and the references therein].

3.1. Amplitude histogram entropy quantifier

Fig. 2 shows an overall increasing trend for H(Hist) from 11000 BP to present, that can be interpreted as an increase
in uncertainty. This result is in agreement with previous results from Tsonis [7] who found a decrease in predictability
between the first (11 000–5000 BP) and second period (5000 BP–present). However, the results from Fig. 2 also show that the
increase in H(Hist) (or decrease in predictability) is not gradual throughout the period and there are substantial fluctuations
or cycles with shorter periods of increasing and decreasing entropy. These cycles have an approximate period of 2000 years
(9000 to 7000 BP, 6000 to 4000 BP, 4000 to 2000 BP). Within cycles of H(Hist), there is a tendency for local entropy maxima
(orminimumpredictability) to coincidewith periods of rapid climate change (RCC). Both the localmaxima and the amplitude
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Fig. 3. Missing ordinal patterns obtained for the ENSO proxy obtained using a sliding time window of 1000 data values, a lag of 100 values between
successive windows, and D = 5. The grey bands correspond to the major periods of Holocene rapid climate change (RCC).

of the ‘‘cycles’’ in H(Hist) also show an increasing trend towards the present. An interesting observation is that most RCC
periods seem to be associated with high rates of entropy (H(Hist)) gain, suggesting that variability and uncertainty of ENSO
increased during these RCCs.

3.2. Permutation entropy quantifier

As seen in Fig. 2, H(BP) points out a quite different ENSO dynamics between the early (11000–6500 BP) and middle-to-
late Holocene (6500 BP to present) that is not captured by the H(Hist) quantifier. The period 11000–6500 BP presents the
lowest variability, see Fig. 1, as well as an obvious trend around 9500–8800 BP (upward) and 8800–8000 BP (downward). As
mentioned before, the Bandt & Pompemethodology is based on ordinal data analysis, and unlike H(Hist), displays robustness
against trends present in the data.
The initial values of H(BP) at the early Holocene are quite high (H(BP) = 0.85). These values indicate that the ordinal

patterns (describing the relative magnitude of five successive events) are quite unpredictable. Soon after 10000 BP, a rapid
decrease in permutation entropy occurs over a period of less than 1000 years reaching a minimum H(BP) at around 9200 BP.
This is followed by an interval of remarkable quasi-steady entropy occurring over more than 1500 years, with a significantly
low H(BP) (close to 0.37). The dramatic decrease in the H(BP) quantifier suggests a remarkable shift in dynamics towards a
more organized or predictable condition which lasts for more than a millennia. Further inspection of the Bandt and Pompe
ordinal patterns, show the existence of numerous missing ordinal patterns during this period (Fig. 3). As explained in the
previous section,missing ordinal patterns could be the result of either chaotic dynamics or randombehaviourwith long term
correlations [17].We should note that centeredwithin this interval of quasi-steady lowH(BP)with numerousmissing ordinal
patterns, is the 9000–8000 BP RCC period. Therefore, our results suggest that during this RCC period, the ENSO record has a
dynamic behaviour that is distinctively different from that of the other RCCs of the Holocene. Following the end of this first
Holocene RCC period, at around 7500 BP, there is another important change in dynamics that results in an abrupt increase
in H(BP) (during a 1000 year period) to a value slightly higher than 0.75 at 6500 BP.
As opposed to the early Holocene, during the period starting in 6500 BP the permutation entropy quantifier,H(BP), follows

a cyclic behaviour similar to that of H(Hist). During the mid-to-late Holocene period, H(BP) displays its highest regularity and
predictability at 4000 BP (RCC).

4. Discussion and conclusions

As shown in the previous section, the two entropy quantifiers point out different aspects of the dynamics of the ENSO
proxy during the Holocene. Our results indicate that the dynamics of the ENSO record during the RCC interval 9000–8000 BP
is remarkably different from that of the other RCCs of the Holocene. As explained by Mayewski et al. [1], this RCC interval is
the only one that coincides with a significant increase in volcanic aerosol production, and it occurred when bipolar ice sheet
dynamics still had the potential for substantial effects on global climate. Both entropy quantifiers are low during this period
and the number of missing patterns is very high suggesting higher predictability of ENSO.
Both entropy quantifiers point out to the existence of cycles (intervals of increasing and decreasing entropy)with a period

close to 2000 years during themid-to-late Holocene (approximately 6000 to 4000 BP, 4000 to 2000 BP). This cyclic dynamics
is consistent with that observed by Moy et al. [2] using wavelet analysis. An interesting observation, that was not evident in
previous work, is that within these two cycles there is a tendency for entropy to increase during the two longer RCC periods
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of the mid-to-late Holocene (6000–5000 and 3500–2500 BP). This indicates that both amplitude variability, measured by
H(Hist), and pattern variability, measured byH(BP), of the ENSO proxy tend to increase (predictability decreases) during these
two longer RCCs. Interestingly, Mayewski and coworkers [1] noted that the longer RCCs coincide with maxima in the∆14C
and 10Be events suggesting a decline in solar output at these times. As opposed to the longer RCCs, Mayewski et al. [1] could
not relate the minor RCC events (4200–3800 and 1200–1000 BP) to specific forcing mechanisms. This indicates that the
solar decline during the major RCCs might be responsible for the increased entropy (decreased predictability) in the ENSO
record, probably through the increased aridity and associated higher rainfall variability reported in the low tropics during
these periods.
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