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Abstract: We constructed a model to predict the potential distribution of Oligoryzomys longicaudatus, the

reservoir of Andes virus (Genus: Hantavirus), in Argentina. We developed an extensive database of occurrence

records from published studies and our own surveys and compared two methods to model the probability of

O. longicaudatus presence; logistic regression and MaxEnt algorithm. The environmental variables used were

tree, grass and bare soil cover from MODIS imagery and, altitude and 19 bioclimatic variables from WorldClim

database. The models performances were evaluated and compared both by threshold dependent and inde-

pendent measures. The best models included tree and grass cover, mean diurnal temperature range, and

precipitation of the warmest and coldest seasons. The potential distribution maps for O. longicaudatus pre-

dicted the highest occurrence probabilities along the Andes range, from 32�S and narrowing southwards. They

also predicted high probabilities for the south-central area of Argentina, reaching the Atlantic coast. The

Hantavirus Pulmonary Syndrome cases coincided with mean occurrence probabilities of 95 and 77% for

logistic and MaxEnt models, respectively. HPS transmission zones in Argentine Patagonia matched the areas

with the highest probability of presence. Therefore, colilargos presence probability may provide an approxi-

mate risk of transmission and act as an early tool to guide control and prevention plans.

Keywords: Argentina, hantavirus reservoir, logistic regression, MaxEnt algorithm, Oligoryzomys longicaudatus,

potential distribution

INTRODUCTION

The ‘‘colilargo’’ (Oligoryzomys longicaudatus Bennet 1832)

belongs to a genus of small mice in the New World Tribe

Oryzomyini (Muridae: Sigmodontinae). It is primarily

distributed in humid and highly vegetated areas, such as

woods and shrublands in Chile and southwestern Argentina

where it is usually found in high abundances (Murúa and

Gonzalez 1982; Pearson 1983; Larrieu et al. 2003; Piudo

et al. 2005). However, it has also been captured in steppe

and, in disturbed habitats such as borders of cultivated

fields, peridomestic settings and pastures (Monjeau et al.

1997; Pardiñas et al. 2003; Piudo et al. 2005, 2011; Polop

et al. 2010). The species is of great practical importance

because of its role as the natural reservoir for the Andes
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South virus (ANDV), one of the lineages of hantavirus that

causes Hantavirus Pulmonary Syndrome (HPS) in south-

ern South America (Lopez et al. 1996; Levis et al. 1998;

Padula et al. 2000).

Hantaviruses are zoonotic, host-specific, RNA viruses

that persistently infect rodents of the families Muridae and

Cricetidae. Each virus establishes a chronic, asymptomatic

infection in its rodent host that involves the shedding of

infectious virus into the environment in rodent urine, feces,

and saliva. These characteristics are key to the transmission

of the virus both to humans and among rodents. The virus

is transmitted to humans by inhalation of aerosols of urine

and feces, and/or mucosal secretions (Botten et al. 2002;

Padula et al. 2004) and it is maintained in rodent popu-

lations mainly through bites and aggressive encounters

among adults (Glass et al. 1988; Mills et al. 1997).

HPS is a severe and frequently (30–50% of cases) fatal

cardiopulmonary disease (Yahnke et al. 2001). Since the

first cases of HPS reported in 1993, at least 23 hantaviruses

have been described throughout the Americas and about

half of them are known to cause HPS. ANDV has been

responsible for the HPS cases recorded in southern

Argentina and Chile since 1995 (Lopez et al. 1996; Padula

et al. 2000). Antibody prevalence rates in O. longicaudatus

show spatial and temporal variations, reaching values of

almost 50% in some springs (Cantoni et al. 2001; Larrieu

et al. 2003; Padula et al. 2004, 2005, 2011; Polop et al.

2010). Three other species have been found to have anti-

bodies against ANDV in Argentina: Abrothrix longipilis, A.

olivaceus, and Loxodontomys micropus (Cantoni et al. 2001,

Piudo et al. 2005, 2011) but there are no reports of these

species transmitting ANDV to humans. However, ANDV

epidemiology is slightly complicated by occasional person-

to-person transmission (Martinez et al. 2005). The control

and prevention of rodent-borne diseases (e.g., HPS) largely

depend upon understanding the biology and ecology of the

host in which describing and explaining its geographic

distribution is key (Mills and Childs 1998). Epidemiologic

analysis and planning of preventive measures also require

knowing the geographic distribution and ecological con-

ditions relevant to the occurrence of the host and the cir-

culation of a pathogen (Kosoy et al. 1997). Since the virus is

directly transmitted to humans by the rodent reservoir,

basic studies about the colilargo may provide useful

information to establish risk of human disease, to direct

prevention programs, and improve our understanding of

the relationships between environment, host populations,

and occurrence of disease cases.

For many South American rodents involved in zoo-

noses, basic aspects such as geographic distribution remain

poorly known. Developing predictive habitat distribution

models, or niche modeling, as applied in many fields, such

as biogeography, evolution, ecology, epidemiology, con-

servation, and invasive-species management may provide

an important tool to address this challenge (Anderson et al.

2003; Guisan and Zimmermann 2000). Species distribution

models identify the set of conditions that best predict the

geographic distribution of a species using one of several

modeling algorithms with environmental data from

georeferenced sites of known species occurrence (Pearson

and Dawson 2003; Elith et al. 2006). Each algorithm is

designed to extract the relationship between environmental

variation and species occurrence. This relationship is used

to predict the species distribution in unsampled locations

given the environmental conditions of the area of interest

(Richards et al. 2007). Methods for modeling species dis-

tributions differ in how they select relevant predictor

variables, weight the individual variables contribution, and

predict patterns of occurrence (Guisan and Zimmermann

2000; Elith et al. 2006). Additionally, whereas some algo-

rithms rely on presence data alone, others require both

presence and absence data. Ultimately, the choice of

modeling algorithm should be based on both the intended

use of the resulting distribution estimates and the available

data. However, newer algorithms such as maximum en-

tropy methods (MaxEnt) and boosted regression trees,

appear to empirically outperform several of the more

established methods in comparisons across a number of

species and geographic regions (Elith et al. 2006).

The study of the relationship between environment,

host distribution and abundance, and HPS cases have re-

cently begun in Argentina. Two previous attempts to de-

scribe O. longicaudatus distribution for the whole country

have examined maximum likelihood classification (Porcasi

et al. 2005) and logistic regression (Carbajo and Pardiñas

2007). However, the approach described here uses a larger

number of presence and absence records and higher reso-

lution environmental data. We also compare two different

methods: classical logistic regression and MaxEnt, which

has been characterized as one of the three most reliable

techniques for predicting species distributions (Phillips

et al. 2006; Elith et al. 2006).

Given the public health significance of O. longicaudatus

and the possibility of human-to-human transmission of

ANDV in southern Argentina, it is of great interest to

determine the best approaches to identify environmental

Potential Distribution of a Hantavirus Host in Argentina 333



variables associated with the occurrence of this rodent host.

Likewise, it is important to assess the relationship between

host distribution and HPS cases to recognize those areas of

high risk for humans. The goal is to identify locations and

times when the risk of hantaviral disease occurrence will be

high, allowing public health authorities to focus surveil-

lance and concentrate resources where the need is greatest.

METHODS

Rodent host and HPS cases data

We generated an extensive database of O. longicaudatus

presence and absence records from published studies

(Monjeau et al. 1997; Pearson 2002; Pardiñas et al. 2003,

2004; Porcasi et al. 2005; Piudo et al. 2005; Jayat and

Pacheco 2006; Jayat et al. 2006; Pardiñas and Teta 2007;

Carbajo and Pardiñas 2007; Rivera et al. 2007; Cueto et al.

2008; Ferro and Bárquez 2008; Nabte et al. 2009) and our

own surveys in northwestern Chubut province (V. Andreo,

unpublished, Table 1). Presence was defined by voucher

specimens, osteological remains in owl pellets or the trap-

ping of the animal in the field. Absence was defined, based

on sites where owl pellets with the remains of at least 100

rodents were examined without detecting any sign of

O. longicaudatus (see Carbajo and Pardiñas (2007) for

further details on collections surveyed) or, sites where

researchers trapped mice but did not capture colilargos. We

deleted presence or absence points that were less than 3 km

apart to avoid autocorrelation issues. A randomly selected

subset of locations (*20% of presences and absences) was

withheld for validation studies.

Data on human HPS cases was provided by Health

Ministries from Neuquén, Rı́o Negro and Chubut prov-

inces. HPS localities were considered just once when more

than one case was recorded at a site and when secondary

transmission was confirmed or suspected.

Records of O. longicaudatus and HPS localities were

incorporated into a geographic information system (GIS)

using ArcMap, version 9.3 (Environmental Systems Re-

search Institute, Redlands, CA).

Environmental data

Environmental data layers of topography, climate, and land

cover were compiled for southern South America. Altitude

and climatic data layers as 19 ‘bioclimatic variables’ were

drawn from the WorldClim data set (Hijmans et al. 2005,

Table 1. Number of presence and absence records used as training and test data sets obtained from published studies and our own field

surveys in northwestern Chubut province, Argentina

Source Training data set Test data set Total

Absence Presence Subtotal Absence Presence Subtotal

Carbajo and Pardiñas (2007) 60 93 153 22 24 46 199

Cueto et al. (2008) 7 – 7 1 – 1 8

Ferro and Bárquez 2008 1 – 1 1 – 1 2

Jayat and Pacheco (2006) 60 – 60 11 – 11 71

Jayat et al. (2006) 23 – 23 4 – 4 27

Monjeau et al. (1997) 6 3 9 2 – 2 11

Nabte et al. (2009) 20 – 20 3 – 3 23

Palma et al. (2005) - 1 1 – 1 1 2

Pardiñas and Teta (2007) 6 1 7 1 – 1 8

Pardiñas et al. (2003) 8 5 13 – 1 1 14

Pardiñas et al. (2004) 14 – 14 4 – 4 18

Pearson (2002) – 3 3 – – – 3

Piudo et al. (2005) 1 6 7 – – – 7

Porcasi et al. (2005) 42 9 51 – – – 51

Rivera et al. (2007) – 1 1 13 2 15 16

V.A. surveys (umpublished) 2 8 10 – 4 4 14

Total 250 130 380 62 32 94 474
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http://www.worldclim.org). These products are derived

from monthly weather station measurements of altitude,

temperature, and rainfall. They are biologically meaningful

variables that capture annual ranges, seasonality and lim-

iting factors useful for species distribution modeling. The

Worldclim data set we used is at *1 km2 spatial resolution

and corresponds to averages over a 50-year period (1950–

2000, Hijmans et al. 2005). Land cover data was drawn

from the Vegetation Continuous Fields collection (VCF-

MOD44B, collection 3, Hansen et al. 2003), which contains

proportional estimates for vegetative cover types: woody

vegetation, herbaceous vegetation, and bare ground. The

product was derived from the seven bands of the MOD-

erate-resolution Imaging Spectroradiometer (MODIS)

sensor and it was aggregated from an initial 0.5 km pixel to

1 km2 to match the resolution of the climatic variables. The

environmental layers were imported into ArcMap, version

9.3 (Environmental Sciences Research Institute, Redlands,

CA).

Modeling

Two modeling approaches to characterize the probability of

presence for O. longicaudatus were compared: Multiple

logistic regression models (generalized linear models with

binomial error) and MaxEnt algorithm (Maximum En-

tropy, Phillips et al. 2006; Phillips and Dudı́k 2008).

Exploratory analysis compared environmental variables

between sites with and without O. longicaudatus using a

Kruskal–Wallis test. We also conducted univariate logistic

regressions to determine the associations between colilargos

occurrence probability and altitude, climate, and land cover.

Variables that were not different between sites or that were

not significant in univariate logistic regressions were not

included in further analysis. Multivariate logistic analysis

was performed including variables with P values <0.10 from

the univariate analyses as covariates to increase sensitivity.

The significance of variables was evaluated with a t test.

Variance inflation factors (VIFs) and pairwise Pearson cor-

relation coefficients were computed to evaluate colinearity

among the independent variables. Variables with VIF lower

than 10 (or that yielded an average VIF of 5) were retained.

For pairwise Pearson correlation coefficients larger than 0.6

the variable responsible for the greater change in deviance

was retained, and the other was excluded from further

analyses. We ran models using either only altitude, climatic

or land cover variables, and then we tried with combinations

of all of them to assess the contribution of each category to

O. longicaudatus distribution. We did not consider interac-

tions among variables to simplify models.

The explanatory power of the models was estimated

with D2, the ratio of the residual to null deviance. To select

the most parsimonious model with the best predictive

power, Akaike Information Criterion (AIC) and D2 were

used to rank the models. The model with the lowest AIC

and highest D2 was selected to build distribution maps and

draw inferences. We also performed a Moran test on the

residuals of this model to assess whether the unexplained

variation was randomly distributed (Software Passage ver-

sion 2.0, Rosenberg and Anderson 2011). The potential

distribution map for the logistic model was built by

applying the model formula pixel to pixel in the geographic

information system. R 2.12.0 (The R-Development Core

Team 2010) and ArcMap version 9.3 were used for mod-

eling and mapping, respectively.

The MaxEnt algorithm was applied using the same

combination of predictor variables as in the best logistic

model. MaxEnt is a machine learning technique that esti-

mates a target probability distribution for species occur-

rence that maximizes the entropy, subject to the constraint

that the expected value for each environmental variable

under this distribution matches the empirical average

generated from environmental values associated with

occurrence data (Phillips et al. 2006). The target probability

is calculated using the pixels with known species occur-

rence records and the associated environmental variables.

The obtained distribution approximates the species po-

tential geographic distribution (Phillips et al. 2006, for

more details on MaxEnt statistical functioning see Elith

et al. 2011). MaxEnt algorithm was run using MaxEnt

software, version 3.3.1 (http://www.cs.princeton.edu/*
schapire/maxent/) with SWD format (‘‘samples with

data’’) which allows the inclusion of both presence and

absence data. We used the logistic map as output with

values ranging from 0 to 1. Therefore, pixels with values

close to 1 showed the best environmental conditions for the

occurrence of O. longicaudatus and indicated a higher

probability of finding it, while pixels with values close to 0

indicated unsuitable conditions for the species and a very

low probability of occurrence. All other parameters were

maintained at default settings.

To assess the predictive accuracy of the logistic and

MaxEnt models, we used both threshold dependent and

independent measures for training data set. Receiver oper-

ating characteristic (ROC) curves were used to assess the

overall discrimination ability of each model on the basis of
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the area under the ROC curve (AUC) as threshold inde-

pendent measures. Following Araújo and Guisan (2006), a

rough guide for classifying the model accuracy was: 0.50–

0.60 = insufficient; 0.60–0.70 = poor; 0.70–0.80 = average;

0.80–0.90 = good; 0.90–1 = excellent. However, predictive

modeling and some practical applications of species distri-

bution models may require an arbitrary threshold probability

at which to accept the presence of the target organism.

Therefore, to complement the former evaluation, we con-

verted the probabilities to a binary value. Three different

criteria for the optimal probability cut-off value were evalu-

ated: the prevalence (the proportion of sites in which the

species was recorded as present), the point where the sum of

sensitivity and specificity was maximized, and the cut-off

value where sensitivity equaled specificity. The latter two

approaches have proven to work best in comparing methods

for threshold selection (Liu et al. 2005). For each threshold

for logistic and MaxEnt models we constructed a confusion

matrix of the predicted and observed values using the

training data set and we estimated accuracy and error mea-

sures (Table 2). Finally, we compared the performance of the

models using only threshold independent measures for test

data set. Both threshold dependent and independent mea-

sures were estimated using the package ROCR version 1.0-4

(Sing et al. 2005) for R (The R-Development Core Team

2010).

RESULTS

The database consisted of 162 presence and 312 absence

records. Thirty-two presence and 62 absence records were

used as validation test points and 130 presence and 250

absence records were the training set used to perform

exploratory analysis and develop models. The distribution

of O. longicaudatus was represented by a thematic point

map with the sites where the rodent was present or absent

(Fig. 1).

Table 2. Threshold dependent measures used for assessing the predictive performance of models

Performance measure Definition Formula

Overall accuracy Proportion of all cases correctly predicted (TP + TN)/(P + N)

Error rate Proportion of all cases erroneously predicted (FP + FN)/(P + N)

Sensitivity (true positive rate) Proportion of true presences correctly predicted TP/P

Specificity (true negative rate) Proportion of true absences correctly predicted TN/N

False positive rate FP/N

False negative rate FN/P

Positive predictive value (precision) Percentage of predicted presences that were real TP/(TP + FP)

Negative predictive value Percentage of predicted absences that were real TN/(TN + FN)

TP number of presence points correctly classified as presences, TN number of absence points correctly classified as absences, FP number of actual absence

points classified as presences, FN number of actual presence points classified as absences, P total number of actual presences, N total number of actual

absences

Figure 1. Training and test samples for presence and absence of

O. longicaudatus in Argentina.
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Sites with and without O. longicaudatus differed sig-

nificantly for most of the environmental variables that were

examined (Table 3). In univariate logistic regression, mean

temperature and precipitation of the wettest quarter (bio8

and bio19, respectively) explained the highest proportion

of deviance, followed by mean annual temperature (bio1),

mean temperature of the warmest quarter (bio10), and

mean temperature of the coldest quarter (bio11). Most of

these variables were negatively associated with colilargos

occurrence except for precipitation of the wettest quarter

which showed a positive relationship (Table 3).

The best logistic models (m1 and m2, Table 4) in-

cluded tree and grass cover, mean diurnal temperature

range (bio2), mean temperature of the driest season (bio9),

and precipitation of the warmest and coldest seasons

(bio18 and bio19, respectively). All variables but precipi-

tation of the warmest quarter (bio18) were positively re-

lated to O. longicaudatus occurrence probability. We chose

the second model (m2) to draw inferences and build the

potential distribution map, because it was simpler (less

variables), it showed very similar AIC and equal D2 values

with m1 (i.e., it explained the same proportion of devi-

ance). In MaxEnt algorithm using the same predictors as

m2, environmental variables showed a similar general

pattern of association with O. longicaudatus occurrence,

although for bio 18 and bio 19 the relationship was non-

linear. These precipitation-related variables explained the

highest proportion of deviance in the logistic model and

had the highest contribution in the MaxEnt algorithm.

Maps of potential distribution of O. longicaudatus

(Fig. 2) predicted high habitat suitability or high occurrence

probability along the Andean range from northern Men-

doza province (32�S) and narrowing southward. Both

models also predicted a high suitability area in the north-

west and south of La Pampa, south of Buenos Aires and

north of Rio Negro provinces, following the trajectory of

two major rivers: Rı́o Negro and Rı́o Colorado. The Pata-

gonian central plateaus (Chubut and Santa Cruz provinces)

showed low probabilities in the logistic model with some

patches of high suitability, and moderate to low values in

MaxEnt predictive map. The MaxEnt potential distribution

map showed high suitability for colilargos all along Andes

range to Tierra del Fuego (55�S) and intermediate proba-

bilities for the Atlantic coast of Chubut and Santa Cruz

provinces, describing a more gradual change in habitat

suitability from west to east than logistic map. In contrast,

the latter did not predict the presence of colilargos south-

wards beyond 49�S. The probability of occurrence decreased

towards the northeast in Buenos Aires and Córdoba prov-

inces in both predictive maps.

In terms of vegetation types, high likelihood of pres-

ence areas corresponded to most of the Subantarctic forests

(perennial and deciduous forests, 800–5000 mm precipi-

tation annually), the western part of the Patagonian steppe

(shrub and grass steppes, 100–300 mm annually), southern

part of the Espinal (scrublands and low trees, 340–600 mm

precipitation annually) and the Monte (shrub-grass

steppes, 250–800 mm precipitation annually) phytogeo-

graphic regions.

Both the logistic regression and MaxEnt models per-

formed similarly as measured by threshold independent

measures (Fig. 3). According to ROC curves, sensitivity

and specificity plots and sensitivity plus specificity plots,

both models had highly satisfactory performances with

AUC values of 0.96 and 0.97, for logistic and MaxEnt

models, respectively. In the threshold-dependent evalua-

tion approach (Table 5), differences in predictive perfor-

mance between models were more noticeable when we

used prevalence as threshold than for the other two cri-

teria. Differences were also evident in the presence–ab-

sence maps (Fig. 4). For the logistic model the best criteria

for threshold selection seemed to be sensitivity = speci-

ficity and prevalence, which had higher sensitivity values

and lower false negative rates. In MaxEnt, even though the

prevalence criterion showed the highest sensitivity and

lowest false negative rate, it had a very low specificity and

high false positive rate, wrongly predicting presence all

over Patagonia. Therefore, 0.5 (the cut-off value where

sensitivity equals specificity) seemed to be the best

threshold selection criterion for this model. When com-

paring models with the threshold-dependent approach,

sensitivity = specificity seemed to be the criterion that

better balanced these measures along with false positive

and negative rates and, positive and negative predictive

values (Table 5). Using this criterion we chose MaxEnt

model as the best representation of O. longicaudatus dis-

tribution. To complement the predictive performance

assessment we used the threshold-independent ROC curve

and AUC on test samples. Again, models behaved nearly

equally as measured by AUC, with MaxEnt showing a

slightly higher value (0.94 and 0.95, for Logistic and

MaxEnt models, respectively).

Finally, almost all HPS cases recorded in Patagonia were

encompassed in the highest predicted probability of O. lon-

gicaudatus presence, which coincided with forests and

shrublands areas. The mean predicted probability of coli-
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largos presence for sites with HPS cases was 0.77

(min = 0.42, max = 0.86) for MaxEnt model and 0.95

(min = 0.2, max = 1) for the logistic model. The minimum

probability value for both maps corresponded to a locality

called El Morado in the northeast of Neuquén province, an

area phytogeographically characterized as Monte.

Table 4. Multivariate logistic regression models for O. longicaudatus presence/absence

Model Variables AIC D2

m1 TREE + HERB + BIO2 + BIO9 + BIO18 + BIO19 194.20 0.63

m2 TREE + HERB + BIO2 + BIO18 + BIO19 194.49 0.63

m3 BIO7 + BIO18 + BIO19 203.35 0.60

m4 BIO2 + BIO18 + BIO19 204.63 0.60

m5 HERB + BIO18 + BIO19 204.75 0.60

m6 TREE + HERB + BIO9 + BIO13 + BIO18 206.08 0.60

m7 TREE + HERB + BIO3 + BIO9 + BIO13 + BIO18 206.80 0.61

m8 HERB + BIO9 + BIO13 + BIO18 207.84 0.59

m9 BIO18 + BIO9 + BIO19 207.95 0.59

m10 BIO3 + BIO5 + BIO6 + BIO8 + BIO9 + BIO18 + BIO19 208.03 0.61

m11 TREE + HERB + BIO3 + BIO8 + BIO9 + BIO13 + BIO18 208.42 0.61

m12 BIO5 + BIO18 + BIO19 209.88 0.59

m13 BIO3 + BIO18 + BIO19 210.16 0.59

m14 BIO18 + BIO19 210.22 0.58

HERB percentage of surface with grass cover, TREE percentage of surface with tree cover, BIO2 mean diurnal range, BIO3 isothermality, BIO5 maximum

temperature of the warmest month, BIO6 minimum temperature of the coldest month, BIO7 temperature annual range, BIO8 mean temperature of the

wettest quarter, BIO9 mean temperature of the driest quarter, BIO13 precipitation of the wettest month, BIO18 precipitation of the warmest quarter,

BIO19 precipitation of the coldest quarter, AIC Akaike information criterion value, D2 ratio of the residual to null deviance.

Figure 2. Predicted potential geographic distribution of O. longicaudatus for logistic model (a) and MaxEnt algorithm (b).
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Figure 3. Receiver operating characteristic (a, b), sensitivity and specificity (c, d) and sensitivity plus specificity (e, f) curves for logistic and

MaxEnt models based on training data.
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DISCUSSION

The distribution of O. longicaudatus can be accurately

modeled as a function of environmental (land cover) and

climatic variables. At a univariate level, there were signifi-

cant differences between presence and absence sites for

most of these variables. In univariate logistic regressions

several climatic variables explained between 15 and 42% of

models deviance. O. longicaudatus should be present in

sites with cooler temperatures (Table 3) and drier condi-

tions during the warmest season (i.e., 77 mm for presence

sites vs. 194 mm for absence sites). Thus, colilargos tend to

occur in cooler, drier locations during the warm season in

the region while they are most probably found in sites with

high precipitations in the winter rainy season in south-

western Argentina (297 vs. 74 mm for presence and

absence sites, respectively). When combined at a multi-

variate level, the number of significant variables was re-

duced, but it seems likely that tree and grass cover, mean

diurnal temperature range (bio2), mean temperature of the

driest season (bio9), and precipitation of the warmest and

coldest seasons (bio18 and bio19, respectively) have some

effect on the distribution of this hantavirus reservoir. Most

of the variables under consideration were positively related

to O. longicaudatus occurrence probability.

There are potential biases in relying only on published

literature as papers rarely report negative information (no

captures) and samples are the locations where extensive

sampling efforts were done. To some extent we controlled

for that by including sites where the same authors did not

catch O. longicaudatus, but this is not as efficient as

designing a sampling strategy that evaluates all the major

habitats in an unbiased manner. Obviously, places that were

sampled by collectors and the data were not published were

not accessible and represent yet another source of bias. We

are also aware that there may be some effect of the different

sources and methodologies used to build our data base.

However, as we are just using presence/absence data (not

abundance) and considering the spatial scale of the study, we

do not believe those effects could greatly influence our re-

sults. Thus, sites with only a single capture are considered to

be equally indicative of species presence as sites with sub-

stantially more captures, whether this reflects biases in

detection or effort. There also may be limitations in using

climate data averaged over a 50-year period. However, the

rodent sample records were collected from the 1970s

through the 2000s—an approximately comparable period.
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These climate data represented the best available informa-

tion for the entire country (regarding timing and spatial

resolution). The extensive time period may hide temporal

dynamical changes that might be detected by finer resolution

climate information but generating a new nationwide data

set would, itself, be subject to further concerns of its accu-

racy. These climate data were chosen, in part, because of the

consistent methods in the construction (Hijmans et al. 2005)

and because they have been applied successfully in earlier

species distribution modeling studies in Argentina (Jayat

et al. 2009; Tognelli et al. 2009; Martin 2010; Torres and

Jayat 2010).

The potential distribution maps for O. longicaudatus

predicted the highest occurrence probabilities along the An-

des range, from 32�S and narrowing southwards. They also

predicted high probabilities of presence for northwestern and

southern La Pampa, southern Buenos Aires and central-

northern Rı́o Negro provinces, reaching the Atlantic coast.

These high suitability areas corresponded to four phytogeo-

graphic regions: Subantarctic forests, Patagonian steppes,

Monte and Espinal. The logistic model predicted some other

patches of high probability in central Chubut (central pla-

teaus) and a very small patch in western Santa Cruz province,

while the MaxEnt model extended the distribution of this

hantavirus reservoir almost continuously to Tierra de Fuego

(55�S), and predicted moderate to low probabilities in central

and eastern Chubut and Santa Cruz provinces.

Although both models performed quite similarly in

terms of AUC and threshold-dependent measures, MaxEnt

algorithm showed slightly higher values in most cases. We

consider that the predictive map generated with MaxEnt

algorithm was the best representation of O. longicaudatus

distribution for a number of reasons: (a) it predicted the

range expansion of this species as far as 55�S that was

confirmed by Belmar-Lucero et al. (2009) through genetic

studies; (b) it correctly predicted very low or null occur-

rence probabilities northwards 32�S, while logistic model

predicted some very high probability patches in this area,

(c) it predicted moderate occurrence probabilities in areas

where training points density was low, but the colilargo is

known to occur (such as the Atlantic coast and central

plateaus), whereas logistic model yielded low presence

probability for those areas, and (d) it predicted O. longi-

caudatus presence in western Santa Cruz province whereas

the southernmost predicted presence of the logistic model

was southern Chubut province. The better performance of

MaxEnt over the logistic model was evident in both

threshold-dependent and -independent measures and in

the resulting predictive map. This may be related to the

higher flexibility of MaxEnt algorithm in allowing for

nonlinear relationships between response and predictor

variables (Phillips et al. 2006). Interestingly, this model also

accurately predicted colilargos known distribution in Chile

(Palma et al. 2005; Belmar-Lucero et al. 2009), even though

we did not include any records for that country.

Our MaxEnt potential distribution map was similar to

that presented by other workers (Porcasi et al. 2005; Car-

bajo and Pardiñas 2007) which may be because many

presence points were obtained from their studies (Table 1).

However, our predictive map was accurate in not predict-

ing colilargos northward of 32�S where another Oli-

goryzomys species is responsible for the HPS human cases

recorded (Gonzalez-Ittig et al. 2002; Rivera et al. 2007).

Both temperature and rainfall variables were good

predictors of the rodent occurrence, consistently with

previous studies (Porcasi et al. 2005; Carbajo and Pardiñas

2007). However, despite the usefulness of temperature and

precipitation for the delimitation of suitable or unsuitable

areas for O. longicaudatus, higher resolution bioclimatic

variables used in the present study (*1 km2), aside from

being more specific and capturing more environmental

variability, may also indicate potentially favorable or lim-

iting conditions for the distribution of the species (both

generally and for specific times of the year). In this sense,

there were several bioclimatic variables with high predictive

power (Table 3) some of which were retained in multi-

variate models (Table 4). Although climate has tradition-

ally been regarded as a major determinant of species

distribution, we found that land cover variables, such as

tree and grass cover were also positively related to colilargos

occurrence, which is in agreement with previous studies on

this species (González et al. 2000; Monjeau et al. 2011). It

seems then, that at least at this spatial scale, both biotic

(land cover) and abiotic (climate) variables contribute in

the explanation of O. longicaudatus distribution. These

results are also consistent with previous temporal studies

on the species suggesting a high sensitivity to climatic

factors and fluctuations in resource levels (Murúa et al.

1987, 2003).

Figure 4. Maps of presence and absence (dark gray and light gray,

respectively) for O. longicaudatus built using different thresholds. a, b

Using prevalence; c, d using the cut-off value where sensitivity equals

specificity; and e, f using the cut-off value where the curve sensitivity

plus specificity reaches it maximum for logistic and MaxEnt models,

respectively.

b
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Oligoryzomys longicaudatus inhabits subantarctic for-

ests, where woods are abundant, and extends into the

steppe along shrublands adjacent to streams and roads

(Murúa and Gonzalez 1982; Pearson 1983). Generally, it

seems to prefer humid areas with extensive cover (Pearson

and Pearson 1982; Pearson 1983) and studies in patagonian

provinces (Neuquén, Rio Negro, and Chubut) revealed that

the highest abundances corresponded to woods and

shrublands habitats, and the lowest to the steppe (Cantoni

et al. 2001; Larrieu et al. 2003; Piudo et al. 2005, 2011;

Polop et al. 2010). Moreover, in a wood-steppe ecotone,

captures were associated with shrub cover and spiny

shrubs, such as wild rose and blackberry (Lozada et al.

2000). These habitats coincide with the phytogeographic

regions where our model predicted presence. In Chile, O.

longicaudatus is also most abundant in mesic areas of the

Temperate and Patagonian Forests in the south. However,

this species has expanded northward as far as 28�S in the

Mediterranean region where more open and almost xeric

areas prevail (Mann 1978). In this latter region this species

has colonized and adapted to distinct vegetation types such

as scrublands, but seems to be always associated with hu-

mid areas (Mann 1978). Within its extended geographical

range, the species appears to be adapted to very distinct

vegetative types and climatic conditions both in Chile and

Argentina, which supports the view that it has an oppor-

tunistic and vagile nature (Murúa et al. 1986).

There were few sites in the southwest of Argentina

where O. longicaudatus was recorded present but models

predicted low or moderate occurrence probabilities (in the

eastern part of Chubut province against the Atlantic coast,

central-western Chubut, and central-southwestern Santa

Cruz provinces). This may reflect the low number of

presence records for those areas limiting the representation

of those environmental conditions in the environmental

space evaluated for the species. On the other hand, there

were areas predicted as highly suitable for colilargos (such

as Mendoza province), but with very few or no presence

points to perform a thorough assessment. These areas,

however, may also be seen as a great opportunity to test our

model predictive ability by performing field surveys there.

Both situations require further research to clarify these

results and to generate better knowledge of this hantavirus

reservoir distribution (and of the virus).

The HPS cases recorded in Patagonia (caused by

ANDV) are encompassed in the highest probability of

occurrence area. The mean colilargos predicted presence

probability for sites with HPS cases was 0.77 for MaxEnt

model and 0.95 for the logistic model. Thus, MaxEnt

provides a more conservative tool for risk mapping. This

high probability area coincided with the highest ANDV

prevalence area (Cantoni et al. 2001; Larrieu et al. 2003;

Piudo et al. 2005; Polop et al. 2010). Infected O. longi-

caudatus have been captured along the Andes range in

Neuquén, Rı́o Negro, and Chubut provinces in Argentina

but there are no records of ANDV eastwards (Cantoni et al.

2001; Piudo et al. 2005). In the Chilean side, infected

O. longicaudatus have been captured all over its range along

the Andes (Belmar-Lucero et al. 2009). The distribution of

this reservoir species indicate the maximum potential ex-

tent of HPS and in Argentine Patagonia, transmission

zones matched the areas with the highest probability of

colilargos presence. These findings suggest that presence

probability of colilargo may indicate an approximate risk of

transmission and that this kind of models could be used as

an early tool to guide control and prevention plans.

CONCLUSIONS

The distribution of O. longicaudatus, the ANDV reservoir

in southern Argentina and Chile, can be understood and

modeled as a function of environmental and climatic

variables, such as tree and grass cover, mean diurnal tem-

perature range, mean temperature of the driest season, and

precipitation of the warmest and coldest seasons. The po-

tential distribution maps predicted high probabilities of

occurrence along the Andes range (from 32�S and nar-

rowing southwards) and in south-central areas of Argen-

tina reaching the Atlantic coast. MaxEnt model predictions

extended the distribution of this hantavirus reservoir al-

most continuously to Tierra de Fuego (55�S) and showed

slightly higher values of AUC and threshold-dependent

measures in most cases. This better performance of MaxEnt

over logistic model may be due to the higher flexibility of

this algorithm in allowing for nonlinear relationships

(Phillips et al. 2006). Since almost all HPS cases recorded in

Patagonia were encompassed in the highest probability of

occurrence area, we presume that the probability of coli-

largos presence may indicate an approximate risk of

transmission. These potential distribution maps might be

used as early tools to guide control and prevention plans.

However, a more comprehensive and accurate approach

would also include pathogen and human population dis-

tribution as well as the other hantavirus host species in the

country. The next step would be to more precisely define
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risk by determining the relationship of host abundance

with prevalence of infection in particular habitats at land-

scape and local scales. We have an ongoing study focused in

northwestern Chubut province aiming at determining

those associations. These results will likely collaborate in

the comprehension of the relationships between environ-

ment, host populations and occurrence of disease cases,

providing potentially useful information to establish the

risk area for human disease and direct prevention pro-

grams.
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Murúa R, Gonzalez LA (1982) Microhabitat selection in two
Chilean cricetid rodents. Oecologia 52:12–15
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