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2Institute of Nuclear Research (ATOMKI), H-4001 Debrecen, Hungary

3Instituto de Fisica-Universidade de São Paulo, C.P. 66318, 05389-970 São Paulo, Brazil
4Laboratorio Tandar, Departamento de Fisica, Comisión Nacional de Energı́a

(Received 22 June 2010; revised manuscript received 15 August 2010; published 8 October 2010)

Cross sections of 120Sn(α,α)120Sn elastic scattering have been extracted from the α-particle-beam contamination
of a recent 120Sn(6He,6He)120Sn experiment. Both reactions are analyzed using systematic double-folding
potentials in the real part and smoothly varying Woods-Saxon potentials in the imaginary part. The potential
extracted from the 120Sn(6He,6He)120Sn data may be used as the basis for the construction of a simple global 6He
optical potential. The comparison of the 6He and α data shows that the halo nature of the 6He nucleus leads to
a clear signature in the reflexion coefficients ηL: The relevant angular momenta L with ηL � 0 and ηL � 1 are
shifted to larger L with a broader distribution. This signature is not present in the α-scattering data and can thus
be used as a new criterion for the definition of a halo nucleus.
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I. INTRODUCTION

In the past decade a series of experiments has been
performed on elastic scattering of unstable nuclei at energies
around the Coulomb barrier. It has been found that the
scattering cross sections show a significantly different behavior
for weakly bound projectiles compared to tightly bound projec-
tiles such as the α particle. The small binding energy of valence
nucleons in orbitals with small angular momentum leads to
wave functions that extend to very large radii, exceeding by far
the usual A1/3 radius dependence. Owing to the corresponding
long-range absorption, the Fresnel diffraction peak in the
elastic scattering angular distribution is damped and the elastic
scattering cross section at backward angles is relatively small.
As a consequence, the derived total reaction cross section σreac

for these exotic nuclei (e.g., 6He) is much larger than for
tightly bound projectile (e.g., α particle)-induced reactions.
Fusion, breakup, and transfer reactions have been studied as
the relevant reaction mechanisms.

As one focus on elastic scattering experiments with 6He, re-
sults have been reported for heavy target nuclei such as 197Au,
208Pb, and 209Bi [1–7] and intermediate-mass nuclei such as
64Zn and 65Cu [8–10]. Some data are also available for lighter
target nuclei such as 12C (e.g., Refs. [11,12]). In addition,
elastic scattering of 11Be has been studied recently [13–15].
For a complete list of references, see the recent reviews [16,17].

Moreover, a series of theoretical investigations [18–30]
on 6He elastic scattering has been performed in the past
years; they are also summarized in the review articles by
Keeley and co-workers [16,17]. The present study reanalyzes
recently published data of the 120Sn(6He,6He)120Sn elastic
scattering cross section [31] that filled the gap between targets
with A � 100 and A ≈ 200. We compare these results to
120Sn(α,α)120Sn elastic-scattering data that have been obtained
in the same experiment. The similarities and differences of the
weakly bound projectile 6He and the tightly bound projectile
α are nicely visible in this comparison.

The present study uses double-folding potentials for the
real part of the potential; this type of potential is widely
used in literature. The imaginary part is parametrized by
Woods-Saxon potentials. The parameters of the potentials
are restricted by the systematics of volume integrals that
was found for many α-nucleus systems [32]; this systematics
was successfully extended to 6He in Refs. [4,18]. Further
information on the 120Sn-α potential is obtained from the
analysis of angular distributions at higher energies [33–36]
and excitation functions at lower energies [37,38].

The most important quantity for the description of elastic
scattering data below and around the Coulomb barrier are the
reflexion coefficients ηL, which define the total reaction cross
section. There is a characteristic increase of the ηL from ηL ≈ 0
(i.e., almost complete absorption) for small angular momenta
L to ηL ≈ 1 (i.e., no absorption) for large L corresponding to
large impact parameters in a classical picture. It will be shown
that the dependence of ηL on the angular momentum L differs
significantly for 120Sn(6He,6He)120Sn and 120Sn(α,α)120Sn
elastic scattering. This difference can be considered as a new
criterion for unusual strong absorption because of the halo
nature of 6He.

This article is organized as follows: In Sec. II we repeat very
briefly a discussion of the experimental setup that is identical
to that used in Ref. [31]. Section III contains an optical-model
(OM) analysis of the 120Sn(6He,6He)120Sn (Sec. III A) and
120Sn(α,α)120Sn (Sec. III B) scattering data and a discussion
of the results (Sec. III C). Finally, conclusions are drawn in
Sec. IV. Energies are given in the center-of-mass (c.m.) system
except when explicitly noted as laboratory energy Elab.

II. EXPERIMENTAL TECHNIQUE

The scattering experiment has been performed at the 8UD
São Paulo Pelletron Laboratory at the Radioactive Ion Beams
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in Brazil facility [39]. A primary 7Li3+ beam with energies
around 25 MeV and a beam current of 300 nAe hits the
primary 9Be target. The reaction products are collimated and
enter a solenoid that focuses the primary 7Li particles onto
a “lollipop,” where the 7Li particles are stopped. Because
of the different magnetic rigidity, the secondary 6He and α

particles do not hit the lollipop, but reach the secondary 120Sn
target. Typical beam intensities are about 104–105 particles
per second at the secondary target position. A 3.8 mg/cm2

isotopically enriched (98.29%) 120Sn target and a 3.0 mg/cm2

197Au target have been used as secondary targets. Because the
scattering 4He + 197Au is pure Rutherford at forward angles in
the energies of the present experiment, runs with gold targets
have been performed just before and after every 120Sn run to
normalize the 4He + 120Sn cross sections [31].

The scattered particles are detected and identified in a
system of �E and E silicon detectors. A schematic view of
the setup is given in Fig. 1 of Ref. [31].

The 6He beam is produced by one-proton removal from
7Li in the 9Be(7Li,6He)10B reaction. However, the reaction
9Be(7Li,α)12B may also occur in the primary target, leading
to an α contamination of the secondary beam. Because of
the much larger Q value of the α-producing reaction (Qα =
+10.5 MeV compared to Q6He = −3.4 MeV), the α particles
have slightly higher energies around 30 MeV. The α beam
contamination is clearly visible in the �E–E spectra in Fig. 2
of Ref. [31]. This contamination can be used to measure the
120Sn(α,α)120Sn elastic scattering cross section simultaneously
with the 120Sn(6He,6He)120Sn experiment.

The result of the previous 120Sn(6He,6He)120Sn experiment
[31] is shown in Fig. 1 together with the original analysis
of Ref. [31] and the new analysis, which is discussed in
the following Sec. III A. The new 120Sn(α,α)120Sn elastic
scattering data are shown in Fig. 2 together with the theoretical
results of this work. Except for the 20-MeV data that were
obtained in a previous 8Li + 120Sn experiment [40], the
laboratory energies of the α beams are related to the 6He
energies by Eα,lab = 3

2E6He,lab owing to the band pass of
the solenoid (Bρ = √

2mElab/q).

III. OPTICAL-MODEL ANALYSIS

The complex optical-model potential (OMP) is given by

U (r) = VC(r) + V (r) + iW (r), (1)

where VC(r) is the Coulomb potential and V (r) and W (r)
are the real and the imaginary parts of the nuclear potential,
respectively. The real part of the potential is calculated from the
folding procedure [41,42] using a density-dependent nucleon-
nucleon interaction. The calculated folding potential is ad-
justed to the experimental scattering data by two parameters,

V (r) = λVF (r/w), (2)

where λ ≈ 1.1–1.4 is the potential strength parameter [32]
and w ≈ 1.0 ± 0.05 is the width parameter that slightly
modifies the potential width. (Larger deviations of the width
parameter w from unity would indicate a failure of the
folding potential.) The nuclear densities of 120Sn and α are
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FIG. 1. (Color online) Rutherford-normalized elastic-scattering
cross sections of 120Sn(6He,6He)120Sn reaction at Elab = 17.4, 18.05,
19.8, and 20.5 MeV versus the scattering angle ϑc.m. in the c.m.
system (from Ref. [31]). The black dashed lines are the results from
the original analysis in Ref. [31]. The blue solid lines are obtained
from the fit to the 20-MeV data, and the green dotted lines are obtained
from the fit to the 17-MeV data. The dash-dotted red lines are the
interpolations for the 18- and 19-MeV data. The parameters of the
fits are listed in Table I. For further discussion, see text (Sec. III A).

derived from the measured charge-density distributions that are
compiled in Ref. [43]: For 120Sn the three-parameter Gaussian
distribution [44] is used. Almost identical folding potentials
are obtained from the second available density distribution for
120Sn [45], which has been measured in a smaller range of
momentum transfers. For the α particle the sum-of-Gaussian
parametrization of Ref. [46] is used. The 6He density is taken
from the 6Li density determined in Ref. [47]; both nuclei 6He
and 6Li have two nucleons in the p shell with similar separation
energies. This density has been applied successfully in the
calculation of 209Bi(6He,6He)209Bi elastic scattering [4,18].
Limitations of this choice may become visible in the width
parameter w of the real part of the potential. However, a very
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FIG. 2. (Color online) Rutherford-normalized elastic-scattering
cross sections of the 120Sn(α,α)120Sn reaction at Elab = 20.0, 26.1,
27.1, 29.7, and 30.8 MeV versus the scattering angle ϑc.m. in c.m.
system. The lines are the results from the OM calculations in Sec. III B
using different width parameters w of the real part and different
imaginary radii RS and diffusenesses aS , as indicated in the figure. In
addition, the influence of an increased imaginary radius RS is shown
for the 20-MeV data. The calculation of Tabor et al. [37] was adjusted
to reproduce low-energy excitation functions (see Sec. III B3). For
further details, see text (Sec. III B).

similar folding potential is obtained from recently published
theoretical densities of 6He [48]; the consequences of the
different choices for the 6He density will be studied in a
subsequent article. For further details of the folding potential,
see also Refs. [49,50].

The imaginary part W (r) is taken in the usual Woods-Saxon
parametrization. For the fits to the experimental data, we use
volume and surface potentials,

W (r) = WV × f (xV ) + 4WS × df (xS)

dxS

, (3)

with the potential depths WV and WS of the volume and surface
parts, respectively, and

f (xi) = 1

1 + exp(xi)
(4)

and xi = [r − Ri(A
1/3
P + A

1/3
T )]/ai with the radius parameters

Ri in the heavy-ion convention, the diffuseness parameters ai ,
and i = S, V . It is well established that at very low energies
the surface contribution of the imaginary part is dominating;
for example, in Ref. [51] it is suggested that the surface
contribution is about 80% for α scattering of the neighboring
nuclei 112Sn and 124Sn at energies below 20 MeV. At higher
energies, that is, significantly above the Coulomb barrier, the
volume contribution is dominating.

The Coulomb potential VC(r) is taken in the usual form
of a homogeneously charged sphere. The Coulomb radius
RC is taken from the root-mean-square (rms) radius of the
real folding potential with w = 1.0; the sensitivity of the
calculations on minor changes of RC is negligible.

For a fit to few data points of elastic scattering around
the Coulomb barrier, the number of adjustable parameters
should be as small as possible because there are significant
ambiguities for the derived potentials; the underlying problem
is that the elastic-scattering cross section is sensitive to the
phase shifts and reflexion coefficients that are properties of the
wave function far outside the nuclear radii: (i) the so-called
“family problem” is a discrete ambiguity where real potentials
with different depths lead to a similar description of the
scattering data because the wave functions are very similar in
the exterior, whereas in the interior the number of nodes may
change. (ii) Continuous ambiguities are found: for example, a
larger potential depth may be compensated by a smaller radius
parameter, leading to more or less the same total potential
strength and thus to the same wave function in the exterior
region. In some cases this leads to a so-called “one-point
potential” (e.g., Refs. [29,38,50,52]).

For a reduction of the adjustable parameters, we use the
systematic behavior of the volume integrals of the potentials
that has been found in Refs. [18,32]. For intermediate-mass
and heavy nuclei, the volume integrals JR of the real part of
the potential are practically independent of the chosen nuclei
and depend only weakly on energy with a maximum around
30 MeV. A Gaussian parametrization has been suggested in
Ref. [53] for energies below and slightly above the maximum
of JR at ER,0 = 30 MeV:

JR(E) = JR,0 × exp

[
− (E − ER,0)2

�2
R

]
, (5)

with the maximum value JR,0 = 350 MeV fm3 and the width
�R = 75 MeV. Potentials with JR from Eq. (5) have been used
for α scattering [32], α decay [53], and 6He scattering [4,18].
The energy dependence of JR is weak; for example, JR changes
by only a few percent in the considered energy range of this
work. (Note that the negative signs of the volume integrals are,
as usual, neglected in the discussion.)

Contrary to the real volume integrals JR , the imaginary
volume integrals JI depend on the chosen nuclei and on energy.
The energy dependence of JI has been parametrized according
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TABLE I. Parameters of the potentials of 120Sn(6He,6He)120Sn elastic scattering in Fig. 1.

Elab λ wa JR
b rR,rms JI

c rI,rms WS RS aS
d σreac

(MeV) (MeV fm3) (fm) (MeV fm3) (fm) (MeV) (fm) (fm) (mb)

17.40 1.207 0.95 339.0 5.477 75.6 9.320 19.2 1.315 0.7 1479
18.05 1.210 0.95 339.9 5.477 78.0 9.074 21.0 1.277 0.7 1503
19.80 1.219 0.95 342.4 5.477 83.8 8.415 26.6 1.174 0.7 1538
20.50 1.222 0.95 343.2 5.477 85.9 8.153 29.3 1.133 0.7 1546

aFixed value, adjusted to the 20-MeV data.
bFrom Gaussian parametrization, Eq. (5).
cFrom Brown-Rho parametrization, Eq. (6).
dFixed value.

to Brown and Rho [54],

JI (E) = JI,0 × (E − EI,0)2

(E − EI,0)2 + �2
I

, (6)

with a saturation value JI,0, the threshold value EI,0 =
1.171 MeV (corresponding to the first excited 2+ state in
120Sn), and the slope parameter �I . Saturation values around
JI,0 ≈ 100 MeV fm3 have been found in α scattering with a
trend to smaller JI,0 for doubly magic targets and increasing
JI,0 for semimagic or nonmagic targets. For the combination of
a semimagic 6He projectile and a semimagic 209Bi target JI,0 =
127 MeV fm3 and �I = 12.7 MeV were found [18]; these
values are adopted for the analysis of 120Sn(6He,6He)120Sn
elastic scattering, which is also a combination of a semimagic
projectile and a semimagic target. For 120Sn(α,α)120Sn elastic
scattering, a smaller saturation value of JI,0 = 80 MeV fm3 is
used, which is derived from scattering data at higher energies
(see Sec. III B).

From the preceding considerations the volume integrals
JR and JI for the analysis of 120Sn(6He,6He)120Sn and
120Sn(α,α)120Sn elastic scattering are fixed. Hence, the two
adjustable parameters in the real part (strength parameter λ

and width parameter w) are related by the volume integral JR

in Eq. (5), and the three adjustable Woods-Saxon parameters
(depth WV or WS , radius RV or RS , and diffuseness aV or aS)
are related by the volume integral JI in Eq. (6).

A. 120Sn(6He,6He)120Sn

In addition to the preceding restrictions for the volume
integrals JR and JI , we fix the imaginary surface diffuseness
to a standard value aS = 0.7 fm. The small volume part of the
imaginary potential at low energies [51] is neglected: WV = 0.

In a next step we adjust the remaining parameters to
the 120Sn(6He,6He)120Sn scattering data at Elab = 20.5 MeV
(referred to as “20-MeV data” in the following; the same
convention of referring to the integer part of the laboratory
energy Elab is used for all data). An excellent description
of the 20-MeV data is found (see Fig. 1, solid blue line)
using a relatively small width parameter of w = 0.95 (see
also Sec. III C). The same potential is now applied to the
measured angular distributions at lower energies. Increasing
discrepancies are observed for lower energies (Fig. 1, solid

blue lines): The calculated cross section at backward angles is
larger than the measured values.

Because of the minor energy dependence of the real
potential, the width parameter w was fixed now, and we
tried to fit the lowest 17-MeV data by a readjustment of
the imaginary part of the potential with a fixed JI from
Eq. (6). A clear increase of the radius parameter RS by about
15% was found; then an excellent description of the 17-MeV
data can be obtained. This 17-MeV potential is not able to
describe the angular distributions at the other energies, where
the calculated cross sections underestimate the experimental
results at backward angles (Fig. 1, dotted green lines).

Finally, we interpolate the imaginary radius parameter RS

between the 17-MeV and the 20-MeV results and use it for the
remaining 18- and 19-MeV angular distributions. An excellent
agreement is obtained for all measured angular distributions
(Fig. 1, dash-dotted red lines). The resulting parameters of the
potentials are listed in Table I.

The total reaction cross sections σreac can be calculated from
the reflexion coefficients ηL. We find that σreac decreases only
slightly with energy from σreac = 1546 mb at the highest energy
Elab = 20.5 MeV to σreac = 1479 mb at the lowest energy of
Elab = 17.4 MeV (see Table I). These results agree with the
original OM analysis of Ref. [31] within less than 5%.

For comparison, Fig. 1 shows also the original analysis
of Ref. [31] using Woods-Saxon potentials without any
restriction (black dashed lines). It is obvious that the systematic
potentials from this work are able to reproduce the measured
angular distributions with the same quality as the unrestricted
Woods-Saxon potentials, which do not show any systematic
bahavior; their volume integrals JR and JI vary strongly with
energy.

B. 120Sn(α,α)120Sn

The analysis of the 120Sn(α,α)120Sn-system elastic scat-
tering benefits from the fact that three angular distributions
have been measured at higher energies [33–36]. These angular
distributions can be used to fix the real part of the optical
potential with small uncertainties. Thus, the number of
adjustable parameters in the analysis of the new angular
distributions at lower energies (see Fig. 2) is reduced, and the
imaginary part can be deduced from the experimental data for a
subsequent comparison with the 6He case. Further information
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on the potential can be obtained from the analysis of excitation
functions that have been measured at lower energies [37,38].

Data at higher energies can be best reproduced using an
imaginary potential of Woods-Saxon volume type. Somewhat
arbitrarily, we take the three data sets from the literature at
Elab = 34.4 MeV [33], 40.0 MeV [34,35], and 50.5 MeV [36]
as the “high-energy” data, which are analyzed with a volume
Woods-Saxon imaginary part, whereas our new data below
30 MeV are analyzed as “low-energy” data using a surface
Woods-Saxon imaginary part. Obviously, there must be an
intermediate energy range with the transition from surface
Woods-Saxon to volume Woods-Saxon potentials. This transi-
tional region is around the 34-MeV data of Ref. [33]; however,
these data are not adequate for a precise determination of the
optical potential (see later in this article).

1. Angular distributions above ≈30 MeV

Three angular distributions of 120Sn(α,α)120Sn elastic scat-
tering have been published. The data by Kuterbekov et al. [36]
have been measured at Elab = 50.5 MeV. The data cover
an angular range from about 10◦ to 60◦. The numerical
data are available in the EXFOR data base, but no further
information on the experiment is available. The data of Baron
et al. [34] are described in detail in an earlier report [35],
including the numerical data with statistical errors. Because
of very tiny statistical error bars in the forward direction of
far below 1 %, a systematic error of 5% has been added
quadratically to all data points. In addition, the given energy
of Eα = 40.00 ± 0.25 MeV [35] has been reduced to an
effective energy Elab = 39.95 MeV because of the energy loss
in the target. This angular distribution covers almost the full
angular range from about 20◦ to 150◦. Finally, the data of
Kumabe et al. [33] cover only a very limited angular range
from about 20◦ to 60◦. The data have been extracted from
Fig. 2 of Ref. [33], which shows the absolute cross sections
without error bars. Because of the limited angular range, the
uncertainties of the digitization procedure, and the missing
error bars, any fit of these data has significant uncertainties.

The three angular distributions have been fitted using two
adjustable parameters in the real part (strength parameter λ

and width parameter w) and three parameters in the imaginary
part (depth WV , radius RV , and diffuseness aV ). Additionally,
the absolute values of the measured cross sections were
allowed to vary. It is well known that the cross sections at
forward directions practically do not depend on the underlying
potentials; in particular, at very forward directions the cross
section approaches the Rutherford cross section for all optical
potentials. Thus, it is common practice to normalize the mea-
sured data to calculated values at forward directions because
an absolute measurement requires the absolute determination
of the target thickness and uniformity, detector solid angle, and
beam current and a proper dead-time correction. The scaling
factor s for the correction of the experimental data is defined by
σ corr

exp = s × σ raw
exp , where σ raw

exp are the published cross-section
data. It has been stated, for example, in Ref. [33], that this
theoretical normalization s deviates by 10%–25% from unity
for the tin targets used in that experiment. It is interesting
to note that the obtained potential parameters are not very
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FIG. 3. (Color online) Rutherford-normalized elastic scattering
cross sections of 120Sn(α,α)120Sn reaction at higher energies Elab =
34.4, 40.0, and 50.5 MeV [33–36] versus the scattering angle ϑc.m.

in the c.m. frame. The calculated angular distributions use a double-
folding potential in the real part and a volume Woods-Saxon potential
in the imaginary part. For further details, see text.

sensitive to the scaling factor s as long as s remains far below a
factor of two because the diffraction pattern in the experimental
data at higher energies nicely defines the underlying potential.

The results of the analysis are shown in Fig. 3, and the
obtained parameters are listed in Table II. Excellent agreement
between the scaled experimental data and the theoretical
analysis is found for all energies under study.

After a minor scaling of less than 20% (s = 1.18), the
50-MeV data can be described very well except for the two
data points at most forward angles. Because of the reproduction
of the diffraction pattern over the full measured angular range,
it seems to be very unlikely that there is such a huge deviation
between theory and experiment at small angles around 15◦.
It should be kept in mind that the error bars in Ref. [36]
are statistical only; however, because of the strong angular
dependence of the Rutherford cross section, the uncertainties
of data points at forward angles are usually defined by
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TABLE II. Parameters of the potentials of 120Sn(α,α)120Sn elastic scattering at higher energies above 30 MeV in Fig. 3.

Elab s λ w JR rR,rms JI rI,rms WV RV aV σreac

(MeV) (MeV fm3) (fm) (MeV fm3) (fm) (MeV) (fm) (fm) (mb)

34.4 0.97 1.222 1.029 340.5 5.461 58.6 6.496 12.9 1.213 0.583 1742
40.0 1.48 1.190 1.048 347.4 5.561 77.2 6.495 16.7 1.173 0.543 1927
50.5 1.18 1.227 1.018 324.1 5.407 78.6 6.315 18.2 1.197 0.490 1939

systematic uncertainties (e.g., from the angular calibration or
the dead-time correction).

The data of Baron et al. [34,35] cover almost the full angular
range and are thus an ideal data set for the determination of the
optical potential. The reproduction of the angular distribution
is excellent over the full angular range. However, a significant
scaling of the data (s = 1.48) was necessary; this seems to be
justified because otherwise the most forward data point at 18◦
deviates by almost a factor of two from the Rutherford cross
section.

As pointed out earlier, the data at 34 MeV [33] have less
explanatory power. Here a small scaling factor of s = 0.97 is
found. The reason for this s ≈ 1 is simply that the authors
of Ref. [33] have already applied the same normalization
procedure to their data. The found deviation of 3% thus simply
provides an estimate for the uncertainty of the digitization pro-
cedure that had to be used to extract the data from their Fig. 2.

From the obtained parameters (see Table II), the following
conclusions can be drawn. The real part of the potential
behaves very regularly with the expected decrease of the
real volume integral JR at higher energies [32]. The resulting
JR remains close to the suggested Gaussian parametrization
in Eq. (5) although this parametrization is not expected to
remain valid far above the maximum around 30 MeV [53]. The
width parameter w is always slightly above 1.0; thus, for the
following calculations at lower energies we adopt the average
value of w̄ = 1.032. Together with the parametrization of JR

at low energies in Eq. (5), the real part of the optical potential
is completely fixed now. The imaginary part increases with
energy and saturates at JI,0 ≈ 80 MeV fm3. As expected, this
value is somewhat smaller than the result for 6He (JI,0 =
127 MeV fm3). The available data are not sufficient to derive
the slope parameter �I of the Brown-Rho parametrization in
Eq. (6). Instead, we use the same value �I = 12.7 MeV for α

and 6He in this article.
The relatively large value of w = 1.032 from the

120Sn(α,α)120Sn data at higher energies together with the small
value of w ≈ 0.95 derived from the 120Sn(6He,6He)120Sn data
indicates that there is no major problem with the underlying
120Sn density, which should show up as a modification for w in
the same direction in both experiments. This is not surprising
because the 120Sn charge density has been measured in two
independent experiments [44,45], and there is no evidence for
a peculiar behavior of the neutron density (e.g., neutron skin)
in 120Sn [55,56]. Instead, it may be concluded that the chosen
6He density is not very precise. Surprisingly, this problem was
not found in the analysis of 209Bi(6He,6He)209Bi scattering
data [4,18]; however, it may have been masked there by the
larger Coulomb barrier of 209Bi.

The largest width parameter w = 1.048 was obtained
from the analysis of the 40-MeV angular distribution of
Refs. [34,35]. A smaller width parameter of w ≈ 1.02, closer
to unity and in better agreement with the other data, can be
obtained if the energy is changed to 42 MeV instead of 40 MeV.
It is interesting to note that the authors of Refs. [34,35] later
refer to their data as “42-MeV scattering data” [57], whereas in
Ref. [35] it is explicitly stated that “the incident beam energy
is 40.00 ± 0.25 MeV.”

2. Angular distributions below ≈30 MeV

After fixing the complete real potential and the imaginary
volume integral JI as described in the previous section, now
we fix the geometry of the imaginary part for the low-energy
data below ≈30 MeV. Because of the dominating volume term
at higher energies and the dominating surface term at lower
energies (e.g., Ref. [51]), it is impossible to use at low energies
the same geometry of the imaginary potential obtained at
higher energies. Instead, we follow a procedure similar to the
low-energy 6He data. We fix the imaginary surface diffuseness
at aS = 0.7 fm, and we take the radius parameter RS from
the highest energy of the 120Sn(6He,6He)120Sn data: RS =
1.133 fm. The depth of the potential WS is adjusted to repro-
duce the volume integral JI from Eq. (6) with the parameters
JI,0 = 80 MeV fm3 and �I = 12.7 MeV (as discussed in the
previous subsection). As a consequence, all parameters of the
potential are fixed, either to systematics or to the experimental
data at higher energies. The reproduction of the 120Sn(α,α)
120Sn elastic scattering cross section is good for all energies
(see Fig. 2). The parameters are listed in Table III. The total
reaction cross section σreac shows the usual energy dependence;
that is, it increases strongly with increasing energy.

In addition, we have studied the sensitivity of the data to
minor variations of the potential. First, a width parameter w =
1.0 of the real potential was used instead of w = 1.03 together
with a reduced imaginary radius parameter RS = 1.021 fm
(red dotted line in Fig. 2, adjusted to reproduce the excitation
functions of Ref. [37]; see Sec. III B3). Second, the diffuseness
aS of the imaginary part was decreased to aS = 0.43 fm instead
of 0.7 fm (green dashed line, again adjusted to reproduce
the excitations of Ref. [37]). In both cases the influence
on the scattering cross sections remains relatively small al-
though the 20-MeV data around 50◦ are clearly overestimated
using w = 1.0 and RS = 1.021 fm or aS = 0.43 fm from the
analysis of the excitation functions.

A significant reduction of the calculated scattering cross
section is found if the increased radius parameter RS from the
17-MeV 6He data is taken at the lowest energy of the α data

044606-6



COMPARISON OF 120Sn(6He,6He)120Sn . . . PHYSICAL REVIEW C 82, 044606 (2010)

TABLE III. Parameters of the potentials of 120Sn(α,α)120Sn elastic scattering in Figs. 2 and 4.

Elab λ wa JR
b rR,rms JI

c rI,rms WS RS
d aS

e σreac

(MeV) (MeV fm3) (fm) (MeV fm3) (fm) (MeV) (fm) (fm) (mb)

20.0 1.207 1.032 343.0 5.474 53.8 7.910 13.1 1.133 0.70 1121
26.1 1.226 1.032 348.6 5.474 62.6 7.910 15.2 1.133 0.70 1663
27.1 1.228 1.032 349.1 5.474 63.6 7.910 15.5 1.133 0.70 1727
29.7 1.231 1.032 349.9 5.474 66.0 7.910 16.0 1.133 0.70 1870
30.8 1.231 1.032 350.0 5.474 66.9 7.910 16.2 1.133 0.70 1923

≈13.5f 1.170 1.032 332.6 5.474 37.4 7.910 9.1 1.133 0.70 150
≈13.5f 1.170 1.032 332.6 5.474 37.4 7.588 15.1 1.133 0.43g 86
≈13.5f 1.284 1.000g 332.6 5.306 37.4 7.236 11.1 1.021g 0.70 61

aFixed value from average of high-energy data.
bFrom Gaussian parametrization, Eq. (5).
cFrom Brown-Rho parametrization, Eq. (6).
dFixed value from 20-MeV 6He data.
eFixed value.
fAverage energy of excitation functions [37].
gAdjusted to excitation functions [37].

(magenta dash-dotted line). Here it becomes obvious that the
new experimental 120Sn(α,α)120Sn data are not compatible
with the strong increase of the radius parameter RS at
low energies that was essential for the reproduction of the
120Sn(6He,6He)120Sn data.

3. Excitation functions at low energies

Excitation functions have been measured by Tabor et al.
and Badawy et al. [37,38]. Unfortunately, the latter article only
mentions the measurement and derives a so-called one-point
potential, but does not show the data for 120Sn(α,α)120Sn; thus,
these data [38] are not accessible and cannot be used in the
analysis. Tabor et al. [37] show two excitation functions at
ϑlab = 120◦ and 165◦ in the energy range from 10 to 17 MeV
in their Fig. 1. These data are shown together with the original
analysis using a Woods-Saxon potential and the new reanalysis
in Fig. 4.

In general, it is not possible to extract an optical potential
from low-energy excitation functions because of ambiguities
in the derived potentials. This has been clearly shown by
Badawy et al. [38] in their analysis: “The only statement
that can be made on the three parameters characterizing a
Woods-Saxon real potential is that they are linked by the
relation” that any potential with a depth of 0.2 MeV at
r = 10.63 fm describes their experimental data. The imaginary
potential also cannot be well determined: “. . . the results
are very insensitive to the value of W. . . .” Further details
on the one-point potential and its relation to the so-called
“family problem” of α-nucleus potentials are discussed in
Ref. [50] using the precisely determined angular distribution
of 144Sm(α,α)144Sm at E ≈ 20 MeV (see Figs. 5 and 6 of
Ref. [50]).

Although it is not possible to extract the optical potential, it
is nevertheless possible to test the systematic potentials of this
work using the measured excitation functions of Ref. [37].
It is found that the standard potential with w = 1.03, RS =
1.133 fm, and aS = 0.7 fm does not describe the excitation

functions at low energies (solid blue line in Fig. 4) and
underestimates the measured cross sections. Instead of aS =
0.7 fm, the diffuseness parameter of the surface imaginary
part has to be decreased to aS = 0.43 fm to find reasonable
agreement with the measured excitation functions (green
dashed line in Fig. 4). Alternatively, an excellent description
of the data is also obtained using a reduced imaginary radius
parameter RS = 1.021 fm, aS = 0.7 fm, and a width parameter
w = 1.0 of the real part; however, such a width parameter w

has been excluded by the high-energy angular distributions.
This latter result is almost identical to the original analysis of
Tabor et al. [37]; similar to that result, the angular distribution
at 20 MeV is clearly overestimated around 50◦ (see Fig. 2).

Similar to the angular distributions shown in Fig. 2, a huge
deviation from the measured excitation functions is found
if the increased radius parameter RS = 1.315 fm that has
been obtained from the lowest energy in 120Sn(6He,6He)120Sn
scattering is used (dash-dotted magenta lines in Figs. 2 and 4).

The calculated excitation functions may also change when
the energy dependence of the volume integrals JR and JI in
Eqs. (5) and (6) is varied. However, a variation of the Brown-
Rho parameters of the order of 10% has only minor influence
on the calculated excitation functions as long as the geometry
of the imaginary potential is not changed.

The parameters of the potentials are also listed in Table III
at the average energy Elab ≈ 13.5 MeV of the measured
excitation functions [37]. At this energy both calculations with
the slightly modified standard potential agree nicely with the
measured data (see Fig. 4). However, the preferred calculation
with w = 1.03 leads to slightly smaller elastic scattering cross
sections, which have significant impact on the total reaction
cross section σreac: w = 1.03 and aS = 0.43 fm corresponds
to σreac = 86 mb, w = 1.0 and RS = 1.021 fm corresponds
to σreac = 61 mb. The standard potential underestimates the
elastic scattering cross sections of Ref. [37] and thus leads to a
very high σreac = 150 mb. This discrepancy for σreac will affect
the prediction of α-induced cross sections in the statistical
model.
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FIG. 4. (Color online) Rutherford-normalized excitation function
of 120Sn(α,α)120Sn elastic scattering at ϑlab = 120◦ and 165◦ [37].
An excellent description of the data at very low energies can
be obtained using either a decreased imaginary diffuseness aS =
0.43 fm (green dashed line) or a width parameter w = 1.0 and a
reduced imaginary radius parameter RS (red dotted line), whereas the
standard potential slightly underestimates the measured data (solid
blue line). For comparison, the original analysis of Tabor et al. [37]
is also shown (brown short-dashed line, almost identical to the red
dotted line). The increased imaginary radius from the low-energy
6He data is clearly excluded (magenta dash-dotted line). For further
discussion, see text.

C. Discussion

For a better understanding of the different behavior of the
120Sn(α,α)120Sn and 120Sn(6He,6He)120Sn scattering data we
show in Figs. 5 and 6 the reflexion coefficients ηL that are re-
lated to the scattering matrix SL by SL = ηL × exp (2iδL); the
reflexion coefficients ηL and the phase shifts δL are real. The
shown ηL correspond to the S matrices from the calculations
of Figs. 1 and 2. Both data sets show the usual behavior from
ηL close to zero for small angular momenta L (corresponding
to almost total absorption), increasing ηL for intermediate L

(partial absorption), and ηL ≈ 1 (no absorption) for large L.
Again usual, with increasing energy the number of partly or
totally absorbed partial waves increases. However, there are
also significant differences in the shown ηL in Figs. 5 and 6.

The slope of the ηL vs L curves is different for the 6He and
the α data. Therefore, we plot the slope dηL/dL of this curve,

dηL

dL
:= ηL+1 − ηL−1

(L + 1) − (L − 1)
= (ηL+1 − ηL−1)/2, (7)

0.0
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1.0

L

0 10 20 30

L

17.4 MeV
18.05 MeV
19.8 MeV
20.5 MeV

17.4 MeV (20 MeV potential)
20.5 MeV (17 MeV potential)

0.0

0.05

0.1

0.15

0.2

d
L
/d

L

17.4 MeV
18.05 MeV
19.8 MeV
20.5 MeV

17.4 MeV (20 MeV potential)
20.5 MeV (17 MeV potential)

FIG. 5. (Color online) Reflexion coefficients ηL for
120Sn(6He,6He)120Sn elastic scattering at Elab = 17.4, 18.05,
19.8, and 20.5 MeV (bottom) and the derivatives dηL/dL (top). The
solid symbols correspond to the calculations in Fig. 1 and Table I; the
open symbols are obtained using the 17-MeV potential at 20 MeV
and vice versa. A clear broadening of the derivative dηL/dL at low
energies can be seen. The data points for each L are connected by
dotted lines to guide the eye. For further discussion, see text.

in the upper parts of Figs. 5 and 6. One finds curves with a
shape close to Gaussian,

dηL

dL
≈ a × exp

[
− (L − L0)2

(�L)2

]
, (8)

with the maximum slope at the angular momentum L0 and the
width �L. In general, the width �L is larger for the 6He data
than for the α data. In addition, a significant increase of the
width �L toward lower energies is found for the 6He data,
which is not present in the α data. Significant absorption is
found for all partial waves with L � L0 + �L.

For a better comparison of the 6He data and the α data
which have been measured at slightly different energies, we
use the so-called reduced energy,

Ered = E × A
1/3
P + A

1/3
T

ZP ZT

, (9)

which takes into account the Coulomb barrier (which is the
same for 6He and α) and the different sizes of the 120Sn-6He
and 120Sn-α systems. The obtained values for the position L0

of the maximum slope of ηL and the width �L are shown in
dependence of the reduced energy Ered in Fig. 7.

It is obvious from Fig. 7 that the maximum slope of dηL/dL

is found for larger L0 in the 6He case at the same reduced
energy Ered, thus reflecting the larger mass and momentum
and the larger absorption radius of the halo nucleus 6He. More
important, the width �L is larger for 6He at the same Ered and
increases significantly with decreasing energy. A similar effect
is not seen for 120Sn(α,α)120Sn, and such a significant increase
of the width �L is also not found in a series of high-precision α

scattering data in this mass region on 89Y, 92Mo, 106,110,116Cd,
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FIG. 6. (Color online) Reflexion coefficients ηL for
120Sn(α,α)120Sn elastic scattering at Elab = 20.0, 26.1, 27.1,
29.7, and 30.8 MeV (bottom) and the derivatives dηL/dL (top). The
solid symbols correspond to the calculations in Fig. 2 and Table III;
the open symbols are obtained at the lowest energy of 20.0 MeV
using an increased radius RS of the imaginary surface potential
(derived from 6He scattering at the lowest energy). Additionally,
the results from the excitation functions are shown at the average
energy of Eα,lab = 13.5 MeV using the standard potential with (solid
squares) and the calculation with w = 1.0 and the reduced imaginary
radius RS = 1.02 fm (open squares). There is almost no broadening
of the derivative dηL/dL at low energies, which is found only for
120Sn(6He,6He)120Sn (see Fig. 5). The data points for each L are
connected by dotted lines to guide the eye. For further discussion,
see text.

and 112,124Sn [51,58–60]. These interesting findings for 6He
are directly related to the energy dependence of the imaginary
radius parameter RS in the 6He case.

For a demonstration of the strong influence of RS in the
6He case, we show in Fig. 5 the reflexion coefficients using
the narrow imaginary potential from 20 MeV for the 17-MeV
data and vice versa (open symbols); these calculations are
in clear disagreement with the measured data, see Fig. 1. The
narrow 20-MeV potential used at 17 MeV leads to a maximum
of dηL/dL at lower L0 and a smaller width �L. In parallel,
σreac is reduced from 1479 mb to 1114 mb. The wide 17-MeV
potential used at 20 MeV leads to an increased L0, a larger
width �L, and an increased σreac = 1950 mb instead of
1546 mb. In the α case, a similar result is found in the
calculations where the increased radius parameter RS at the
lowest energy leads to an increased L0, larger width �L, and
an increased σreac = 1459 mb instead of 1121 mb. As can be
seen from Fig. 2, the experimental data at 20 MeV are not
reproduced using the larger radius parameter, and thus such an
increase of L0 and �L is excluded by the new 120Sn(α,α)120Sn
scattering data. The description of the excitation functions
at lower energies requires either a reduced diffuseness aS =
0.43 fm or a reduced radius RS = 1.021 fm in combination
with w = 1.0 but does clearly not require any increased
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He (de Faria et al.)
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6
He

6
He (de Faria et al.)

FIG. 7. (Color online) Position L0 of the maximum derivative
dηL/dL for 120Sn(6He,6He)120Sn and 120Sn(α,α)120Sn elastic scat-
tering versus the reduced energy Ered in Eq. (9) (bottom) and the
Gaussian width �L of dηL/dL in Eq. (8) (top). A clear broading
of the width �L can only be seen for 120Sn(6He,6He)120Sn, whereas
the width �L is almost constant for 120Sn(α,α)120Sn. The data for
120Sn(α,α)120Sn have been taken from the angular distributions in
Fig. 2; the two points at the lowest energy result from the analysis of
the excitation functions in Fig. 4 using either the standard potential
or the potential with w = 1.0 and the reduced imaginary radius
parameter RS = 1.02 fm. The lines are to guide the eye. The open
symbols show the result of the original analysis in Ref. [31].

imaginary radius as derived from the low-energy 6He data.
Again, this clearly excludes any increase in L0 or �L in the α

case (see Fig. 7).
In summary, we find the following properties of the 120Sn-α

potential. The high-energy data define the width parameter
w = 1.03 for the folding potential in the real part. The volume
integrals JR and JI of the real and imaginary potentials
are consistent with several systematic studies. The geometry
of the imaginary part is of Woods-Saxon volume type at
higher energies; here the parameters can be fitted to the
measured angular distributions. At lower energies the surface
contribution is dominating. The imaginary diffuseness is fixed
here at a standard value aS = 0.7 fm. The reduced radius
parameter RS is constant above 20 MeV and identical to
the analysis of 120Sn(6He,6He)120Sn scattering at the highest
measured energy. Only at very low energies does aS have
to be reduced or w = 1.0 and a reduced imaginary radius
RS = 1.02 fm have to be used. In any case, there is no
significant broadening of the dηL/dL vs L curve; a significant
broadening of dηL/dL is only seen for the 6He case.

We have repeated the preceding analysis of the slope
dηL/dL with the original Woods-Saxon potentials which
were fitted to the experimental 120Sn(6He,6He)120Sn data [31].
The same general behavior of L0 and �L is found from
this analysis (see open symbols in Fig. 7). Thus, it can be
concluded that the experimental 120Sn(6He,6He)120Sn data
clearly require a larger value L0 and an increasing width �L at
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lower energies. This finding is independent whether systematic
folding potentials or fitted Woods-Saxon potentials are applied
in the analysis. Consequently, this increase of the width �L

in the dηL/dL vs L curve may be taken as a signature for the
halo properties of the 6He projectile. Whereas �L changes by
about +0.2 for Ered between 0.85 and 1.85 MeV in the α case,
a one-order-of-magnitude-stronger variation of about −0.6
within a much smaller range of 1.1 MeV � Ered � 1.3 MeV
is found for the 6He case:

�(�L)

�Ered
≈ +0.2/MeV for α, (10)

�(�L)

�Ered
≈ −3.0/MeV for 6He. (11)

Halo properties may be assigned as soon as the variation of
�L with Ered is clearly below a value of �(�L)/�Ered ≈
−1/ MeV around Ered ≈ 1 MeV.

The increase of the imaginary radius parameter RS has been
explained in Ref. [18] with the fact that the area where reactions
may occur moves to larger distances at lower energies. This has
been clearly shown, for example, for low-energy capture data
in the 16O(p,γ )17F reaction [61–63]. Further work is required
to follow this idea in more detail.

The systematic behavior of the potentials in the real and
imaginary parts may be used as the basis for the construction of
a simple global 6He potential. Because of the smooth variation
of all parameters, the predictive power of such a global 6He
potential should be very good. In particular, it has to be pointed
out that the so-called “threshold anomaly” is avoided in the
present study. Such “threshold anomalies,” that is, potentials
with a strong or unusual energy dependence at energies around
the Coulomb barrier, or with unusual geometry parameters
such as a huge imaginary diffuseness aS of several fm, had to be
used in many studies to reproduce the huge total reaction cross
sections of halo nuclei around the barrier (e.g., Refs. [3,31]).
For a deeper discussion of threshold anomalies and dynamic
polarization potentials, see, for example, Refs. [64–67].

For completeness, it has also to be pointed out that an
unusually large reaction cross section is not already a clear
signature of a halo wave function. Such an unusual σreac only
indicates the strong coupling to other channels which may
not at all be related to halo properties. For example, such a
behavior has been found in the elastic scattering of 18O by
184W where the coupling to the low-lying 2+ state of 184W
leads to an unusual elastic scattering angular distribution and
a huge σreac [68–70].

IV. SUMMARY AND CONCLUSIONS

We have presented new experimental data for
120Sn(α,α)120Sn elastic scattering at energies around
and slightly above the Coulomb barrier which were measured

simultaneously with a recent 120Sn(6He,6He)120Sn experiment.
The data are successfully analyzed using systematic folding
potentials in the real part and smoothly varying Woods-Saxon
potentials in the imaginary part. These potentials are also
able to reproduce 120Sn(α,α)120Sn angular distributions at
higher energies and excitation functions at lower energies
that are available in literature. A comparison with the
120Sn(6He,6He)120Sn scattering data shows that similar
potentials with a smooth mass and energy dependence are
also able to reproduce these data. Thus, this smoothly varying
potential may be used as the basis for the construction of simple
global 6He potential with expected good predictive power.

The halo properties of 6He lead to an enhanced total reaction
cross section at low energies that is related to a relatively small
elastic scattering cross section at intermediate and backward
angles. This behavior requires—as the only special feature for
the 6He case—an energy-dependent radius parameter RS that
increases toward lower energies. Such an increase of the radius
parameter RS is not seen in the new 120Sn(α,α)120Sn data and
was also not found in a series of high-precision α scattering of
neighboring target nuclei around 20 MeV. At very low energies
even an opposite trend is seen in the analysis of the excitation
functions of Ref. [37].

The increase of the radius parameter RS of the 6He potential
toward lower energies is related to a relatively smooth rise of
the reflexion coefficients ηL as a function of angular momen-
tum L. In particular, it is found that the width �L of the almost
Gaussian-shaped slope dηL/dL is significantly larger for 6He
than for α. The width �L shows an increase toward lower
energies for 6He that is not present in the α-scattering data.
This characteristic behavior of the 6He data can be used as a
signature for the halo properties of 6He, and it should be tested
as a general signature of halo properties in elastic scattering
in other cases, such as 11Be. We suggest a value below
�(�L)/�Ered ≈ −1/ MeV at Ered ≈ 1 MeV as signature for
halo properties. Although the quality of the presented new
120Sn(α,α)120Sn scattering data is clearly inferior to recent
high-precision data in this mass region, only the combined
analysis of the new data for 120Sn(α,α)120Sn scattering together
with angular distributions at higher energies and excitation
functions at lower energies enables the comparison between
120Sn(α,α)120Sn and 120Sn(6He,6He)120Sn elastic scattering
and the derivation of the preceding new results.
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[39] R. Lichtenthäler et al., Eur. Phys. J. A 25, 733 (2005).

[40] P. N. de Faria, Ph.D. thesis, Institute of Physics of the University
of São Paulo, IFUSP, 2008.

[41] A. M. Kobos, B. A. Brown, R. Lindsay, and G. R. Satchler,
Nucl. Phys. A 425, 205 (1984).

[42] G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979).
[43] H. de Vries, C. W. de Jager, and C. de Vries, At. Data Nucl.

Data Tables 36, 495 (1987).
[44] J. R. Ficenec, L. A. Fajardo, W. P. Trower, and I. Sick, Phys.

Lett. B 42, 213 (1972).
[45] P. Barreau and J. B. Bellicard, Phys. Lett. B 25, 470 (1967).
[46] I. Sick, Phys. Lett. B 116, 212 (1982).
[47] G. C. Li, I. Sick, R. R. Whitney, and M. R. Yearian, Nucl. Phys.

A 162, 583 (1971).
[48] I. Brida and F. M. Nunes, Nucl. Phys. A 847, 1 (2010).
[49] H. Abele and G. Staudt, Phys. Rev. C 47, 742 (1993).
[50] P. Mohr, T. Rauscher, H. Oberhummer, Z. Máté, Zs. Fülöp,
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