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The stochastic nonlinear partial differential equation known as the Kardar–Parisi–Zhang
(KPZ) equation is a highly successful phenomenological mesoscopic model of surface and
interface growth processes. Its suitability for analytical work, its explicit symmetries and
its prediction of an exact dynamic scaling relation for a one-dimensional substratum
led people to adopt it as a ‘standard’ model in the field during the last quarter of a
century. At the same time, several conjectures deserving closer scrutiny were established
as dogmas throughout the community. Among these, we find the beliefs that ‘genuine’
non-equilibrium processes are non-variational in essence, and that the exactness of
the dynamic scaling relation owes its existence to a Galilean symmetry. Additionally,
the equivalence among planar and radial interface profiles has been generally assumed
in the literature throughout the years. Here—among other topics—we introduce a
variational formulation of the KPZ equation, remark on the importance of consistency
in discretization and challenge the mainstream view on the necessity for scaling of
both Galilean symmetry and the one-dimensional fluctuation–dissipation theorem. We
also derive the KPZ equation on a growing domain as a first approximation to radial
growth, and outline the differences with respect to the classical case that arises in this
new situation.

Keywords: growth dynamics; Galilean invariance; variational formulation; domain growth

1. Introduction

Phenomena far from thermodynamic equilibrium are ubiquitous in nature, a few
examples being turbulence in fluids, interface and growth problems, chemical
reactions, biological systems and economic and sociological spatio-temporal
*Author for correspondence (wio@ifca.unican.es).

One contribution of 17 to a Theme Issue ‘Nonlinear dynamics in meso and nano scales: fundamental
aspects and applications’.
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patterns. During the last few decades, statistical physics has become mature
enough to shift its focus towards non-equilibrium processes. Among those studies,
the understanding of surface-growth kinetics at microscopic and mesoscopic
levels constitutes a major challenge in physics and materials science [1–4]. In
recent papers, the methods devised for static critical phenomena have been
successfully applied to non-equilibrium interface-growth phenomena, to obtain
scaling properties, symmetries, the morphology of pattern formation in a driven
state, etc. [5–9].

It is a regrettable confusion enduring upto today to think that only ‘gradient’
(or ‘variational’) systems possess a Lyapunov function(al). This issue seemed to
be already settled in standard references on pattern formation:

…Graham and co-workers have introduced a ‘nonequilibrium potential’ that is formally
similar to a Lyapunov function but can be defined for an arbitrary dynamical system …
It is a single-valued functional in phase space … that is constant on any attractor and
decreases in any dynamics away from the attractors. It is defined formally as the solution of
a complicated Hamiltonian-Jacobi equation and has an interesting interpretation in terms of
the probability distribution of the system under the influence of weak external noise …

([10], p. 868)

Whereas it is true that a non-equilibrium system exhibiting non-trivial spatio-
temporal behaviour cannot be ‘gradient’ (or ‘variational’) in the sense of the
first paragraph in this quotation, there exists in principle (albeit hard to find) a
Lyapunov function(al) for arbitrarily complex dissipative dynamics. Examples
of non-gradient dynamical systems for which the ‘non-equilibrium potential’
(NEP)—which plays an analogous role to the free energy in equilibrium systems
[10]—is known can be found in Graham [11], Graham & Tél [12], Montagne et al.
[13] and Izús et al. [14].

In a recent series of papers, we have reported on the obtaining of an NEP
for scalar and non-scalar extended systems of the reaction–diffusion type—like
activator–inhibitor systems and systems with local and non-local interactions—
and exploited those results for the study of stochastic resonance in extended
systems and other related phenomena [15–17].

The Kardar–Parisi–Zhang (KPZ) [18,19] equation is nowadays a paradigm as a
stochastic-field description of a vast class of non-equilibrium phenomena, largely
transcending the realm of surface-growth processes for which it was originally
formulated [2,3]. This equation, which reads

vth(x, t) = nV2h(x, t) + l

2
[Vh(x, t)]2 + F + x(x, t), (1.1)

describes the evolution of a field h(x, t), corresponding to the height of a
fluctuating interface on a d-dimensional substratum space. Here, x(x, t) is a
Gaussian white noise of zero mean, 〈x(x, t)〉 = 0, and correlation 〈x(x, t)x(x′, t ′)〉 =
23d(x − x′)d(t − t ′), n is the surface tension, and l is proportional to the average
growth velocity (it arises because the surface slope is parallel transported in the
growth process). F indicates the deposition rate.

In this paper, we review some recent results we have obtained with regard to the
KPZ equation. In §2, we recall some results from Wio [20] to show how an NEP is
obtained for the KPZ case; next, we show how conjectures advanced by Hentschel
[5] are fulfilled, exploiting its knowledge; finally, we extend the discussion to a
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KPZ system including non-local contributions. In §3, we study the KPZ equation
on a growing domain. Section 4 is devoted to discretization issues, stressing the
value of consistency in numerical integrations and relativizing that of the one-
dimensional fluctuation–dissipation theorem and Galilean invariance. Section 5
contains the conclusions and final remarks.

2. Non-equilibrium potential for the Kardar–Parisi–Zhang equation

(a) Derivation

We start from a general scalar reaction–diffusion equation with multiplicative
noise

vtf(x, t) = nV2f(x, t) + gf(x, t) + f(x, t)h(x, t), (2.1)

where h(x, t) is Gaussian, white, of zero mean and intensity s, and we assume the
Stratonovich interpretation. It is known that the deterministic part of the system
in equation (2.1) has the following NEP:

F [f] =
∫

U

{
−g

2
f(x, t)2 + n

2

(
Vf(x, t)

)2
}

dx, (2.2)

where U indicates the integration range. In fact,

vtf(x, t) = − dF [f]
df(x, t)

+ f(x, t)h(x, t), (2.3)

where the contribution from the boundaries is null, owing to the variation df
being fixed (= 0) at these boundaries, as usual. As shown in previous works [16],
it also fulfils the Lyapunov condition (d/dt)F [f] ≤ 0 (note that this condition is
only strictly valid in a weak noise limit).

Exploiting the Hopf–Cole transformation, we now define a new field, h(x, t),
that, as indicated before, corresponds to an interface height,

h(x, t) = 2n

l
ln f(x, t), (2.4)

whose inverse is f(x, t) = exp[(l/2n)h(x, t)]. Since f(x, t) ≥ 0, h(x, t) is always
well defined. The transformed equation reads

vth(x, t) = nV2h + l

2
(Vh)2 + l

2n
g + x(x, t), (2.5)

which is equation (1.1) if F = (l/2n)g and 3 = (l/2n)2s. The noise term, which had
a multiplicative character in equation (2.1), becomes additive in equation (1.1).
If we now apply the same transformation to the NEP indicated in equation (2.2),
we obtain

G[h] =
∫

U

e(l/n)h(x,t) l

2n

[
−F + l

4
(Vh(x, t))2

]
dx. (2.6)

It is easy to prove that this functional fulfils both the relation

vth(x, t) = −G[h] dG[h]
dh(x, t)

+ x(x, t) (2.7)

Phil. Trans. R. Soc. A (2011)
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and the Lyapunov property (d/dt)G[h] ≤ 0, where G[h] = (2n/l)2 exp[−(l/n)
h(x, t)]. Hence, we have a free-energy-like functional from which the KPZ kinetic
equation can be obtained through functional derivation. Clearly, the contribution
to the variation coming from the boundaries is null again.

(b) Some properties

In Hentschel [5], the fact that equations for relaxational self-affine surface
growth are invariant under the Abelian group of global shift transformations,
h(x , t) → h(x , t) + l , was used to bound the form of nonlinear terms and related
kinetic coefficients. In Wio [20], the relations found in Hentschel [5] are easily seen
to follow from the invariance properties of G[h] itself. In fact, if l is an arbitrary
(constant) shift,

G[h + l] = K [l]G[h], G[h + l] = K [l]−1G[h]

and K [l] = e(l/n)l =
(

2n

l

)2

G[l]−1.

⎫⎪⎬
⎪⎭ (2.8)

In order to prove other conjectures advanced in Hentschel [5], we introduce the
free energy-like density G̃[h, Vh], defined by G[h] = ∫

dx G̃[h, Vh], namely

G̃[h, Vh] = l

2n
e(l/n)h(x,t)

[
−F + l

4

(
Vh(x, t)

)2
]
.

The relations we refer to are

G̃[h, Vh] = esh G̃1[(Vh)2] and G[h, Vh] = e−shG1[(Vh)2]. (2.9)

According to the form of G̃[h, Vh], the first relation above results obviously true,
while for the second relation we have that G[h, Vh] = e−sh(x,t)G0, where G0 = 1 and
s = l/n, as G[h] is not a function of Vh. Invariance under the nonlinear Galilei
transformation, as discussed in Fogedby [7], follows also from the NEP.

From the free-energy-like functional (equation (2.6)) for the KPZ kinetic
equation and through functional differentiation, we have obtained a form
(equation (2.7)) that resembles a (relaxation) ‘model A’ according to the
classification in Hohenberg & Halperin [21]. However, since here the regime is
far from equilibrium, its behaviour is highly non-trivial and we have no a priori
intuition as to what its dynamics could be. Clearly, this is a point to keep in mind
when suggesting ansätze for the temporal behaviour.

(c) About non-locality

In Wio [20], it was shown that the functional including a non-local contribution
(for simplicity we adopt F = 0),

G[h] =
∫

U

{(
l2

8n

)
(Vh)2 + e−(l/2n)h(x,t)

∫
U

dx′G(x, x′)e(l/2n)h(x′,t)
}

e(l/n)h(x,t) dx,

(2.10)

Phil. Trans. R. Soc. A (2011)
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leads, after a functional derivation, to a generalized KPZ equation

vth(x, t) = nV2h(x, t) + l

2
[Vh(x, t)]2

− e−(l/2n)h(x,t)
∫

U

dx′G(x, x′)e(l/2n)h(x′,t) + x(x, t). (2.11)

Let us assume that the non-local kernel has translational invariance, that is
G(x, x′) = G(x − x′), and also that it is of (very) ‘short’ range. Hence, we can
expand it as

G(x − x′) =
∞∑

n=0

A2nd(2n)(x − x′), (2.12)

with d(n)(x − x′) = Vn
x′d(x − x′), and symmetry properties are taken into account.

Exploiting this form of the kernel, we arrive at the following contributions in
equation (2.11):

e−(l/2n)h(x,t)
∫

U

dx′G(x − x′)e(l/2n)h(x′,t) ≈
{

A0 + A2

[(
l

2n

)2

(Vh)2 + l

2n
V2h

]

+ A4

[(
l

2n

)4

(Vh)4 + 6
(

l

2n

)3

(Vh)2V2h + 2
(

l

2n

)2

V2(Vh)2

−
(

l

2n

)2

(V2h)2 + l

2n
V4h

]
+ A6 . . .

}
, (2.13)

where the final dots indicate contributions of order n ≥ 3 (2n = 6). These
contributions have the same form as the ones arising in several previous works,
where scaling properties, symmetry arguments, etc., have been used to discuss the
possible contributions to a general form of the kinetic equation [5,22,23]. Clearly,
the different contributions that arose in equation (2.13) are tightly related to
several of other previously studied equations, like the Sun–Guo–Grant equation
[24], and others [5,9].

(d) Non-locality in Kardar–Parisi–Zhang

From the above expression, we can extract a new form of NEP for the KPZ
equation. Let us only retain the contribution that comes from the n = 1 term. We
define the functional

G̃[h] =
∫

U

dx
∫

U

dx′e(l/2n)h(x,t)G(x − x′)e(l/2n)h(x′,t) (2.14a)

and

G(x − x′) = A2d(2)(x − x′). (2.14b)
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The functional derivative of G̃[h] yields

dG̃[h]
d h(y)

= A2
l

2 n

[
e(l/2n)h(y)

∫
U

dxd(2)(y − x) e(l/2n)h(x)

+e(l/2n)h(y)
∫

U

dx e(l/2n)h(x) d(2)(x − y)
]

= 2 A2
l

2 n
e(l/2n)h(y)

∫
U

dx d(2)(y − x) e(l/2n)h(x)

= 2 A2
l

2 n
e(l/2n)h(y)

[(
l

2n

)2

(Vxh)2 +
(

l

2n

)
V2

yh

]
e(l/2n)h(y). (2.15)

Recalling that G[h] = (2n/l)2 exp[−(l/n)h(x)], and adopting A2 = −(n/2), the
deterministic part of the KPZ equation results from

−G[h] dG̃[h]
d h(x)

= nV2
xh + l

2
(Vxh)2. (2.16)

The above indicated results allow us to define

F2[h] = −
∫

dx
∫ h(x)

dj
dG[j]

d j
G̃[j]

= −
∫

dx
∫

dx′ 2n2

l

∫ h(x)

dj e(−l/2n)j(x) d(2)(x − x′) e(l/2n)j(x′), (2.17)

which yields

vth(x, t) = −dF2[h]
d h

+ x(x, t). (2.18)

Hence, F2[h] is another representation of the NEP for KPZ. It has a very
interesting form that could allow for a nice way to approximately evaluate
the NEP.

3. The Kardar–Parisi–Zhang equation on a growing domain

The KPZ equation has also been related to the biologically motivated Eden
model [2]. This model was introduced as a simplified probabilistic description
of a developing cell colony. For long time, it shows the propagation of a rough
interface with an approximate radial symmetry. Numerical simulations suggested
that the Eden model interface fluctuations belong to the KPZ universality class.
As a first step in understanding radial interfaces [25,26], one can derive the
KPZ equation in a growing domain [27]. The simplest possibility is applying
the dilatation transformation x → (t/t0)gx to the KPZ equation to find

vth = n

(
t0
t

)2g

V2h + l

2

(
t0
t

)2g

(Vh)2 + gFtg−1 +
(

t0
t

)dg/2

x(x , t), (3.1)

Phil. Trans. R. Soc. A (2011)
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where g > 0 is the growth index that specifies the speed with which the domain
grows. Note that this equation, in the absence of external fluxes (i.e. l = F = 0),
conserves the average density; in other words, this domain growth mechanism
is responsible for a simultaneous mass dilatation. It is possible to derive a KPZ
equation on a growing domain in such a way that the total mass is conserved. This
is achieved by introducing a dilution term, which renders the KPZ equation [27]

vth = n

(
t0
t

)2g

V2h + l

2

(
t0
t

)2g

(Vh)2 − dg

t
h + gFtg−1 +

(
t0
t

)dg/2

x(x , t). (3.2)

It is known that the dilution-free equation (3.1) presents memory effects that
separate its behaviour from the one dictated by the Family–Vicsek scaling for
large enough g [27]. This implies a somehow paradoxical situation. As we have
mentioned, there are two main symmetries associated with the d-dimensional
KPZ equation: the Hopf–Cole transformation, which maps it onto the noisy
diffusion equation [20], and Galilean invariance which have been traditionally
related to the non-renormalization of the KPZ vertex at an arbitrary order in the
perturbation expansion [19]. In the case of the no-dilution KPZ equation (3.1),
both symmetries are still present. Indeed, this equation transforms under the
Hopf–Cole transformation u = exp[lh/(2n)] to

vtu = n

(
t0
t

)2g

V2u + gFl

2n
tg−1u + l

2n

(
t0
t

)dg/2

u x(x , t), (3.3)

which is again a noisy diffusion equation and it can be explicitly solved in the
deterministic limit e = 0. We find in this case

u(x , t) = (1 − 2g)d/2 exp[Fltg/(2n)]
[4pt2g

0 (t1−2g − t1−2g
0 )]d/2

∫
Rd

exp

[
− |x − y|2(1 − 2g)

4t2g
0 (t1−2g − t1−2g

0 )

]
u(y, t0) dy,

(3.4)
which corresponds to

h(x , t) = 2n

l
ln

{
(1 − 2g)d/2 exp[Fltg/(2n)]
[4pt2g

0 (t1−2g − t1−2g
0 )]d/2

}

+ 2n

l
ln

{∫
Rd

exp

[
− |x − y|2(1 − 2g)

4t2g
0 (t1−2g − t1−2g

0 )
+ l

2n
h(y, t0)

]
dy

}
, (3.5)

for given initial conditions u(x , t0) and h(x , t0). If we consider the dilution KPZ
equation (3.2), then applying the Hopf–Cole transformation, we find the nonlinear
equation

vtu = n

(
t0
t

)2g

V2u − dg

t
u ln(u) + gFl

2n
tg−1u + l

2n

(
t0
t

)dg/2

x(x , t)u, (3.6)

which may be thought of as a time-dependent and spatially distributed version
of the Gompertz differential equation. In this case, it is not evident how to find
an explicit solution at the deterministic level for an arbitrary initial condition.
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As we have already explained, Galilean invariance means that the
transformation indicated in equation (4.10) leaves the KPZ equation invariant.
In the case of no dilution, this transformation can be replaced by

x → x − l

1 − 2g
vt2g

0 t1−2g, h → h + vx and F → F − l

2g
v2t2g

0 t1−3g, (3.7)

which leaves equation (3.1) invariant. If we consider dilution, then it is not
clear how to extend this transformation to leave equation (3.2) invariant. The
main difficulty comes from the dilution term that yields a non-homogeneous
contribution to the dynamics as a response to the tilt transformation h → h + vx .
So, in summary, we may talk of a certain sort of Galilean invariance that is
obeyed by the no-dilution KPZ dynamics (3.1) and is lost when dilution is
taken into account. If it were found that the dilution equation (3.2) obeys the
traditional KPZ scaling (at least in some suitable limit), then that would put
into question the role that Galilean invariance has in fixing the exponents. We
have already mentioned that the KPZ roughness a and dynamical z exponents are
believed to obey the scaling relation a + z = 2 in all spatial dimensions, a relation
that has been traditionally attributed to Galilean invariance [19], although this
interpretation has been recently put into question [28]. Note that our numerical
results on the KPZ equation precisely indicate the lack of control that Galilean
invariance has on the critical exponents [29].

As we have already discussed, there is still another fundamental symmetry of
the KPZ equation that manifests itself exclusively in one spatial dimension: the so-
called fluctuation–dissipation theorem. It basically says that for long times, when
saturation has already been achieved, the nonlinearity ceases to be operative and
the resulting interface profile would be statistically indistinguishable from that
created by this equation for l ≡ 0. For fast domain growth, we know from the
linear theory that the interface never becomes correlated, and it operates, in
this sense, as if it were effectively in the short time regime for all times [26,27].
As a consequence, the fluctuation–dissipation theorem is not expected to play
any role in this case. Of course, this result would be independent of whether we
contemplated dilution or not.

4. Discretization issues, symmetry violation and all that

There are two main symmetries associated with the one-dimensional KPZ
equation: Galilean invariance and the fluctuation–dissipation relation. On the one
hand, Galilean invariance has been traditionally linked to the exactness of the
relation a + z = 2 among the critical exponents, in any spatial dimensionality (the
roughness exponent a, characterizing the surface morphology in the stationary
regime, and the dynamic exponent z , indicating the correlation length scaling as
x(t) ∼ t1/z). However, this interpretation has been criticized in this and other non-
equilibrium models [28,30]. On the other hand, the second symmetry essentially
tells us that in one dimension, the nonlinear (KPZ) term is not operative at
long times.

Even recognizing the interesting analytical properties of the KPZ equation, it
is clear that investigating the behaviour of its solutions requires the (stochastic)
numerical integration of a discrete version. Such an approach has been used, for
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example, to obtain the critical exponents in one and more spatial dimensions
[31–37]. Although a pseudo-spectral (PS) spatial discretization scheme has been
recently introduced [38,39], real-space discrete versions of equation (1.1) are
still used for numerical simulations [8,40]. One reason is their relative ease of
implementation and of interpretation in the case of non-homogeneous substrates
like, for example, a quenched impurity distribution [41].

(a) Consistency

We use the standard, nearest-neighbour discretization prescription as a
benchmark to elucidate the constraints to be obeyed by any spatial discretization
scheme, arising from the mapping between the KPZ and the diffusion equation
(with multiplicative noise) through the Hopf–Cole transformation.

The standard spatially discrete version of equation (2.1) (recalling that
g = lF/2n) is

ḟj = n

a2

(
fj+1 − 2fj + fj−1

) + lF
2n

fj + l3

2n
fjxj , (4.1)

with 1 ≤ j ≤ N ≡ 0, because of the assumed periodic boundary conditions (the
implicit sum convention is not meant in any of the discrete expressions). Here
a is the lattice spacing. Then, using the discrete version of the Hopf–Cole
transformation (equation (2.4))

fj(t) = exp
[

l

2n
hj(t)

]
, (4.2)

we get

ḣj = 2n2

la2
(ed+

j a + ed−
j a − 2) + F + 3 xj , (4.3)

with d±
j ≡ (l/2na)(hj±1 − hj). By expanding the exponentials up to terms of order

a2, and collecting equal powers of a (observe that the zero-order contribution
vanishes), we retrieve (in order to simplify we adopt F = 0)

ḣj = n

a2
(hj+1 − 2hj + hj−1) + l

4 a2
[(hj+1 − hj)2 + (hj − hj−1)2] + 3 xj . (4.4)

As we can see, the first and second terms on the right-hand side of equation (4.4)
are strictly related by virtue of equation (4.2). In other words, the discrete form
of the Laplacian in equation (4.3) constrains the discrete form of the nonlinear
term in the transformed equation. Later we show again, in another way, the tight
relation between the discretization of both terms. Known proposals [35] fail to
comply with this natural requirement.

An important feature of the Hopf–Cole transformation is that it is local, i.e.
it involves neither spatial nor temporal transformations. An effect of this feature
is that the discrete form of the Laplacian is the same, regardless of whether it is
applied to f or h.
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The aforementioned criterion dictates the following discrete form for F [f] given
by equation (2.2), thus a Lyapunov function for any finite N :

F [f] = n

2

N∑
j=1

a((vxf)2)j = n

4a

N∑
j=1

[(fj+1 − fj)2 + (fj − fj−1)2]. (4.5)

It is a trivial task to verify that the Laplacian is (v2
xf)j = −a−1vfj F [f]. Now, the

obvious fact that this functional can also be written as F [f] = (n/2 a)
∑N

j=1(fj+1 −
fj)2 serves to illustrate a fact that a more elaborate discretization requires
explicit calculations: the Laplacian does not uniquely determine the Lyapunov
function [29].

(b) An accurate consistent discretization

Since the proposals of Lam & Shin [35] already involve next-to-nearest
neighbours, one may seek a prescription that minimizes the numerical error. An
interesting choice for the Laplacian is [42]

1
12 a2

[16(fj+1 + fj−1) − (fj+2 + fj−2) − 30 fj ], (4.6)

which has the associated discrete form for the KPZ term

(vxf)2 = 1
24 a2

{16[(fj+1 − fj)2 + (fj − fj−1)2]

− [(fj+2 − fj)2 + (fj − fj−2)2]} + O(a4). (4.7)

Replacing this into the first line of equation (4.5), we obtain equation (4.6). Since
this discretization scheme fulfils the consistency conditions, is accurate up to
O(a4) corrections and its prescription is not more complex than other known
proposals, we expect that it will be the convenient one to use when high accuracy
is required in numerical schemes [29,43].

(c) Relation with the Lyapunov functional

In §2, we have indicated the form of the NEP for KPZ, and the way in which
the functionals F [f] and G[h] are related [20]. According to the previous results,
we can write the discrete version of equation (2.6) as

G[h] = l2

8n

1
2 a

∑
j

e(l/n)hj [(hj+1 − hj)2 + (hj − hj−1)2].

Introducing this expression into vthj = GjdG[h]/dhj , and through a simple algebra,
we obtain equation (4.4). This reinforces our previous result, and moreover
indicates that the discrete variational formulation naturally leads to a consistent
discretization of the KPZ equation.
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(d) The fluctuation–dissipation relation

This relation is, together with Galilean invariance, another fundamental
symmetry of the one-dimensional KPZ equation. It is clear that both symmetries
are recovered when the continuum limit is taken in any reasonable discretization
scheme. Thus, an accurate enough partition must yield suitable results.

The stationary probability distribution for the KPZ problem in one dimension
is known to be [2,3]

Pstat[h] ∼ exp
{

n

2 3

∫
dx(vxh)2

}
.

For the discretization scheme in equation (4.4) (with F = 0), this is

∼ exp

⎧⎨
⎩ n

23

1
2a

∑
j

[(hj+1 − hj)2 + (hj − hj−1)2]
⎫⎬
⎭. (4.8)

Inserting this expression into the stationary Fokker–Planck equation, the only
surviving term has the form

1
2a3

∑
j

[(hj+1 − hj)2 + (hj − hj−1)2] × [hj+1 − 2hj + hj−1]. (4.9)

The continuum limit of this term is
∫

dx(vxh)2v2
xh, which is identically zero

[3]. A numerical analysis of equation (4.9) indicates that it is several orders
of magnitude smaller than the value of the exponents’ probability distribution
function (in equation (4.8)), and typically behaves as O(1/N ), where N is the
number of spatial points used in the discretization. Moreover, it shows an even
faster approach to zero if expressions with higher accuracy (like equations (4.6)
and (4.7)) are used for the differential operators. In addition, when the discrete
form of (vxh)2 from Lam & Shin [35] is used together with its consistent form for
the Laplacian, the fluctuation–dissipation relation is not exactly fulfilled. This
indicates that the problem with the fluctuation–dissipation theorem in 1 + 1,
discussed in Lam & Shin [35] and Giada et al. [38], can be just circumvented by
using more accurate expressions.

(e) Galilean invariance

This invariance means that the transformation

x → x − lvt, h → h + vx and F → F − l

2
v2, (4.10)

where v is an arbitrary constant vector field, leaves the KPZ equation invariant.
The equation obtained using the classical discretization

vxh → 1
2 a

(hj+1 − hj−1) (4.11)

is invariant under the discrete Galilean transformation

ja → ja − lvt, hj → hj + vja and F → F − l

2
v2. (4.12)
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However, the associated equation is known to be numerically unstable [34], at
least when a is not small enough. Besides, equation (4.4) is not invariant under
the discrete Galilean transformation. In fact, the transformation h → h + vja
yields an excess term that is compatible with the gradient discretization in
equation (4.11); however, this discretization does not allow us to recover the
quadratic term in equation (4.4), indicating that this finite-difference scheme is
not Galilean-invariant.

Since equation (4.1) is invariant under the transformation indicated in
equation (4.12), it is the nonlinear Hopf–Cole transformation (within the present
discrete context) that is responsible for the loss of Galilean invariance. Note that
these results are independent of whether we consider this discretization scheme
or a more accurate one.

Galilean invariance has always been associated with the exactness of the
one-dimensional KPZ exponents, and with a relation that connects the critical
exponents in higher dimensions [19]. If the numerical solution obtained from
a finite-difference scheme as equation (4.4), which is not Galilean-invariant,
yields the well-known critical exponents, this will be an indication that Galilean
invariance is not strictly necessary to get the KPZ universality class. The
numerical results presented in Wio et al. [29,43] clearly show that this is the case.

We will not discuss the simulation procedure here, but only indicate that to
make the simulations h(x , t) was discretized along the substrate direction x with
lattice spacing a = 1, and that a standard second-order Runge–Kutta algorithm
(with periodic boundary conditions) was employed (e.g. [44]). In Wio et al. [29,43]
it was shown that all the cases (consistent or not) exhibit the same critical
exponents. Moreover, we note that the discretization used in Lam & Shin [35,45],
which also violates Galilean invariance, yields the same critical exponents too.
Additionally, stochastic differential equations, which are not explicitly Galilean-
invariant, have been shown to obey the relation a + z = 2 [46]. Hence, our
numerical analysis indicates that there are discrete schemes of the KPZ equation
that, even not obeying Galilean invariance, show KPZ scaling.

The moral from the present analysis is clear: owing to the locality of the Hopf–
Cole transformation, the discrete forms of the Laplacian and the nonlinear (KPZ)
term cannot be chosen independently; moreover, the prescriptions should be the
same, regardless of the fields they are applied to. Equation (4.3) has also been
written in Newman & Bray [34], although with different goals from ours (their
interest was to analyse the strong coupling limit via mapping to the directed
polymer problem).

5. Conclusions

The present work briefly reviews some new results in the study and analysis
of the KPZ equation, which offer an alternative approach to other well-known
techniques. We have here found the form of the Lyapunov functional or NEP for
the KPZ equation, and have also devised a way to extend the procedure to derive
it. From this NEP, and through a functional derivative, we have obtained the KPZ
equation and have also shown that such an NEP fulfils global shift properties, as
well as other ones anticipated for such an unknown functional [5].
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Dynamic renormalization group techniques, being useful and powerful, in many
cases only offer incomplete results, having no access to the strong coupling phase
[2]. Hence, the need of alternative ways to analyse the KPZ and related problems
is clear, as for instance the self-consistent expansion [47]. The present results open
new possibilities for non-perturbational studies of the KPZ problem.

As a first approach to the understanding of radial growth, we have introduced
the KPZ equation on a growing domain. This is justified on the grounds that
the widespread Eden model, which is related to both biological growth and
percolation, belongs to the KPZ universality class. It has been traditionally
accepted that radial and planar interfaces behave analogously. However, we have
seen that there are two natural ways of extending the KPZ equation to the
growing domain setting. One causes the simultaneous growth of mass together
with space, and the other keeps mass constant as the space dilates. The first
of these generates memory effects that separate the interface fluctuations from
the behaviour dictated by the Family–Vicsek ansatz, while the second is free
from these memory effects. On the other hand, the first approach respects the
Galilean invariance symmetry and the Hopf–Cole transformation to a linear
equation, while the second one does not. This again suggests that some of the
mathematical properties of the classical KPZ equation, which were intuitively
related to the scaling of the surface fluctuations, are not necessary in order to
define the universality class.

We have also discussed the implications of the NEP in the obtaining of
consistent discrete representations of the KPZ equation. The fact that the
KPZ equation is the result of a local transformation from a stochastic partial
differential equation with multiplicative noise imposes some constraints in the
discrete versions of the equation. A major point has been to call the attention
to the true role of Galilean invariance in KPZ [29,43]. Our purpose was not to
compare alternative spatial discretization schemes with regard to specific KPZ
features, nor to present concrete results concerning the violation of Galilean
invariance. The consequences of such an analysis are general, as in obtaining
the discrete versions of any set of differential equations related through a local
transformation, both the original (or leading) equation and the transformation
rules should be taken into account.

Regarding the recently introduced PS approach [38,39] it has already been
said that, when analysing situations where defects or impurities are present, such
methods do not apply and one must resort to real-space discrete forms of the
differential operators [41,48]. This drawback aside, it has advantages. One of
them is related to the numerical instabilities in discrete growth models: whereas
in Dasgupta et al. [49], the problem has been tackled by introducing higher order
contributions, in PS treatments of the same problem, such an instability seems
not to arise (or at least is delayed). In addition, the PS approach seems to be
in principle ‘transparent’ to the question of consistency. Nonetheless, in a recent
paper [43] we established a relation between the real-space discretization schemes
discussed here (of which more details are given) and the PS methods, in the
limit where—in order to define a highly accurate discrete representation of the
differential operators—we used all the N lattice points.
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