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Abstract
The works on decoherence due to spin baths usually agree in studying a one-
spin system in interaction with a large spin bath. In this paper we generalize
those models by analyzing a many-spin system and by studying decoherence
or its suppression in function of the relation between the numbers of spins of
the system and the bath. This model may help to identify clusters of particles
unaffected by decoherence, which, as a consequence, can be used to store
quantum information.

PACS numbers: 03.65.Yz, 03.67.Bg, 03.67.Mn, 03.65.Ud

1. Introduction

Decoherence refers to the quantum process that turns a coherent pure state into a decohered
mixed state. It is essential in the account of the emergence of classicality from quantum
behavior, since it explains how interference vanishes in an extremely short decoherence
time. The orthodox explanation of the phenomenon is given by the environment-induced
decoherence approach (see [1–4]), according to which decoherence is a process resulting from
the interaction of an open quantum system and its environment. By studying different physical
models, it was proved that the reduced state ρS(t) = T rEρSE(t) of the open system rapidly
diagonalizes in a well-defined pointer basis, which identifies the candidates for classical
states.

The environment-induced approach has been extensively applied to many areas of
physics—such as atomic physics, quantum optics and condensed matter—and has acquired a
great importance in quantum computation, where the loss of coherence represents a major
difficulty for the implementation of the information processing hardware that takes the
advantage of superpositions. In particular, decoherence resulting from the interaction with
nuclear spins is the main obstacle to quantum computations in magnetic systems. This fact
has led to a growing interest in the study of decoherence due to spin-baths (see [5–14]). By
beginning from the seminal paper of Zurek [1], many works have studied the decoherence due
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to a collection of independent spins. More recently, some papers have directed attention to the
interactions between modes within the bath. For instance, by studying a central spin coupled to
a spin-bath, Tessieri and Wilkie [6] showed that, whereas in the absence of intra-environmental
coupling the decoherence of the central spin is fast and irreversible, strong intra-environmental
coupling leads to decoherence suppression. The same model was further analyzed by Dawson
et al [7], with the purpose of relating decoherence with the pairwise entanglement between
individual bath-spins. In turn, Rossini et al [10] left behind the assumption that the central
spin is coupled isotropically to all the spins of the bath, and considered the case where the
spin system interacts with only few spins of the bath.

Our analysis can be framed in the context of the above works; it aims at generalizing
the paradigmatic spin-bath model. In fact, most of the works done so far agree in studying a
one-spin system in interaction with a large spin bath. The crucial feature of our work is the
analysis of a many-spin system, and the study of decoherence or its suppression in function
of the relation between the numbers of spins of the system and the bath. This generalized
spin-bath model can also be conceived as a partition of a whole closed system into an open
many-spin system and its environment. From this perspective, we can study different partitions
of the whole system and identify those for which the selected system does not decohere; this
might allow us to define clusters of particles that can be used to store q-bits.

In order to develop our analysis, we will rely on the general framework for decoherence
introduced in [15], where the split of a closed quantum system into an open subsystem and its
environment is just conceived as a way of selecting a particular space of relevant observables
of the whole closed system. Since there are many different spaces of relevant observables
depending on the observational viewpoint adopted, the same closed system can be decomposed
in many different ways: each decomposition represents a decision about which degrees of
freedom are relevant and which can be disregarded in each case.

On this basis, the paper is organized as follows. In section 2, the standard spin-bath
model is presented from the general framework perspective: this presentation will allow us
to consider two different decompositions, which supply the basis for comparing the results
obtained for the generalized model in the following sections. In sections 3, 4 and 5, the
generalization of the spin-bath model is presented and solved by computer simulations; this
task will allow us to compare the results obtained for two different ways of splitting the entire
closed system into an open system and its environment. Finally, in section 6 we introduce our
concluding remarks.

2. The spin-bath model

The spin-bath model is a very simple model that has been exactly solved in previous papers
(see [1]). Here we will recall its main results, obtained from the general framework introduced
in [15], in order to compare the analogous results to be obtained in the next sections for the
generalized model.

2.1. Presentation of the model

Let us consider a closed system U = P ∪ P1 ∪ . . . ∪ PN = P ∪ (∪N
i=1 Pi

)
, where (i) P is

a spin-1/2 particle represented in the Hilbert space HP and (ii) each Pi is a spin-1/2 particle
represented in its Hilbert space Hi . The Hilbert space of the composite system U is, then,

H = HP ⊗
(

N⊗
i=1

Hi

)
. (1)
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In the particle P, the two eigenstates of the spin operator SP,�v in the direction �v are |⇑〉, |⇓〉,
such that SP,�v|⇑〉 = 1

2 |⇑〉 and SP,�v|⇓〉 = − 1
2 |⇓〉. In each particle Pi, the two eigenstates of

the corresponding spin operator Si,�v in the direction �v are |↑i〉, |↓i〉, such that Si,�v|↑i〉 = 1
2 |↑i〉

and Si,�v|↓i〉 = − 1
2 |↓i〉. Therefore, a pure initial state of U reads

|ψ0〉 = (a|⇑〉 + b|⇓〉) ⊗
(

N⊗
i=1

(αi |↑i〉 + βi |↓i〉)
)

, (2)

where |a|2 + |b|2 = 1 and |αi |2 + |βi |2 = 1. If the self-Hamiltonians HP of P and Hi of Pi

are taken to be zero, and there is no interaction among the Pi, then the total Hamiltonian H of
the composite system U is given by the interaction between the particle P and each particle Pi

(see [1, 16]):

H = 1

2
(|⇑〉〈⇑| − |⇓〉〈⇓|) ⊗

N∑
i=1

⎡
⎣gi (|↑i〉〈↑i| − |↓i〉〈↓i|) ⊗

⎛
⎝ N⊗

j �=i

Ij

⎞
⎠
⎤
⎦ , (3)

where Ij = |↑j 〉〈↑j| + |↓j 〉〈↓j| is the identity operator on the subspace Hj . Under the action
of H, the state |ψ0〉 evolves into |ψ(t)〉 = a|⇑〉|E⇑(t)〉 + b|⇓〉|E⇓(t)〉, where

|E⇑(t)〉 = |E⇓(−t)〉 =
N⊗

i=1

(
αi e−igi t/2|↑i〉 + βi eigi t/2|↓i〉

)
. (4)

The space O of the observables of the composite system U can be obtained as
O = OP ⊗ (⊗N

i=1 Oi

)
, where OP is the space of the observables of the particle P and

Oi is the space of the observables of the particle Pi. Then, an observable O ∈ O = H ⊗ H
can be expressed as

O = OP ⊗
(

N⊗
i=1

Oi

)
, (5)

where

OP = s⇑⇑|⇑〉〈⇑| + s⇑⇓|⇑〉〈⇓| + s⇓⇑|⇓〉〈⇑| + s⇓⇓|⇓〉〈⇓| ∈ OP , (6)

Oi = ε
(i)
↑↑|↑i〉〈↑i| + ε

(i)
↓↓|↓i〉〈↓i| + ε

(i)
↓↑|↓i〉〈↑i| + ε

(i)
↑↓|↑i〉〈↓i| ∈ Oi . (7)

Since the operators OP and Oi are Hermitian, the diagonal components s⇑⇑, s⇓⇓, ε
(i)
↑↑, ε

(i)
↓↓

are real numbers, and the off-diagonal components are complex numbers satisfying s⇑⇓ =
s∗
⇓⇑, ε

(i)
↑↓ = ε

(i)∗
↓↑ . Then, the expectation value of the observable O in the state |ψ(t)〉 can be

computed as

〈O〉ψ(t) = (|a|2s⇑⇑ + |b|2s⇓⇓) �0(t) + 2 Re[ab∗ s⇓⇑ �1(t)], (8)

where (see [16])

�0(t) =
N∏

i=1

[|αi |2ε(i)
↑↑ + |βi |2ε(i)

↓↓ + 2 Re
(
αi β

∗
i ε

(i)
↓↑eigi t

)]
, (9)

�1(t) =
N∏

i=1

[|αi |2ε(i)
↑↑ eigi t + |βi |2ε(i)

↓↓ e−igi t + 2 Re
(
αi β

∗
i ε

(i)
↓↑
)]

. (10)

In contrast to the usual presentations, we will study two different decompositions of the whole
closed system U into a relevant part and its environment.
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2.2. The spin-bath model: decomposition 1

In the typical presentations of the model, the open system S is the particle P, and the remaining
particles Pi play the role of the environment E: S = P and E = ∪N

i=1Pi . Then, the Hilbert
space decomposition for this case is

H = HS ⊗ HE = (HP ) ⊗
(

N⊗
i=1

Hi

)
. (11)

Therefore, the relevant observables OR of the closed system U are those corresponding to
the particle P, and they are obtained from equations (5)–(7), by making ε

(i)
↑↑ = ε

(i)
↓↓ = 1 and

ε
(i)
↑↓ = 0:

OR = OS ⊗ IE =
⎛
⎝ ∑

s,s ′=⇑,⇓
sss ′ |s〉〈s ′|

⎞
⎠⊗

(
N⊗

i=1

Ii

)
. (12)

The expectation value of these observables in the state |ψ(t)〉 is given by

〈OR〉ψ(t) = |a|2 s⇑⇑ + |b|2 s⇓⇓ + 2Re[ab∗ s⇓⇑ r(t)], (13)

where

r(t) = 〈E⇓(t)〉|E⇑(t)〉 =
N∏

i=1

(|αi |2 e−igi t + |βi |2 eigi t ) (14)

and, then,

|r(t)|2 =
N∏

i=1

(|αi |4 + |βi |4 + 2|αi |2|βi |2 cos 2git). (15)

This means that, in equation (8), �0(t) = 1 and �1(t) = r(t).
If we take |αi |2 and |βi |2 as random numbers in the closed interval [0, 1], then |r(t)|2

is an infinite product of numbers belonging to the open interval (0, 1). As a consequence,
limN→∞ r(t) = 0. Therefore, it can be expected that, for N finite, r(t) will evolve in time
from r(0) = 1 to a very small value (see numerical simulations in [1, 16]).

2.3. The spin-bath model: decomposition 2

Although in the usual presentations of the model the open system of interest is P, we can
conceive different ways of splitting the whole closed system U into an open system S and its
environment E. For instance, we can decide to observe a particular particle Pj of what was
previously considered the environment, and to consider the remaining particles as the new
environment, in such a way that S = Pj and E = P ∪(∪N

i=1,i �=j Pi

)
. The total Hilbert space of

the closed composite system U is still given by equation (1), but in this case the corresponding
decomposition is

H = HS ⊗ HE = (Hj ) ⊗

⎛
⎜⎝HP ⊗

⎛
⎜⎝ N⊗

i=1
i �=j

Hi

⎞
⎟⎠
⎞
⎟⎠ , (16)
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and the relevant observables OR of the closed system U are those corresponding to the particle
Pj:

OR = OS ⊗ IE = OPj
⊗

⎛
⎜⎝IP ⊗

⎛
⎜⎝ N⊗

i=1
i �=j

Ii

⎞
⎟⎠
⎞
⎟⎠ , (17)

where (see equation (7))

OPj
= ε

(j)

↑↑ |↑j 〉〈↑j| + ε
(j)

↓↓ |↓j 〉〈↓j| + ε
(j)

↓↑ |↓j 〉〈↑j| + ε
(j)

↑↓ |↑j 〉〈↓j|. (18)

IP is the identity operator on the subspace HP , and the coefficients ε
(j)

↑↑ , ε
(j)

↓↓ , ε
(j)

↓↑ are now
generic. The expectation value of the observables OR in the state |ψ(t)〉 is given by

〈OR〉ψ(t) = 〈ψ(t)|ORj
|ψ(t)〉 = |αj |2ε(j)

↑↑ + |βj |2ε(j)

↓↓ + 2Re
(
αjβ

∗
j ε

(j)

↓↑ eigj t
)
. (19)

Here there is no need of numerical simulations to see that the third term of equation (19)
is an oscillating function which, as a consequence, has no limit for t → ∞. This result
is not surprising since, in this case, the particle Pj is uncoupled to the particles of its
environment.

3. A generalized spin-bath model: presentation of the model

Let us consider a closed system U = A ∪ B where

(a) The subsystem A is composed of M spin-1/2 particles Ai, with i = 1, 2, . . . ,M , each one
of them represented in its Hilbert space HAi

. In each Ai, the two eigenstates of the spin
operator SAi,�v in direction �v are |⇑i〉 and |⇓i〉:

SAi,�v |⇑i〉 = 1
2 |⇑i〉, SAi,�v |⇓i〉 = − 1

2 |⇓i〉. (20)

The Hilbert space of A is HA =⊗M
i=1 HAi

. Then, a pure initial state of A reads

|ψA〉 =
M⊗
i=1

(ai |⇑i〉 + bi |⇓i〉) , with |ai |2 + |bi |2 = 1. (21)

(b) The subsystem B is composed of N spin-1/2 particles Bk, with k = 1, 2, . . . , N , each one
of them represented in its Hilbert space HBk

. In each Bk, the two eigenstates of the spin
operator SBk,�v in direction �v are |↑k〉 and |↓k〉:

SBk,�v |↑k〉 = 1
2 |↑k〉, SBk,�v |↓k〉 = − 1

2 |↓k〉. (22)

The Hilbert space of B is HB =⊗N
k=1 HBk

. Then, a pure initial state of B reads

|ψB〉 =
N⊗

k=1

(αk |↑k〉 + βk |↓k〉), with |αk|2 + |βk|2 = 1. (23)

The Hilbert space of the composite system U = A ∪ B is, then,

H = HA ⊗ HB =
(

M⊗
i=1

HAi

)
⊗
(

N⊗
k=1

HBk

)
. (24)

5
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(a) (b)

Figure 1. Schema of the interactions among the particles of the open system A (gray circles) and
of the open system B (white circles): (a) original spin-bath model (M = 1), and (b) generalized
spin-bath model (M �= 1).

Therefore, from equations (21) and (23), a pure initial state of U reads

|ψ0〉 = |ψA〉 ⊗ |ψB〉 =
(

M⊗
i=1

(ai |⇑i〉 + bi |⇓i〉)
)

⊗
(

N⊗
k=1

(αk |↑k〉 + βk |↓k〉)
)

. (25)

As in the original spin-bath model, the self-Hamiltonians HAi
and HBk

are taken to be
zero. In turn, there is no interaction among the particles Ai nor among the particles Bk. As a
consequence, the total Hamiltonian H of the composite system U is given by

H = HA ⊗ HB =
⎛
⎝ M∑

i=1

⎡
⎣1

2
(|⇑i〉 〈⇑i | − |⇓i〉 〈⇓i |) ⊗

⎛
⎝ M⊗

j �=i

IAj

⎞
⎠
⎤
⎦
⎞
⎠

⊗
⎛
⎝ N∑

k=1

⎡
⎣gk (|↑k〉 〈↑k| − |↓k〉 〈↓k|) ⊗

⎛
⎝ N⊗

l �=k

IBl

⎞
⎠
⎤
⎦
⎞
⎠ , (26)

where IAj
= |⇑j 〉〈⇑j | + |⇓j 〉〈⇓j | is the identity on the subspace HAj

and IBl
= |↑l〉 〈↑l| +

|↓l〉 〈↓l| is the identity on the subspace HBl
. Let us note that equation (3) of the original model

is the particular case of equation (26) for M = 1. This Hamiltonian describes a situation
where the particles of A do not interact with each other, the same holds for the particles of B,
but each particle of A interacts with all the particles of B and vice versa, as shown in figure 1.

In equation (26), H is written in its diagonal form; then, the energy eigenvectors are

|⇑1〉 · · · |⇑i〉 · · · |⇑M−1〉 |⇑M〉 |↑1〉 · · · |↑k〉 · · · |↑N−1〉 |↑N 〉,
|⇑1〉 · · · |⇑i〉 · · · |⇑M−1〉 |⇑M〉 |↑1〉 · · · |↑k〉 · · · |↑N−1〉 |↓N 〉,
· · ·
|⇓1〉 · · · |⇓i〉 · · · |⇓M−1〉 |⇓M〉 |↓1〉 · · · |↓k〉 · · · |↓N−1〉 |↓N 〉 .

(27)

In turn, the eigenvectors of HA form a basis of HA. In order to simplify the expressions, we
will introduce a particular arrangement into the set of those vectors, by calling them |Ai〉: the

6
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set {|Ai〉} is an eigenbasis of HA with 2M elements. The |Ai〉 will be ordered in terms of the
number l ∈ N0 of particles of A having spin |⇓〉. Then, we have the following.

• l = 0 corresponds to the unique state with all the particles with spin |⇑〉:

|A1〉 = |⇑,⇑, . . . ,⇑,⇑〉 �⇒ HA |A1〉 = M

2
|A1〉 . (28)

• l = 1 corresponds to the M states with only one particle with spin |⇓〉. Since the order
of the eigenvectors with the same eigenvalue will be irrelevant for the computations, we
will order these states in an arbitrary way:

|Aj 〉 = |⇑,⇑, . . . ,⇑,⇓,⇑, . . . ,⇑,⇑〉 �⇒ HA|Aj 〉 = M − 2

2
|Aj 〉,

with j = 2, 3, . . . , M + 1. (29)

• l = 2 corresponds to the (M−1)M

2 states with two particles with spin |⇓〉. Again, we will
order these states in an arbitrary way:

|Aj 〉 = |⇑,⇑, , . . . ,⇑,⇓,⇑, , . . . ,⇑,⇓,⇑, . . . ,⇑,⇑〉 �⇒ HA|Aj 〉 = M − 4

2
|Aj 〉,

with j = M + 2,M + 3, . . . , M + 1 +
(M − 1) M

2
. (30)

• For the remaining values of l, the procedure is analogous.

Consequently, we have

1 eigenvector with eigenvalue
M

2
,

M eigenvectors with eigenvalue
M − 2

2
,

...

M!

(M − l)!l!
eigenvectors with eigenvalue

M − 2l

2
,

(31)

with l = 0, 1, . . . ,M . Then, it is clear that HA is degenerate: it has 2M eigenvectors but only
M different eigenvalues. Therefore, a generic state |A〉 of the system A can be written in the
basis {|Ai〉} as

|A〉 =
2M∑
i=1

Ci |Ai〉 ∈ HA, with
2M∑
i=1

|Ci |2 = 1. (32)

By introducing equation (32) into equation (25), a pure initial state of the composite system
U = A ∪ B reads

|ψ0〉 =
⎛
⎝ 2M∑

i=1

Ci |Ai〉
⎞
⎠⊗

(
N⊗

k=1

(αk|↑k〉 + βk|↓k〉)
)

. (33)

If we group the degrees of freedom of B in a single ket |B(0)〉 , |ψ0〉 results

|ψ0〉 =
2M∑
i=1

Ci |Ai〉 ⊗ |B(0)〉. (34)

7
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The time evolution of |ψ(t)〉 is ruled by the time-evolution operator U(t) = e−iHt =
e−i(HA⊗HB)t :

|ψ(t)〉 = U(t)|ψ0〉 =
2M∑
i=1

Ci e−i(HA⊗HB)t |Ai〉 ⊗ |B(0)〉

=
2M∑
i=1

Ci e−iHAt |Ai〉 ⊗ e−iHBt |B(0)〉. (35)

If we use �k to denote the eigenvalue of HA corresponding to the eigenvector |Ak〉, then

|ψ(t)〉 =
2M∑
i=1

Ci |Ai〉 ⊗ e−i�iHBt |B(0)〉 =
2M∑
i=1

Ci |Ai〉 ⊗ |B(t)〉 , (36)

where (see equation (26))

|B(t)〉 = e−i�iHBt |B(0)〉 = exp

⎡
⎣−i�k

N∑
j=1

gj (|↑j 〉〈↑j| − |↓j 〉〈↓j|)t
⎤
⎦ |B(0)〉 . (37)

Since the number of the eigenstates of HA with the same eigenvalue is given by equation (31),
the terms of |ψ(t)〉 can be arranged as

|ψ(t)〉 = (C1|A1〉 |B0(t)〉) +

(
M+1∑
λ=1

Cλ|Aλ〉 |B1(t)〉
)

+

⎛
⎝M+1+ (M−1)M

2∑
λ=M+2

Cλ |Aλ〉 |B2(t)〉
⎞
⎠ + · · · +

+

⎛
⎜⎝

∑l
p=0 (

M

P )∑
λ=1+

∑l−1
p=0 (

M

P )

Cλ |Aλ〉 |Bl(t)〉

⎞
⎟⎠ + · · · + (C2M |A2M 〉 |BM(t)〉) , (38)

where

|Bl (t)〉 =
N⊗

k=1

(
αk ei (2l−M)

2 gkt |↑k〉 + βk e−i (2l−M)

2 gkt |↓k〉
)

. (39)

If we compare equation (39) with equation (4), we can see that |E⇑(t)〉 and |E⇓(t)〉 are the
particular cases of |Bl (t)〉 forM = 1 and, then, l = 0, 1. Let us recall that l is the number of
particles of the system A having spin |⇓〉. Then, with M = 1 and l = 0, |Bl(t)〉 = |E⇑(t)〉,
and with M = 1 and l = 1, |Bl (t)〉 = |E⇓(t)〉.

If we define the function

f (l) =
{∑l

p=0

(
M

P

)
if l = 0, 1, . . . ,M

0 otherwise

}
, (40)

then equation (38) can be rewritten as

|ψ(t)〉 =
M∑
l=0

f (l)∑
λ=f (l−1)+1

Cλ |Aλ〉 |Bl (t)〉 , (41)

and the state operator ρ(t) = |ψ(t)〉〈ψ(t)| reads

ρ(t) =
M∑

l,l′=0

f (l)
f (l′)∑

λ=f (l−1)+1
λ′=f (l′−1)+1

CλC
∗
λ′ |Aλ〉 |Bl (t)〉 〈Bl′(t)| 〈Aλ′ | . (42)

8
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An observable O ∈ O = H ⊗ H of the closed system U = A ∪ B can be expressed as

O =
⎛
⎝ 2M∑

λ,λ′=0

sλ,λ′ |Aλ〉〈Aλ′ |
⎞
⎠

⊗
(

N⊗
i=1

(
ε

(i)
↑↑|↑i〉〈↑i| + ε

(i)
↑↓|↑i〉〈↓i | + ε

(i)
↓↑|↓i〉〈↑i | + ε

(i)
↓↓|↓i〉〈↓i|

))
. (43)

Let us note that equation (5) (a generic observable in the original spin-bath model) is a
particular case of this equation (43), with only four terms in the first factor. Analogously
to that case, the diagonal components sλ,λ, ε

(i)
↑↑, ε

(i)
↓↓ are real numbers, and the off-diagonal

components are complex numbers satisfying sλ,λ′ = s∗
λ′,λ, ε

(i)
↑↓ = ε

(i)∗
↓↑ . Then, the expectation

value of the observable O in the state ρ(t) of equation (42) can be computed as

〈O〉ρ(t) = T r (Oρ(t)) =
M∑

l,l′=0

f (l)
f (l′)∑

λ=f (l−1)+1
λ′=f (l′−1)+1

Bλ,λ′Tl,l′(t), (44)

where

Tl,l′(t) =
N∏

j=1

[|αj |2ε(j)

↑↑ ei(gj,l−gj,l′ ) t
2 + |βj |2ε(j)

↓↓ e−i(gj,l−gj,l′ ) t
2 + 2 Re

(
αjβ

∗
j ε

(j)

↓↑ ei(gj,l+gj,l′ ) t
2
)]

(45)

and

gj,l = (2l − M)gj , Bλ,λ′ = CλC
∗
λ′sλ′,λ. (46)

Since the exponents in equation (45) are of the form gj,l ± gj,l′ , in some cases they are zero.
So, we can write

〈O〉ρ(t) =
M∑
l=0

f (l)∑
λ=f (l−1)+1
λ′=f (l−1)+1

Bλ,λ′Tl,l(t) +
M̃∑
l=0

f (l)
f (M−l)∑

λ=f (l−1)+1
λ′=f (M−l−1)+1

Bλ,λ′2 Re(Tl,M−l (t))

+
M∑

l,l′=0
l �=l′

l′ �=M−l

f (l)

f (l′)∑
λ=f (l−1)+1
λ′=f (l−1)+1

Bλ,λ′Tl,l′(t), (47)

where

M̃ =
{

M−2
2 if M is even

M−1
2 if M is odd

}
, (48)

Tl,l(t) =
N∏

j=1

[|αj |2ε(j)

↑↑ + |βj |2ε(j)

↓↓ + 2 Re
(
αjβ

∗
j ε

(j)

↓↑ eigj,l t
)]

, (49)

Tl,M−l (t) =
N∏

j=1

[|αj |2ε(j)

↑↑ eigj,l t + |βj |2ε(j)

↓↓ e−igj,l t + 2 Re
(
αjβ

∗
j ε

(j)

↓↑
)]

. (50)

9
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Let us note that equations (49) and (50) are analogous to equations (9) and (10) for �0(t) and
�1(t), respectively, in the original model, with gj,l = (2l − M)gj instead of gj. In particular,
when M = 1 and, so, l = 0, 1, then Tl,l(t) = �0(t) and Tl,M−l (t) = �1(t).

As in the case of the original spin-bath model, here we will consider different meaningful
ways of selecting the relevant observables.

4. Generalized spin-bath model: decomposition 1

4.1. Selecting the relevant observables

In this case, A is the open system S and B is the environment E. This is a generalization of
decomposition 1 in the original spin-bath model. The only difference with respect to that
case is that here the system S is composed of M � 1 particles instead of only one. Then, the
decomposition for this case is

H = HS ⊗ HE =
(

M⊗
i=1

HAi

)
⊗
(

N⊗
k=1

HBk

)
. (51)

Therefore, the relevant observables OR of the closed system U are those corresponding to A,
and they are obtained from equation (43) by making ε

(i)
↑↑ = ε

(i)
↓↓ = 1, ε

(i)
↑↓ = 0 (compare with

equation (12) in the original spin-bath model):

OR = OS ⊗ IE =
⎛
⎝ 2M∑

λ,λ′=0

sλ,λ′ |Aλ〉〈Aλ′ |
⎞
⎠⊗

(
N⊗

i=1

Ii

)
. (52)

With this condition, the expectation values of these observables are given by equation (47),
with

Tl,l(t) =
N∏

j=1

(|αj |2 + |βj |2) = 1, (53)

Tl,M−l (t) =
N∏

j=1

(|αj |2 eigj,l t + |βj |2 e−igj,l t ), (54)

Tl,l′(t) =
N∏

j=1

(|αj |2 ei(gj,l−gj,l′ ) t
2 + |βj |2 e−i(gj,l−gj,l′ ) t

2 ). (55)

If we define the functions Rl(t) = |Tl,M−l (t)|2 and Rll′(t) = |Tl,l′(t)|2, they result

Rl(t) =
N∏

j=1

(|αj |4 + |βj |4 + 2|αj |2|βj |2 cos(2(2l − M)gj t)), (56)

Rll′(t) =
N∏

j=1

(|αj |4 + |βj |4 + 2|αj |2|βj |2 cos(2(l − l′)gj t)). (57)

We can see that |r(t)|2 of equation (15) in the original model is the particular case of Rl(t) for
M = 1.

4.2. Computing the behavior of the relevant expectation values

The expectation value given by equation (47) has three terms, 〈OR〉ρ(t) = 
(1) + 
(2) + 
(3),
which can be analyzed separately.

10
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• From equation (53), the first term reads


(1) =
M∑
l=0

f (l)∑
λ,λ′=f (l−1)+1

Bλ,λ′ =
M∑
l=0

f (l)∑
λ,λ′=f (l−1)+1

CλC
∗
λ′sλ′,λ �= 
(1)(t). (58)

It is clear that this first term does not evolve with time.
• The time dependence of the second term is given by Tl,M−l (t):


(2)(t) =
M̃∑
l=0

f (l)
f (M−l)∑

λ=f (l−1)+1
λ′=f (M−l−1)+1

Bλ,λ′2 Re(Tl,M−l (t)). (59)

Then, in order to obtain the limit of this term, we have to compute the limit of
Rl(t) = |Tl,M−l (t)|2 of equation (56). As in the case of the original spin-bath model,
here we take |αj |2 and |βji |2 as random numbers in the closed interval [0, 1], such that
|αj |2 + |βj |2 = 1. Then

max
t

(|αj |4 + |βj |4 + 2|αj |2|βj |2 cos(2(2l − M)gj t)) = 1, (60)

min
t

(|αj |4 + |βj |4 + 2|αj |2|βj |2 cos(2(2l − M)gj t)) = (2|αj |2 − 1)2. (61)

Therefore, [|αj |4 + |βj |4 + 2|αj |2|βj |2 cos(2(2l − M)gj t)] is a random number which, if
t �= 0, fluctuates between 1 and (2|αj |2 − 1)2. Again, when the environment has many
particles (that is, when N → ∞), the statistical value of the cases |αj |2 = 1, |βj |2 =
1, |αj |2 = 0 and |βj |2 = 0 tends to zero. In this situation, equation (56) for Rl(t) is
an infinite product of numbers belonging to the open interval (0, 1). As a consequence,
when N → ∞, Rl(t) → 0.

• The time dependence of the third term is given by Tl,l′(t):


(3)(t) =
M∑

l,l′=0
l �=l′

l′ �=M−l

f (l)
f (l′)∑

λ=f (l−1)+1
λ′=f (l′−1)+1

Bλ,λ′Tl,l′(t), (62)

with the restrictions on l and l′: l �= l′ and l′ �= M − l. As in the second term, we have to
compute the limit of Rll′(t) = |Tl,l′(t)|2 of equation (57) and, on the basis of an analogous
argument, the result is the same as above: when N → ∞, Rll′(t) → 0.

If now we want to evaluate the limit of 〈OR〉ρ(t) for t → ∞, we have to compute the limits
of the second and the third terms (since the first term, as we have seen, is time independent).
Here we have to distinguish three cases: M � N,M � N and M � N .

Case (a): M � N . This case is similar to decomposition 1 in the original spin-bath model,
since in both cases M � N : the only difference is that in the original model M = 1 whereas
here M � 1.

In fact, we have seen that Tl,M−l (t) is analogous to �1(t) in the original model. Moreover,
Tl,l′(t) has the same functional form as �1(t). In paper [16] it is shown that �1(t) approaches
zero for t → ∞. This means that we can infer that Tl,M−l (t) and Tl,l′(t) also approach zero
for t → ∞. On the other hand, the terms 
(2)(t) and 
(3)(t) are sums of less than M terms
involving Tl,M−l (t) and Tl,l′(t). As a consequence, since in this case M is a small number,
the sum of a small number of terms approaching zero for t → ∞ also approaches zero:
limt→∞ 
(2)(t) = 0 and limt→∞ 
(3)(t) = 0. Therefore,

11
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lim
t→∞〈OR〉ρ(t) = lim

t→∞[
(1)(t) + 
(2)(t) + 
(3)(t)] = 
(1)(t). (63)

In other words,

lim
t→∞〈OR〉ρ(t) =

M∑
l=0

f (l)∑
λ,λ′=f (l−1)+1

Bλ,λ′ =
M∑
l=0

f (l)∑
λ,λ′=f (l−1)+1

CλC
∗
λ′sλ′,λ = 〈OR〉ρ∗ , (64)

where ρ∗ is the final diagonal state of U. This result can also be expressed in terms of the
reduced density operator ρA of the system A as

lim
t→∞〈OR〉ρ(t) = 〈OR〉ρ∗ = lim

t→∞〈OA〉ρA(t) = 〈OA〉ρA∗ . (65)

In the eigenbasis of the Hamiltonian HA of A, the final reduced density operator ρA∗ is
expressed by a 2M × 2M matrix:

ρA∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρl=0 0 0 0 · · · 0
0 ρl=1 0 0 · · · 0
0 0 ρl=2 0 · · · 0
0 0 0 ρl=3 · · · 0

· · · · · · · · · · · · · · · · · ·
0 0 0 0 0 ρl=M

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (66)

where ρl=0 = |C1|2 and each ρl is a matrix of dimension M!
(M−l)!l! × M!

(M−l)!l! . This result
might seem insufficient for decoherence because, since the ρl are matrices, ρA∗ seems to be
non-completely diagonal in the eigenbasis of the Hamiltonian HA. However, we have to recall
that all the states |Ai〉 with same l are degenerate eigenvectors corresponding to the same
eigenvalue of HA; then, the basis that diagonalizes ρA∗ (i.e. that diagonalizes all the matrices
ρl) is an eigenbasis of HA. Summing up, the system S = A of M particles in interaction with
its environment E = B of N � M particles decoheres in the eigenbasis of ρA∗, which is also
an eigenbasis of HA.

If we want to compute the time behavior of 〈OR〉ρ(t), we have to consider that 
(1) is
a sum of terms of the form (Bλ,λ′ |αj |2 + Bλ,λ′ |βj |2), that is, terms of the expectation value
coming from the diagonal part of ρ(t) in the basis of the Hamiltonian H. Therefore, if there is
decoherence, the sum 
nd(t) = 
(2) + 
(3), involving the terms of 〈OR〉ρ(t) coming from the
non-diagonal part of ρ(t), has to approach zero for t → ∞.

In order to show an example of the time behavior of 〈OR〉ρ(t), numerical simulations for

nd(t) have been performed, with the following features.

(i) sλ′,λ = 1 (see equation (52)).
(ii) The initial condition for S = A is selected as (see equation (32))

|A〉 = 1√
2M

2M∑
i=1

|Ai〉 �⇒ ∀λ, Cλ = C∗
λ = 1√

2M
�⇒ CλC

∗
λ′ = 1

2M
. (67)

Then, from (i) and (ii), Bλ,λ′ = 2−M (see equation (46)).
(iii) |αi |2 is generated by a random-number generator in the interval [0, 1] and |βi |2 is obtained

as |βi |2 = 1 − |αi |2.
(iv) gi = 400 Hz: as explained above, the coupling constant in typical models of spin

interaction.
(v) As in the original model, the time interval [0, t0] was partitioned into intervals �t =

t0/200, and the function 
nd(t) was computed at times tk = k�t , with k = 0, 1, . . . , 200.
(vi) N = 103, and M = 1 and M = 10.
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Figure 2. Evolution of 
nd(t) for N = 103, and M = 1 (solid line) and M = 10 (dashed line),
with t0 = 10−3s.

Figure 2 shows the time evolution of 
nd(t).
This result shows that, as expected, a small open system S = A of M particles decoheres

in interaction with a large environment E = B of N � M particles.

Case (b): M � N . In this case, where the open system S = A has much more particles than
the environment E = B, the argument of case (a) cannot be applied: since now 
(2)(t) and

(3)(t) are no longer sums over a small number of terms, the fact that each term approaches
zero does not guarantee that the sums also approach zero. In particular, if N = 1, then (see
equation (55))

Tl,l′(t) = |α1|2 ei(g1,l−g1,l′) t
2 + |β1|2 e−i(g1,l−g1,l′) t

2 (68)

which clearly has no limit for t → ∞. Nevertheless, it might happen that, with high N but M
much higher than N, each term of the sums approaches zero. So, in order to know the time
behavior of 〈OR〉ρ(t), numerical simulations for 
nd(t) have been performed, with the same
features as in the previous case, with the exception of condition (vi), which was taken as

(vi) M = 103, and N = 10 and N = 100.

Figure 3 shows the time evolution of 
nd(t) in this case.
This result is also what may be expected: when the open system S = A of M particles is

larger that the environment E = B of N � M particles, S does not decohere.

Case (c): M � N . In this case, where the numbers of particles of the open system S = A

and of the environment E = B do not differ in more than one order of magnitude, the time
behavior of 〈OR〉ρ(t) cannot be inferred from the equations. Numerical simulations have been
performed, with the same features as in case (b), with the exception of condition (vi), which
was taken as

(vi) N = 103, and M = 102 and M = 103.

Figure 4 shows the time evolution of 
nd(t).
Again, if the environment E = B of N particles is not large enough when compared with

the open system S = A of M particles, S does not decohere. Let us note that, for N = 103,

13
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Figure 3. Evolution of 
nd(t) for M = 103, and N = 10 (dashed line) and N = 100 (dotted
line), with t0 = 10−3s.
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Figure 4. Evolution of 
nd(t) for N = 103, and M = 102 (dashed line) and M = 103 (solid line),
with t0 = 12.10−4s.

the system S = A with M = 102 does not decohere (figure 4), whereas it does decohere with
M = 10 (figure 2). This shows that, in the case of this decomposition, M � N means that N
is at least two orders of magnitude higher than M.

Summarizing results

Up to now, in this decomposition 1 all the arguments were directed to know whether the
system A of M particles decoheres or not in interaction with the system B of N particles. But,
given the symmetry of the whole system, the same arguments can be used to decide whether
the system B of N particles decoheres or not in interaction with the system A of M particles,

14
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with analogous results: B decoheres only when M � N ; if M � N or M � N,B does not
decohere. Therefore, all the results obtained in this section can be summarized as follows.

(i) If M � N,A decoheres and B does not decohere.
(ii) If M � N,A does not decohere and B decoheres.

(iii) If M � N , neither A nor B decohere.

5. Generalized spin-bath model: decomposition 2

5.1. Selecting the relevant observables

In this case we decide to observe only one particle of the open system A. This amounts
to splitting the closed system U into two new subsystems: the open system S is, say, the
particle AM with ket |⇑,⇑, . . . ,⇑,⇑,⇑,⇓〉, and the environment is E = (∪M−1

i=1 Ai

) ∪ B =(∪M−1
i=1 Ai

) ∪ (∪N
k=1Bk

)
. The decomposition for this case is

H = HS ⊗ HE = (HAM

)⊗
((

M−1⊗
i=1

HAi

)
⊗
(

N⊗
k=1

HBk

))
. (69)

Therefore, the relevant observables OR of the closed system U are those corresponding to the
particle AM:

OR = OS ⊗ IE =
⎛
⎝ ∑

α,α′=⇑,⇓
sα,α′ |α〉〈α′|

⎞
⎠⊗

((
M−1⊗
i=1

Ii

)
⊗
(

N⊗
k=1

Ik

))
. (70)

It is easy to see that the relevant observables selected in this decomposition 2 form a subspace
of the space of the relevant observables selected in decomposition 1: equation (70) can be
obtained from equation (52) by making sλ,λ′ = 1 for λ = λ′ and sλ,λ′ = 0 for λ �= λ′ in all the
terms of the sum except for the terms corresponding to the particle AM.

In order to simplify expressions, in this case it is convenient to introduce a new arrangement
for the eigenvectors of the Hamiltonian HA, by calling them |Ãi〉: the set {|Ãi〉} is an
eigenbasis of HA with 2M elements. The |Ãi〉 will be ordered by analogy with the binary
numbers:

|Ã1〉 = |⇑,⇑, . . . ,⇑,⇑,⇑,⇑〉, |Ã2〉 = |⇑,⇑, . . . ,⇑,⇑,⇑,⇓〉,
|Ã3〉 = |⇑,⇑, . . . ,⇑,⇑,⇓,⇑〉, |Ã4〉 = |⇑,⇑, . . . ,⇑,⇑,⇓,⇓〉,

(71)
|Ã5〉 = |⇑,⇑, . . . ,⇑,⇓,⇑,⇑〉, |Ã6〉 = |⇑,⇑, . . . ,⇑,⇓,⇑,⇓〉, . . .
|Ã2M 〉 = |⇓,⇓, . . . ,⇓,⇓,⇓,⇓〉.

According to this arrangement, the |Ãi〉 with even i have the spin M in the state |⇓〉, and the
|Ãi〉 with odd i have the spin M in the state |⇑〉. So, the relevant observables of equation (70)
can be rewritten in terms of the |Ãi〉 as

OR =
⎛
⎝ 2M∑

λ=1

(s̃⇑⇑|Ã2λ〉〈Ã2λ| + s̃⇑⇓|Ã2λ〉〈Ã2λ−1| + s̃⇓⇑|Ã2λ−1〉〈Ã2λ| + s̃⇓⇓|Ã2λ−1〉〈Ã2λ−1|)
⎞
⎠

⊗
(

N⊗
k=1

Ik

)
. (72)
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5.2. Computing the behavior of the relevant expectation values

Here the expectation values of the relevant observables are given by equation (47), with
Tl,l′(t), Tl,l(t) and Tl,M−l (t) given by equations (45), (49) and (50) respectively, but now
replacing Bλ,λ′ with B̃λ,λ′ ,

〈OR〉ρ(t) =
M∑
l=0

f (l)∑
λ=f (l−1)+1
λ′=f (l−1)+1

B̃λ,λ′ +
M̃∑
l=0

f (l)

f (M−l)∑
λ=f (l−1)+1

λ′=f (M−l−1)+1

B̃λ,λ′2 Re(Tl,M−l (t))

+
M∑

l,l′=0
l �=l′

l′ �=M−l

f (l)

f (l′)∑
λ=f (l−1)+1
λ′=f (l′−1)+1

B̃λ,λ′Tl,l′(t), (73)

where the B̃λ,λ′ can be written in the basis {|Ãλ〉} as

B̃λ,λ′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

CλC
∗
λ′ s̃⇑⇑ if λ is an even number and λ′ = λ

CλC
∗
λ′ s̃⇑⇓ if λ is an even number and λ′ = λ − 1

CλC
∗
λ′ s̃⇓⇑ if λ is an odd number and λ′ = λ + 1

CλC
∗
λ′ s̃⇓⇓ if λ is an odd number and λ′ = λ

0 otherwise

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (74)

According to equation (74), B̃λ,λ′ �= 0 only when

λ′ = λ or λ′ = λ ± 1. (75)

Since λ = f (l − 1) + 1 and λ′ = f (l′ − 1) + 1, relations (75) imply that

l′ = l or l′ = l ± 1. (76)

The expectation value given by equation (73) has again three terms, 〈O〉ρ(t) =

(1) + 
(2) + 
(3), which can be analyzed separately.

• From equations (74) and (75), the first term reads


(1) =
M∑
l=0

f (l)∑
λ=f (l−1)+1

Bλ,λ =
2M−1∑
λ=0

(|C2λ|2 s̃⇑⇑ + |C2λ+1|2 s̃⇓⇓
) �= 
(1)(t). (77)

Analogously to equation (58) of decomposition 1, this first term does not evolve with
time.

• The time dependence of the second term is given by Tl,M−l (t). But with the restrictions
of equations (75) and (76), 
(2) has only two terms:


(2)(t) =
M̃∑
l=0

f (l)
f (M−l)∑

λ=f (l−1)+1
λ′=f (M−l−1)+1

Bλ,λ′2 Re(Tl,M−l (t)) (78)

= Cf ( M−1
2 −1)+1C

∗
f ( M−1

2 −1)+2(s̃⇓⇑ + s̃⇑⇓)2 Re
(
TM−1

2 , M+1
2

(t)
)
. (79)

Then, in order to obtain the limit of this term, we have to compute the limit of TM−1
2 , M+1

2
(t),

which is precisely the Tl,l′(t) of decomposition 1 in the particular case that l = M−1
2

and l′ = M+1
2 (see equation (55)). But, as we have seen in case (a) of decomposition 1,

Tl,l′(t) has the same functional form as �1(t) of the original model (see equation (10)),
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which approaches zero for t → ∞ when N � 1. Therefore, for N � 1, TM−1
2 , M+1

2
(t) also

approaches zero for t → ∞, and the same holds for 
(2)(t) since it is a sum of two terms
containing TM−1

2 , M+1
2

(t).
• The time dependence of the third term is given by Tl,l′(t). But with the restrictions of

equations (75) and (76), 
(3) results


(3)(t) =
M∑
l=0

l �= M−1
2

f (l)∑
λ=f (l−1)+1

(Bλ,λ+1Tl,l+1(t) + Bλ,λ−1Tl,l−1(t)). (80)

Since here l′ = l ± 1 (see equation (76)), in this case Tl,l±1(t) is

Tl,l±1(t) =
N∏

j=1

(|αj |2 e∓igj t + |βj |2 e±igj t ). (81)

If we compare this equation with equation (14) for r(t) in the original spin-bath model,
we can see that

Tl,l+1(t) = r(t) and Tl,l−1(t) = r∗(t). (82)

Then,


(3)(t) = (S+r(t) + S−r∗(t)), (83)

where S+ and S− are constants given by

S± =
M∑
l=0

l �= M−1
2

f (l)∑
λ=f (l−1)+1

Bλ,λ±1. (84)

On the basis of the simulations of the original model we have seen that, when N � 1, r(t)

approaches zero for t → ∞. Therefore, in this case we can conclude that, when
N � 1, 
(3)(t) approaches zero for t → ∞.

Summing up, 〈OR〉ρ(t) is the sum of three terms: one is time independent and the other
two tend to zero for t → ∞. In particular, from equation (77) we know that, for N � 1,

lim
t→∞〈OR〉ρ(t) =

M∑
l=0

f (l)∑
λ,λ′=f (l−1)+1

B̃λ,λ′ =
M∑
l=0

2M−1∑
λ=0

(|C2λ|2 s̃⇑⇑ + |C2λ+1|2 s̃⇓⇓
) = 〈OR〉ρ∗ , (85)

where ρ∗ is the final diagonal state of U. Again, this result can also be expressed in terms of
the reduced density operator ρS = ρAM

of the open system S = AM as (see equation (65)):

lim
t→∞〈OR〉ρ(t) = 〈OR〉ρ∗ = lim

t→∞〈OAM
〉ρAM

(t) = 〈OAM
〉ρAM ∗ , (86)

where the final reduced density operator ρAM∗ in the basis {|⇑〉, |⇓〉} reads

ρAM∗ =
(|αM |2 0

0 |βM |2
)

. (87)

This shows that the open system S = AM , composed of a single particle, decoheres in
interaction with its environment E of N + M − 1 particles when N � 1, independently of the
value of M.

In order to illustrate this conclusion, we have computed 
nd(t) = 
(2)(t) + 
(3)(t)

by means of numerical simulations with the same features as in decomposition 1, with the
exception of condition (vi), which was taken as:

Figure 5: (vi) M = 103 and N = 1.
Figure 6: (vi) M = 103 and N = 102.
Figure 7: (vi) M = 103 and N = 103.
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Figure 5. Evolution of 
nd(t) for M = 103 and N = 1, with t0 = 3.10−2s.
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Figure 6. Evolution of 
nd(t) for M = 103 and N = 102, with t0 = 1.10−3 s.

Summarizing results

As we have seen, in this decomposition of the whole closed system, the open system S = AM

decoheres when N � 1, independently of the value of M. But the particle AM was selected
as S only for computation simplicity: the same argument can be developed for any particle Ai

of A. Then, when N � 1 and independently of the value of M, any particle Ai decoheres in
interaction with its environment E of N + M − 1 particles.

On the other hand, as in decomposition 1, here the symmetry of the whole system U
allows us to draw analogous conclusions when the system S is one of the particles of B, say,
BN: S = BN decoheres when M � 1, independently of the value of N. And, on the basis
of the same considerations as above, when M � 1 and independently of the value of N, any
particle Bi decoheres in interaction with its environment E of N + M − 1 particles.
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Figure 7. Evolution of 
nd(t) for M = 103 and N = 103, with t0 = 4.10−4 s.

6. Concluding remarks

In this paper we have studied a generalization of the spin-bath model, where a closed system
U is composed by two subsystems, U = A ∪ B, with A of M particles Ai and B of N particles
Bi. We showed how the model behaves under different definitions of the system of interest
and under different relations between the numbers M and N. The results obtained here allow
us to state the following concluding remarks.

(a) We have seen that, when M � N or M � N , the subsystem A does not decohere
(decomposition 1 of section 4), but the particles Ai, considered independently, decohere
when N � 1 (decomposition 2 of section 5). This means that there are physically
meaningful situations, given by M � N � 1 or M � N � 1, where all the Ai decohere
although A does not decohere. In other words, in spite of the fact that certain particles
decohere and may behave classically, the subsystem composed by all of them retains its
quantum nature. We have also seen that, by symmetry, all the particles Bi, considered
independently, also decohere when M � 1. Then, when M � N � 1 or M � N � 1,
the requirement M � 1 holds and we can conclude that not only all the Ai, but also
all the Bi decohere, although B neither decoheres. So, all the particles of the closed
system U = (∪iAi) ∪ (∪jBj ) may become classical when considered independently,
although the whole system U certainly does not decohere and, therefore, retains its
quantum character. These results, considered together, are a clear manifestation of the
fact, already pointed out by Schlosshauer [17], that energy dissipation and decoherence are
different phenomena: since all the particles of the system U decohere when independently
considered, decoherence cannot result from the dissipation of energy from the decohered
systems to their environments.

(b) The generalized model shows that the split of the entire closed system into an open system
and its environment amounts to the selection of the observables relevant in each situation.
Since there is no privileged or essential decomposition, we can select the observables of
the subsystem A in the situation in which A does not decohere. In this way, it would be
possible to use appropriately selected subsystems, unaffected by decoherence, for storing
quantum information.
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(c) The natural further step of generalization will consist in following the ideas of paper [6],
and introducing coupling internal to the subsystems A or B. For instance, given that the
decoherence of A is increasingly suppressed as the number M of its particles increases,
it could be expected that such decoherence suppression will also be more efficient as the
interactions between the spins of the bath also increase.
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