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Universidad Nacional de San Mart́ın, Irigoyen 3100,
San Mart́ın, Provincia de Buenos Aires, Argentina

Received November 12, 2008; Revised April 9, 2009

Complex natural systems present characteristics of scalar invariance. This behavior has been
experimentally verified and a large related bibliography has been reported. Multifractal Formal-
ism is a way to evaluate this kind of behavior. In the past years, different numerical methods
to estimate the multifractal spectrum have been proposed. These methods could be classified
into those that originated from the wavelet analysis and others from numerical approxima-
tions like the Multifractal Detrended Fluctuation Analysis (MFDFA), proposed by Kantelhardt
and Stanley. Recently, S. Jaffard and co-workers proposed the Wavelet Leaders (WL) method
that exploits the potential of wavelet analysis and the efficiency of the Multiresolution Wavelet
Schema.

In a previous work, we checked that both methods are equivalent for estimating fractal prop-
erties in a series from singular measures. Now, we apply MFDFA and WL to natural signals
with self-similar structures, but unknown multifractal spectrum. We observe that some differ-
ences appear in their respective estimations, particularly when the signals are corrupted with
fractional Gaussian noise.

Keywords : Multifractal formalism; multifractal detrended fluctuation analysis; wavelet leaders,
Hölder regularity.

1. Introduction

Frequently, complex natural systems present the
characteristics of scalar invariance, behavior that
has been experimentally verified in recent years,
and exists a very rich related bibliography there
reported from very diverse fields as physics, ecology,
biology or economy. For more details, refer to
[Stanley et al., 2000; Ashkenazy et al., 2001;

Telesca et al., 2005; Figliola et al., 2007a, 2007b;
Zunino et al., 2008].

Multifractal Formalism, essentially, is based on
the calculation of two sets of coefficients associ-
ated to the signals: the Hölder exponents H, that
quantify local regularity of the signal or function f
and the multifractal spectrum (MS) df that quan-
tifies the multifractality of f . The MS associates
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each group of data with the same pointwise regu-
larity (given by Hölder exponents) as the Hausdorff
dimension of this set of points. In this way, a func-
tion is generated between the Hölder exponents
and the Hausdorff dimension that is also known as
spectrum of singularities [Falconer, 1997].

In 1995, Peng and co-workers presented the
Detrended Fluctuation Analysis (DFA) [Peng et al.,
1995] developed to evaluate the scaling proper-
ties from a signal. The application of DFA had
great success in the study of different fields such
as the sequences of DNA or signals from physiolo-
gical or economical phenomena [Stanley et al., 2000;
Zunino et al., 2008]. A generalization of the DFA
is the Multifractal Detrended Fluctuation Analysis
(MFDFA), that was introduced by the pioneering
work of Castro e Silva and Moreira and developed
more recently by Kantelhardt and co-workers, who
extended the DFA algorithm for the series with mul-
tifractal behavior or at least self-similarity behavior
[Castro e Silva & Moreira, 1997; Kantelhardt et al.,
2002].

In recent years, Stéphane Jaffard has proposed
another methodology for the characterization of
Hölder exponents and their relationship with Hölder
regularity and local oscillations. Jaffard named this
method as Wavelet Leaders (WL) and he presented
a new formulation in terms of the local suprema of
the wavelet coefficients of the transformed signal,
which he called the wavelet leader [Jaffard, 2004;
Leshermes et al., 2005].

The aim of this work is to compare the effici-
ency of WL and MFDFA methods for the estima-
tion of the MS in natural series, as the case from
an electroencephalogram (EEG) signal of a tonic–
clonic epileptic seizure. In particular, we study the
changes in the spectrum when the signal is cor-
rupted with uncorrelated noise and with a signal
of fractional Gaussian noise in two cases: anti-
correlated and correlated monofractal series.

2. Multifractal Formalism

Let α ≥ 0 and x0 ∈ R and a locally bounded func-
tion f : Rd → R. We say that f ∈ Cα(x0) if there
exists a constant C > 0 and a polynomial P with
degree deg(P ) < α such as:

|f(x) − P (x− x0)| ≤ C|x− x0|α (1)

near the point x0. The pointwise Hölder exponent
of f in x0 is:

Hf (x0) = sup{α : f ∈ Cα(x0)} (2)

These exponents describe the local regularity of f
at x0. If Hf (x0) < 1, the function is not differ-
entiable in x0, and P (x − x0) = f(x0). In this
case, the exponent describes the nonsmoothness or
the ruggedness of the function at the point and it
expresses how spiky its graph is. The multifractal
analysis becomes relevant when the set of points
having the same Hölder exponents is dense inside
the signal’s domain. Following in this direction, we
will denote:

Ef (H) = {x ∈ dom(f) : Hf (x) = H} (3)

the set of points having the same Hölder regular-
ity. The MS, denoted by df (H), is the Hausdorff
dimension of any set Ef (H), [Falconer, 1997; Mal-
lat, 1999; Jaffard, 2004].

If Ef (H) �= ∅, we have 0 ≤ df (H) ≤ 1. The
spectrum is fractal if 0 < df (H) < 1 for some H
and it is multifractal if the same holds for different
values of H.

In this way, the spectrum will give us a clear
characterization of the global distribution of Hölder
exponents, the fractal properties of underlying phe-
nomena of the signal.

Let f be an unidimensional and locally
bounded function. First, we define a numerable set
of intervals:

Ijk = [rjk, rj(k + 1)) (4)

where rj is a decreasing sequence and limj→+∞ rj =
0. Note that | Ijk |= rj . We will denote by Ij(x0)
the unique interval of size rj such that x0 ∈ Ijk. We
also denote by MI j(x0) a M -dilation of the interval
Ij(x0).

We suppose that there exists a non-negative set
function:

µ : {I} → R≥0 (5)

related with Hölder exponents in this way:

µ(MI j(x0)) ∼ r
Hf

j (x0) (6)

for some dilation M . Then:

Hf (x0) = lim inf
rj→0

log(µ(MI j(x0)))
log(rj)

(7)

In this case, it is possible to define the following
scaling function (some authors named this function
as structure function):

S(q, j) = rj
∑

k∈Kj

µ(MIjk)q (8)

where Kj is the set of indexes such that µ(Ijk) > 0.
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The above hypothesis let us in Eq. (6) or (7),
assert that the contribution to S(q, j) of the inter-
vals Ij(x0), (x0 ∈ Ef (H)) is given by µ(MI jk) = rH

j .

Since we need r−df (H)
j intervals to cover Ef (H),

according to the Hausdorff dimension definition, it
is possible to deduce:

S(q, j)(H) ∼ r
(1−df (H)+Hq)
j (9)

and considering when rj → 0 the principal contri-
bution is from the smallest exponents, we can define
the function:

η(q) = inf
H

(1 − df (H) +Hq) (10)

Finally, if the function η is concave and suppos-
ing that the spectrum df is concave indeed, the
duality relation for concave function gives us the
formula:

df (H) = inf
q

(1 − η(q) +Hq) (11)

and the formalism scheme is complete. We empha-
size that this scheme has no empty domain. Because
of the concavity, Hölder exponents and the param-
eters q could be related by the Legendre Trans-
form of the function η(q). More precisely, the
exponent H(q) is the unique value satisfying the
equation:

H(q) =
dη

dq
(q) (12)

for each q ∈ R.
In general, we can say that if µ is an increasing

and nonnegative function formula, then df (H) of
Eq. (11) holds for dyadic intervals. Moreover, if µ
is a Borel measure η is a concave function.

However, although we can choose the covering
{Ijk} and the function µ, we cannot ensure that
df (H) is a concave function and this is independent
of our scheme design. Then, the multifractal for-
malism becomes a well intentioned tool for estimat-
ing the fractal properties of the signal. Moreover,
in many cases the signal is given only by sam-
ples and the formalism must be discretized in some
way. Actually, the problem is open to many choices,
alternatives and variants. See [Jaffard, 2004] for
comments and details.

In the next section we revise an alternative
developed by Kantelhardt et al. [2002]: the MFDFA
method.

3. Multifractal Detrended
Fluctuation Analysis

The MFDFA method was presented as a genera-
lization of DFA method and the advantage when
compared with other methods has been proved
[Kantelhardt et al., 2002; Oświȩcimka et al., 2006].
The implementation of MFDFA does not involve
more effort than the conventional DFA, just one
additional step is required.

The MFDFA multifractal spectrum estimation
of a one-dimensional series {x(i), i = 1, . . . , N}, is
based on the construction and the analysis of the
fluctuation function, that is defined as:

F 2
s (ν) =

1
s

s∑
i=1

{Ys[(ν − 1)s + i]}2. (13)

To obtain Eq. (13), we first calculate the profile of
the series by the integration: Y (k) =

∑k
i=1[x(i) −

〈x〉], where 〈x〉 is the mean value of the series {x(i)}.
The profile is cut into Ns = N/s nonoverlapping
segments of equal length s. The detrended time
series for segment s, denoted by Ys(i), is calculated
as the difference between the original time series
and the fits,

Ys(i) = Y (i) − pν(i), (14)

where pν(i) is the fitting polynomial in the νth seg-
ment. Since, we use a polynomial fit of order 1, we
denote the algorithm as 1-MFDFA, or for simplic-
ity MFDFA. As the detrending of the time series
is done by subtraction of the fits from the profile,
these methods differ in their capability of eliminat-
ing trends in the data. For each of the Ns segments,
the variance of the detrended time series Ys(i) is
evaluated by averaging over all data points i in the
νth segment. Then, averaging over all segments, it
is possible to obtain the qth fluctuation function:

Fq(s) =

{
1

2Ns

2Ns∑
ν=1

[F 2
s (ν)]q/2

}1/q

, (15)

where, in general, the index q can take any real
value. For q = 2, the standard DFA procedure is
retrieved. The scaling behavior of the fluctuation
function is determined by analyzing log–log plots
Fq(s) versus s for each value of q. If the series x(i)
is long-range power-low correlated Fq(s) increases,
for large values of s, as a power-law:

Fq(s) ∼ sh(q). (16)

For more details, see [Peng et al., 1995; Kantelhardt
et al., 2002].
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For monofractal time series with compact sup-
port, h(q) is independent of q, since the scaling
behavior of the variance F 2

s (ν) is identical for all
segments ν and the averaging procedure in Eq. (15)
will give just this identical scaling behavior for all
values of q. Only if small and large fluctuations scale
differently, there will be a significant dependence of
h(q) on q. If we consider positive values of q, the
segments ν with large variance F 2

s (ν) will dominate
the average Fq(s). Thus, for positive values of q,
h(q) describes the scaling behavior of the segments
with large fluctuations. On the contrary, for neg-
ative values of q, the segments ν with small vari-
ance F 2

s (ν) will dominate the average Fq(s). Hence,
for negative values of q, h(q) describes the scaling
behavior of the segments with small fluctuations.
When q = 2, h(2) is the Hurst exponent. We will
note the value of h(2) as h.

Following from Eqs. (15) and (16) and assuming
that the length N of the series is an integer multiple
of the scale s,

N/s∑
ν=1

|Y (νs) − Y ((ν − 1)s)|q ∼ sq h(q)−1 (17)

Kantelhardt and co-workers showed that this mul-
tifractal formalism corresponds with the standard
box counting theory and they related both for-
malisms. It is obvious that the term |Y (νs)−Y ((ν−
1)s)| is identical to the sum of the numbers x(i)
within each segment ν of size s. This sum is the
box probability ps(ν) in the standard formalism for
normalized series x(i).

The scaling exponent η(q) is usually defined via
the partition function Zq(s),

Zq(s) ≡
N/s∑
ν=1

|ps(ν)|q ∼ sη(q) (18)

where q is a real parameter.
Now, we can identify the partition function

Zq(s) with the scaling function S(q, j) defined by
Eq. (8) taking the scale s as the j-interval rj . So,
using Eqs. (8) and (18), we conclude that they are
identical and we obtain the relation between the two
sets of multifractal scaling exponents:

η(q) = qh(q) − 1. (19)

The Hölder exponent H and the multifractal spec-
trum df (H) are related by η(q) via a Legendre
transform:

H = η′(q) (20)

and

df (H) = qH − η(q), (21)

From Eq. (16), we can conclude that

(Fq)q(s) ∼= sqh(q) (22)

for some function h(q). If we identify

F q
q (s) ∼ S(q, j) ∼ s

1−df (H)+Hq
j (23)

it is possible to suppose that

qh(q) = infH [1 − df (H) +Hq], (24)

then

df (H) = infq[1 − qh(q) +Hq] (25)

Then, MFDFA can be framed into the multifractal
formalism.

4. Wavelet Methods

The above described multifractal formalism is
viewed to improve the original one proposed by
Frisch and Parisi [1985] based on the scaling
function:

Sfp(q, j) = 2−j
∑

k

∣∣∣∣f
(
k + 1

2j

)
− f

(
k

2j

)∣∣∣∣
q

(26)

Here, the associated measure function

µfp(Ijk) =
∣∣∣∣f

(
k + 1

2j

)
− f

(
k

2j

)∣∣∣∣ (27)

is defined for the dyadic intervals Ijk = [(k/2j),
((k + 1)/2j)) for all integers j > 0 and k and it
consists of first-order discrete differences.

We could replace the above measure by:

µ′(Ijk) = 2j

∣∣∣∣∣
∫ (1+k)/2j

k/2j

f(x) − f(x+ 1)dx

∣∣∣∣∣ (28)

or, more generally, by the wavelet coefficients of f .
Since wavelets are natural tools in multifrac-

tal analysis, because the concept of self-similarity
is implicit in the wavelet analysis, the wavelet coef-
ficients provide a time-scale decomposition of the
signal f reflecting the scaling properties.

Now, we can define the multifractal formal-
ism based on the wavelet coefficients: the Wavelet
Continous Multifractal Formalism, from the scaling
function:

Swc(q, j) = 2−j
∑

k∈Kj

|cjk|q (29)
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where Kj is the set of indexes such that |cjk| > 0
are the wavelet coefficients of the discrete wavelet
transform of the function f .

The µwc(Ijk) = |cjk| is a non-negative function
and we stress that it may be non-increasing.

On the other hand, there is a direct correlation
between wavelet coefficients and pointwise Hölder
regularity [Jaffard, 2004]. If f ∈ Cα(x0) then, for
all j > 0,

|cjk| ≤ C2−jα(1 + |2jx0 − k|)α (30)

for some constant C > 0. When f has a nonoscil-
lating singularity in x0, like a cusp point, the signif-
icant coefficients lie near the point:

|cjk| ∼ C2−jα (31)

and the local measure is increasing around the
point. But this is not the case when the func-
tion has oscillating singularities, like a chirp. Then,
the maximum coefficients may be placed far from
the singular point and the last property fails.
These circumstances are obstacles for the multi-
fractal formalism. Particularly, the scaling function
becomes unstable for negative values of the param-
eter q, (see [Jaffard, 2004] for more details).

5. The Wavelet Leader Multifractal
Formalism

In recent years, Stéphane Jaffard and co-workers
developed a new wavelet method for the charac-
terization of pointwise Hölder exponent and the
relationship between Hölder regularity and local
oscillation. They give the formulation of the crite-
rion in terms of the local suprema of the wavelet
coefficients, called Wavelet Leaders.

Let ψ be an orthonormal wavelet, smooth, hav-
ing fast decay and several null moments. It is
centered in xc = 1/2 and it is essentially local-
ized on the interval [0, 1]. We suppose that each
wavelet coefficient cjk — corresponding to the
wavelet transform of the signal f or of the series
{x(i)} — is localized on the dyadic interval Ijk =
[(k/2j), (k + 1/2j)) [Meyer, 1990; Mallat, 1999].

We will denote 3Ijk = [((k − 1)/2j), ((k + 2)/
2j)) the dilated intervals, recalling that we can
choose another scaling factor M ≥ 3. Then, wavelet
leaders djk are defined as follows:

djk = sup{|clh| : Ilh ⊂ 3Ijk} (32)

The last definition indicates that to compute djk we
consider the indexes 2l−j(k − 1) ≤ h ≤ 2l−j(k + 2),
for each l ≥ j − 1.

It defines the set function:

µwl(3Ijk) = djk (33)

This is a non-negative function and it is increas-
ing, that is, if 3Ij′k′ ⊂ 3Ijk then dj′k′ ≤ djk and
it follows that µwl(3Ij′k′) ≤ µwl(3Ijk). Moreover,
this is proof of the suitable correlation between the
wavelet leaders and the pointwise Hölder regularity
[Jaffard, 2004].

Let Ij(x0) be the unique dyadic interval con-
taining the point x0 and dj(x0) the corresponding
wavelet leader. If f ∈ Cα(x0) then, for all j > 0,

|dj(x0)| ≤ C2−jα (34)

for some constant C > 0.
It is possible to consider that the wavelet lead-

ers can compute a suitable scaling formula for
the full parameter range and also holds when the
method is applied to signal embodying oscillating
singularities [Jaffard, 2004; Leshermes et al., 2005].

Then, it defines the scaling function:

Swl(q, j) = 2−j
∑

k∈Kj

dq
jk (35)

whereKj is the set of the indexes such that |cjh| > 0
for some Ijh ∈ Ijk [Jaffard, 2004].

So, following the development in (9) and (10)
and from (23) and (24), it is possible to deduce:

ηwl(q) = lim inf
j→+∞

log(Swl(q, j))
log(2j)

(36)

Due to above properties of µwl, the function η is
concave. Suppose that the spectrum df is concave
indeed, we can complete the multifractal formalism,
in the following way:

df (H) = inf
q

(1 − ηwl(q) +Hq) (37)

and MFDFA and WL methods are framed into the
multifractal formalism. (See [Serrano & Figliola,
2009] for more details.)

6. Applications

We apply both estimators, MFDFA and WL, to
the multifractal analysis of three natural series cor-
responding to an EEG from an epileptic seizure
for the same subject. For the three cases, we use
the first period of the seizures corresponding to
the tonic stages. The data is collected from a
secondary generalized tonic-clonic epilepsy seizure
from a female epileptic patient. The diagnosis of
the patient is pharmaco-resistant epilepsy and has
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no other accompanying disorders. Scalp electrodes
with bimastoideal reference were applied following
the 10–20 international system. Each signal was
digitized at 409.6 Hz through a 12 bit A/D con-
verter and filtered with an “anti-aliasing” 8 pole
low pass Bessel filter, with a cutoff frequency of
50 Hz. Then, the signal was digitally filtered with
a 1–50 Hz bandpass filter (medical frequency range
of interest for diagnosis). The series were analyzed
at the right central region, C4 derivation. This
electrode has been chosen after visual inspection
of the EEG, by the physician’s team, as the one
with the least number of artifacts. The time inter-
vals of the pre-ictal stage which present artifacts

(ocular and other movements, etc.) were marked
by the physician’s team and were excluded in the
subsequent analysis.

We have more than enough evidence of the
multifractal behavior of the EEG signals from
an epileptic seizures and also in EEG from NO
REM sleep [Pan et al., 2004; Figliola et al., 2007a,
2007b; Rosenblatt & Figliola, 2007]. For this work,
we confirm the experimental evidence by using
three different series corresponding to tonic stages.
Figures 1(a)–1(c) show the MS estimated from
MFDFA and WL methods for the three series, with
4096 data points each one. We enumerate them as
1, 2 and 3, respectively.
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Fig. 1. Multifractal spectrum estimated from MFDFA method (fine solid line with asterisks) and from WL method (thick
solid line) for the EEG tonic-clonic epileptic seizures series corresponds to the series (a) 1, (b) 2 and (c) 3.
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Table 1. Parameters estimated with WL and MFDFA meth-
ods for the series. The subindex points out each series.

WL1 MFDFA1 WL2 MFDFA2 WL3 MFDFA3

Hmin 0.010 0.096 0.010 0.076 0.010 0.083
Hmax 0.778 0.600 0.791 0.668 0.837 0.672
∆H 0.768 0.505 0.781 0.591 0.872 0.590
H∗ 0.272 0.341 0.280 0.304 0.301 0.304

We choose four parameters to characterize the
spectrum. They are: Hmin and Hmax that corre-
spond to the minimum and maximum of the Hölder
set: H; the range ∆H = Hmax − Hmin and the
H∗ that correspond to the Hölder of the maximum
Hausdorff dimension (i.e. df (H∗) = max(df )).

Table 1 synthesizes the differences between
both methods for the estimation of the multifrac-
tal spectrum of the three series above mentioned.

Note that in all cases, the WL method esti-
mates larger Hölder exponents range (∆H) than the
MFDFA method, but the H∗s are similar.

We analyze the effects when we add fractional
Gaussian noise in the natural series. The fractional
Brownian motion (fBm) is the only family of pro-
cesses which is Gaussian, self-similar, and endowed
with stationary increments. The normalized family
of these Gaussian processes {Bh(t), t > 0} is the one
with Bh(0) = 0 zero mean, and covariance given by:

E[(Bh(t1), Bh(t2)] =
1
2
(t2h

1 + t2h
2 − |t1 − t2|2h)

E[·] refers to the average computed with a Gaussian
probability density and t1, t2 ∈ R. The exponent
h — mentioned in Sec. 3 — is the Hurst exponent
and 0 ≤ h ≤ 1. The fGn is introduced as the process
{W h(t), t > 0}, obtained from the fBm increments
for discrete time [Palma, 2007; Rosso et al., 2007].

W h(t) = Bh(t+ 1) −Bh(t)

This is a stationary Gaussian process with zero
mean and covariance given by:

Cov(k) = [W h(t),W h(t+ 1)]

=
1
2
[(k + 1)2h − 2k2h + |k − 1|2h], k > 0

The power spectrum associated to the fGn is given
by ΦW h(ω) ∝ (1/|ω|β), with β = 2h−1. (Note that
β = η(2) from Eq. (19).)

By using h < 0.5 we can generate a long-
range anti-correlated, h = 0.5 uncorrelated, or with
h > 0.5 positively long-range correlated monofrac-
tal series. When we add uncorrelated noise, no

significant changes are observed at the spectra, also
when the amplitude of the noise is about the 50%
of the maximum amplitude of the signal. Never-
theless when h �= 0.5, these appear unimportant
differences.

Figure 2 shows the multifractal spectra esti-
mated by WL and MFDFA methods when we add
to the natural series number 1 correlated fGn with
h = 0.8. The maximum amplitude of the fGn is 50%
of the maximum amplitude of the natural series.
Figure 3 shows the same MS for the same series
but with a Hurst exponent h = 0.3 for the addi-
tional fGn process and with the same proportion
between the amplitude of the series and the fGn.
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Fig. 2. Top: Multifractal spectrum estimated from WL. The
fine line corresponds to the natural series of an EEG tonic-
clonic epileptic seizures and the thick line is the natural series
with fGn with h = 0.8. Bottom: Multifractal spectrum esti-
mated from MFDFA. The fine solid line with asterisks corre-
sponds to the natural series and the line with empty circles
the natural series with fGn with h = 0.8.
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Fig. 3. Top: Multifractal spectrum estimated from WL. The
fine line corresponds to the natural series of an EEG tonic-
clonic epileptic seizures and the thick line is the natural series
with fGn with h = 0.3. Bottom: Multifractal spectrum esti-
mated from MFDFA. The fine solid line with little asterisks
corresponds to the natural series and the line with empty cir-
cles corresponds to the natural series with fGn with h = 0.3.

It is very interesting to note that the spectrum
of the series with fGn estimated by MFDFA method
is translated approximately by keeping its shape.
H∗ (that corresponds to the Hölder of the maximum
Hausdorff dimension) is close to Hurst exponent:
in the case of correlated fGn series h = 0.8 and
H∗ = 0.699 and in the case of anti-correlated fGn
series h = 0.3 andH∗ = 0.343. Also, we remark that
in this case, the shape of the spectrum with noise
is more narrow than the spectrum without noise
(seems that it tends to a monofractal spectrum).
On the other hand, the multifractal spectrum of the
series plus fGn is narrowed by estimating it using
the WL method, translating it into a range of minor

Hölder exponents, for the uncorrelated case as well
for the correlated one.

7. Conclusions

The aim of this work is to analyze the effective-
ness of the two presented methods for estimating
the multifractal spectrum of natural series. In previ-
ous works, we found evidence of agreement between
both methods using numerical simulations of series
computed from Cantor measures and binomial cas-
cades. In these cases, it was possible to compare the
estimations with the theoretical spectra, but this is
not possible for the natural series provided by sys-
tems whose properties are unknown. For the series
without fGn, both MS are in agreement, in spite of
the range of MS from WL are larger than the MS
from MFDFA.

We also investigate the effect in the estimations
when a monofractal series is added to the natural
ones. For these purposes, we use a series of fGn
with different Hurst exponents: uncorrelated, anti-
correlated and correlated monofractal series.

For this last situation, we conclude that uncor-
related noise does not make a difference but adding
correlated fGb may produce significant differences.
While the MS of the series with noise is more nar-
row than the MS of the series estimated by WL, the
same MS estimated by MFDFA are translated, by
aligning its maximum with the values of the Hurst
exponents. We conjecture that this behavior from
the MFDFA is a generalization of DFA and this
methodology strongly adapts to detect the fractal-
ity of fBm [Peng et al., 1995; Kantelhard et al.,
2002].

On the other hand, Jaffard’s method is based
on Hölder regularity and wavelet transform and it
is biased to characterize the Hausdorff dimension
of the sets of points having the same exponents.
Hence, it can detect in the perturbed series dif-
ferent Hölder regularity structures and hence more
concentrated spectra. Currently, we cannot give a
categorical explanation of these differences, but we
hope that future works will provide more results
about these conjectures.
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