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RETROSPECTROSCOPE

Mathematics does not really exist, for it is a 
creation of the Human Mind, and, in that 
respect, it approaches a Supreme Idea, as 
some kind of Divine Enlightenment. 

The origins of convolution and its 
further and rather complex histori-
cal development were dealt with in 

detail by Alejandro Domínguez in a pre-
vious article [1]. We saw there that it can 
be traced back to the middle of the 18th 
century; however, its modern form and 
use are not more than 50 or 60 years old.

The present article addresses its  inverse 
operation, i.e., deconvolution, approach-
able in both the continuous area and 
the discrete field. Because convolution is 
sometimes referred to as convolution prod-
uct by using the asterisk symbol (*), in a 
similar spirit the term deconvolution quo-
tient might be suggested with the symbol

*/ * ,

so that as e(t)*w(t) represents convolu-
tion of the indicated functions, e(t)*/*w(t) 
would represent their deconvolution, im-
plying some kind of convolution division.

Not infrequently, solutions to equa-
tions in continuous mathematics may 
become very difficult, even intractable. 
Fortunately, our computer age permits, 
in the discrete field, the solving of any-
thing, no matter how complex and/or 
long the calculations may be. In addi-

tion to the “continuous” versus “dis-
crete” controversy that may arise due 
to philosophical trends when search-
ing for the perfect exact solution, and 
rejecting numerical approximations 
as mathematical sins, the truth is 
that any inverse algorithm is in itself 
 ambiguous: say, the simple difference  
(a – b), as opposed to the algorithm of the 
sum, may produce imperfect results, as 
(1 – 0.33333); or  division, as the inverse 
of  multiplication, when, for example, 
 dividing 10 by 3; or the square root (with 
its double sign), as the counterpart of x2 .  
Deconvolution is no exception in this 
respect, and its indeterminations, when 
continuous, may lead to essential dead 
ends or, when discrete, become  extremely 
annoying with almost useless results.

The Concept of Deconvolution
Deconvolution had a relatively early appli-
cation in seismology, when in 1950 Enders 
Robinson, a graduate student at the Mas-
sachusetts Institute of Technology, was 
working on the seismogram. He assumed 
that the recorded seismogram ( )s t  is the 
convolution of an earth-reflectivity func-
tion ( )e t  and a seismic wavelet ( )w t  from a 
point source, where t is the recording time. 
Thus, the convolution equation would be

   *s t e t w t=^ ^ ^h h h. (1)

Seismologists want to obtain the reflec-
tivity ( ),e t  which contains information 
about the earth’s structure. Equation (1), 
by application of the convolution theorem, 

can be treated with the Fourier transform  
to become

 S E W~ ~ ~=^ ^ ^h h h (2)

in the frequency domain. The reflectivity 
may be recovered by shaping the estimat-
ed wavelet to a spike, somewhat similar to 
a Dirac delta function. It is not rigorous, 
but the result may be seen as

 ( ) ( )e t r t Ti i
i

N

1

d= -
=

/ , (3)

where N  is the number of reflection 
events, ix  the reflection times of each 
event, and ri  the reflection coefficients.

The foundations for deconvolution 
and time-series analysis were largely 
laid later on by Norbert Wiener, based on 
work he had done during World War II 
(1939–1945) that had been classified at 
the time. Perhaps Robinson and Wiener 
worked together, although we could not 
assert it. Other early attempts to apply 
these theories occurred in the fields of 
weather forecasting and economics [2]. 

Let us now focus on the present 
 objective: to partially review the math-
ematics supporting discrete deconvolu-
tion (DD), as well as its applications in 
physiology, while trying to foresee what 
its prospects are from the point of view 
of  bioengineering. A comment must be 
added here: because convolution is also 
a process that filters out signals, decon-
volution can be seen as a reconstruction 
 operation on those signals.

The Mathematics of Deconvolution
There are two ways to approach DD: in 
the time domain and in the frequency do-
main. In this article, we restrict ourselves 
to the time domain. For that matter, let us 
write the discrete form of the convolution 
integral as

 s n t e k h n k
k

n

0

$ $V= -
=

^ ^ ^h h h/  (4)

where ( )ns  is the output signal from the 
studied system, ( )e n  is the input signal, 
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( )h n  represents the system’s impulse re-
sponse, and Δt is the sampling interval. 
Equation (4) can be written as the tri-
angular matrix E , called the input ma-
trix. The two column matrices E  and S 
can also be set in such a way that the 
whole group of matrices represents a dis-
crete approximation of convolution and 
deconvolution, respectively, where E 1-  
stands for the inverse of E and the three 
signals are created by adequate sampling 
of the respective continuous versions 
with a sampling interval equal to tV . 
That is,
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The equations that follow [(7) and 
(8)] represent a discrete approximation 
of convolution and deconvolution, re-
spectively, making use of the matricial 
notation, where E 1-  is the inverse of the 
matrix E , i.e.,

 S t E H$ $V=  (7)

and

 H
t

E S1 1$ $
V

= - . (8)

It must be stressed that two param-
eters are important, i.e., the initial signal 
value (which determines whether the 
matrix can be inverted) and the sampling 
frequency (which determines the resolu-
tion, in turn, related to tV ).

How the Matrix DD Method  
Can Be Tested
First, applying different known inputs 
checks the respective outputs. Thereafter, 
noise is superimposed to see how the new 
outputs are affected. Using a computer, 
a linear system showing the impulse re-
sponse described by (9) was simulated as

 h t a e bt$= -^ h .  (9)

Table 1 displays a collection of sev-
eral well-known input signals and 
their respective outputs calculated 
by continuous convolution, which in     -
volves more or less simple mathemati-
cal operations. The input ( )td  is the 
Dirac delta function, and ( )H t  is the 
standard unit step. However, the method 
cannot resolve situations where the sig-
nal value is zero at t 0=  because the 
matrix E  is triangularly inferior, i.e., the 
elements of its diagonal are its eigenval-
ues and, in such a case, these values are 
zero, making the matrix noninvertible. 
Hence, Table 1 is reduced to the values in 
Table 2, with only six pairs of functions.

In Table 2, the generic constants have 
been replaced by arbitrarily chosen nu-
merical values, i.e., a 2= , b 1= , c 1= ,  
and 5g = . By means of (9) and using 
the functions of Table 2, the method 
was simulated with t 5V = seconds. Fur-
thermore, a sampling frequency must 
be selected to pick up the samples from 
the continuous functions; thus, several 
sampling periods were tested. Except for 
the ( )td , everything was simulated with 
Matlab. For the delta function, instead 

we used a model based on partial sums, 
as described by Fejér in the early 1900s 
[3], [4]. The error produced after estimat-
ing the impulse response is obtained with  

 e
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and
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Both (10) and (11) describe the mean 
squared error (MSE) normalized to the 
maximum impulse response value. In 
these equations, eC  refers to the MSE 
when the first point at t 0=  is taken 
into account, and es  refers to MSE with-
out considering that first point. From 
Tables 1 and 2, the best input-output 
combination was chosen using as a cri-
terion the smallest estimated error in 
the absence of noise. For that matter, 
Gaussian noise ( ;0n =  %10v =  of 
the signal value) was added to the input 
signal for the purpose of checking the 
method’s performance. 

TABle 1. pAirs of known inpuT-ouTpuT signAls.

Input ( )te Output ( )ts

( )td ae bt-

( )td g- ( )ae tb g--

( )tH / ( )a b e1 bt- -

( )tH g- / ( ( ))a b e t1 b g- --

at ( / ) ( )a b bt e2 1bt+ --

at b+ ( / ( / ) ) ( )a b a b e2 2 1 1bt+ - --

ae bt- ate2 bt-

( )a e1 bt- - / ( / )a b e b ta2 2 1bt- +-

c ae bt+ - / ( / )ac b e at ac b2bt+ --

( )c a e1 bt+ - - ( ) ( / / )e ac b a b ate1 2 2bt bt- + -- -

TABle 2. finAl inpuT-ouTpuT signAl pAirs.  

Input ( )te Output ( )ts

( )td e2 1-

( )H t / ( )a b e1 bt- -

t2 1+ ( )e4 3 1t+ --

e2 t- te4 1-  

e1 2 t+ - ( )e t2 4 2t+ --

( )e1 2 1 t+ - - ( )e6 1 4tet t- -- -
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For the simulation, noise was added at 
each iteration, increasing by one point for 
each case: in other words,  adding noise to 
one point, two points, three points, and 
so on. The calculation was carried out 
with 100 samples per iteration. For each 
of these, MSE was computed, as defined 
by (10) and (11). Thereafter, errors were 

averaged out along with the standard de-
viations (SDs), so that two curves were 
obtained for the MSE: one considered the 
first point and another did not.

Test results 
Table 3 shows the results obtained nor-
malizing the MSE for different sampling 

frequencies. The numerical values seem 
to confirm an intuitive idea, i.e., increas-
ing the sampling frequency resulted in de-
creasing the error of the estimated impulse 
response. Moreover, the MSE grows sig-
nificantly when the first point is included, 
and that appears to be a problem inherent 
to the method because the initial value de-
pends linearly on the output signal at that 
particular instant zero. 

Thus, if the input starts with a null 
value, the estimated impulse response 
will also be zero, introducing an im-
portant error in most cases (Figure 1). 
Noise was added to the input, produc-
ing the behavior of the normalized 
MSE displayed in Figures 2 and 3, 
where the number of points appears on 
the horizontal axes. Figure 2 shows the 
results when noise was added to the in-
put signal, sampling time was 0.15 sec-
onds, and the point at zero time was  
not considered.

Applications in physiological 
systems

Renography
A nuclear renogram is performed by in-
jecting a radioisotope into a vein. The iso-
tope then flows through the blood vessels 
of the kidneys and is filtered by the glom-
eruli and/or secreted at the renal tubules. 
As the isotope flows into the collecting 
system, it is detected by a nuclear camera 
placed behind the kidneys. The amount 
of isotope filtered and drained by the 
kidneys, in counts per second, produces 
a collection of points as time proceeds, 
thus giving graphic information regard-
ing drainage from the kidneys (the so-
called retention function, because it tells 
how long the kidneys retain the foreign 
substance; this is also related to the resi-
dence time of the substance).

A renogram produces data useful  
for detecting obstructions, compromised 
blood flow, or the function of one kidney 
relative to the other or to a normal organ. 
Hence, renography is a dynamic study 
where time is an important dimension for 
kidney function evaluation. The upslopes  
of the curves demonstrate kidney uptake,  
and downslopes refer to  elimination. 
The two most common radiolabeled 
pharmaceutical agents used are Tc99m- 
mercaptoacetyltriglycine (MAG3) and 

FIGURE 1 The input-output behavior. (a) The exponential input (solid curve) and output 
signal (dashed curve). (b) The real impulse response (solid black) and the estimated 
impulse response (dashed line). At time zero, the difference between the two is 
enormous. 
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TABle 3. Mse As A funCTion of THe sAMpling inTervAl.

( )tV  (sec) ( )te ( )s t ec es

0.05 ( )td e2 t- 0.1637 0.1501

0.05 ( )tH / ( )a b e1 bt- - 0.0199 0.0001

0.05 t2 1+ ( )e4 3 1t+ -- 0.4878 0.4727

0.05 e2 t- te4 t-  0.0198 0

0.05 e1 2 t+ - ( )e t2 4 2t+ -- 0.0198 0

0.05 ( )e1 2 1 t+ - - ( )e6 1 4tet t- -- - 0.0202 0.0004

0.15 ( )td e2 t- 0.2087 0.1593

0.15 ( )tH / ( )a b e1 bt- - 0.0599 0.0011

0.15 t2 1+ ( )e4 3 1t+ -- 0.6546 0.6139

0.15 e2 t- te4 t-  0.0588 0

0.15 e1 2 t+ - ( )e t2 4 2t+ -- 0.0591 0.0003

0.15 ( )e1 2 1 t+ - - ( )e6 1 4tet t- -- - 0.0625 0.0038

0.25 ( )td e2 t- 0.2301 0.1465

0.25 ( )tH / ( )a b e1 bt- - 0.0980 0.0029

0.25 t2 1+ ( )e4 3 1t+ -- 0.8407 0.7828

0.25 e2 t- te4 t-  0.0952 0

0.25 e1 2 t+ - ( )e t2 4 2t+ -- 0.0960 0.0008

0.25 ( )e1 2 1 t+ - - ( )e6 1 4tet t- -- - 0.1061 0.0114

In ec, the error with the first point at t 0=  is included; in es, the error is without that first point.
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Tc99m-diethylene triamine pentacetic  
ac id (DTPA). Tc99m-MAG3 is by far a  
better diagnostic agent than Tc99m-
DTPA, particularly in neonates, patients 
with impaired  function, and patients 
with suspected obstruction.

Dynamic renal studies lend them-
selves to analysis by mathematical DD. 
The response of a kidney to a  bolus in-
jection of radioisotope into the renal 
artery can be derived from the reno-
gram, which results from the time-
varying input of markers from the 
blood into the kidneys. Figure 4 shows 
a schematic of the system, and Fig-
ure 5 displays the experimental curves, 
including the result of numerically de-
convolving ( )R t  by ( )tB . Symbolically, 
the operation in its two  directions could 
be written as

 *   ,B t H t R t  =^ ^ ^h h h  (12) 

the convolution product, and

   * / * ,H t R t B t  =^ ^ ^h h h  (13)

the convolution division or deconvolu-
tion. The latter operation (13) is the in-
verse of the former, making use of the 
proposed notation given previously. 

The literature on deconvolution ap-
plied to renography, as well as the discus-
sion of its pitfalls, has been extensive since 
the technique was introduced [5], [6].  
Without attempting a complete review, 
we can note that more than two de-
cades ago, in Barcelona, Spain, transit 
time and relative kidney function were 
studied by González et al. [7] using two 
different tracers. Transit times were on 
the order of 300 seconds, although the 
deviations were rather large (on the or-
der of 100 seconds). Other contributions 
worth mentioning are those by Lawson, 
Stevens et al., and Thomas et al. [8]–[10]. 
A 2010 study carried out at the Univer-
sity of  Jordan compared matrix inversion 
deconvolution with the Rutland-Patlak  
(R-P) plot, which is a very specific meth-
od (not described here). The values of the 
renal parenchymal mean transit time ob-
tained by applying matrix inversion were 
significantly higher than those obtained 
using the R-P plot. However, a strong posi-
tive correlation was found between the 
values obtained by applying both methods. 

These authors believe that R-P analysis is 
more reproducible than the matrix inver-
sion method because the latter relies heav-
ily on the accuracy of the first point [11]. 

No doubt, whatever the variants in the 
approach may be, deconvolution appears 
to be a useful complementary mathemat-
ical tool for renal function analysis, al-
ready having over a good 40 years of tests 
and  development.

Gastrointestinal Absorption Kinetics 
Analyzed by Deconvolution
In 1967 in Italy, Giorgio Segre was 
perhaps the first to report intestinal 

 absorption results obtained from exper-
imental measurements and application 
using DD [12]. Figure 6 briefly outlines 
the basic concept, where the intestinal 
tract is viewed as a transfer system. 
In Figure 6(a), a sudden infusion of a 
substance is given intravenously. Thus, 
it can be regarded as an impulse ( )te ,  
introduced in a very short time, like 

( )td . The response is ( ) ( )r t h t1 1= , or the 
im  pulse response, with h1  being the 
blood compartment transfer function. 
In Fig  ure 6(b), an oral amount ( )te , in 
a way similar to the delta function, of 
the same substance is ingested by the 

FIGURE 2 The normalized MSE without considering the first point against the number of 
input signal points, to which Gaussian noise was added. The vertical bars represent the 
standard deviations.
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subject, producing a response ( )r t2 , 
which should be detected between the 
first and the second block (obviously 
impossible to record). This acts as input 
to the intestines. The final response is 

( )r t3 , detectable at the lower right-hand 
side of the figure. From this, we can 
 determine the following general con-
volution relationships in the s  domain:

  *R E H1 1= , (14)
  *R E H2 2= , (15)

and

 *  * *  *R R H E H H R H3 2 1 2 1 1 2= = = .
 (16)

In (14)–(16), the uppercase letters 
represent, respectively, the Laplace 
transforms of the time-dependent low-
ercase-letter variables, and the asterisk 
(*) is the convolution product. It is 
clear that deconvolving R3  with R1  
would lead to an estimate of the in-
testinal transfer function ( )H s2 , the 
impulse response of which is ( )h t2 . 
Either of these two functions, the first 
in the s domain and the second in the 
t domain, quantitatively describes the 
intestinal  kinetics.

Endocrine Impulse Functions  
and Deconvolution
Several neuroendocrine glands secrete 
their hormones as short bursts, as well 
described in many papers, and such 
bursts can be viewed as physiologically 
imperfect delta functions. The brilliant 
concept proposed by Veldhuis, Carl-
son, and Johnson in 1987, and much 
improved in 1995, simply said there 
was no need of an external generator 

or  injection, because the system has its 
own. Deconvolution did the rest, and 
a series of superb contributions greatly 
improved the quantification neuroendo-
crine process [13], [14]. However, quan-
titative neuroendocrinology is much 
more, by far, than deconvolution. 

Perhaps Johnson and Velhuis in 1995 
[14] characterized best the whole intent in 
the preface to their outstanding treatise, 
which we dare to qualify as clearly being 
within a bioengineering framework:

As experimental strategies have 
become more sophisticated, high-
speed computing has been required 
for the formulation and solution 
of more elaborate statements of 
 neuroendocrine  pulsatility, such 

FIGURE 4 A schematic of the system showing an experimental test to obtain the renal re-
sponse ( ) .R t  The radioisotope (the marker) is injected into a peripheral vein. The bolus 
reaches the heart–lung block coming out from the aorta to branch off into the overall 
circulation. One of these arteries is the renal artery (one per kidney), where activity is 
detected as the signal ( ),B t  the input to the kidneys. Thus, the observed renogram—
curves B(t) and R(t)—will be a convolution of the input function from the blood to the 
kidney with the impulse response function ( ),H t  which is the retention function to be 
determined by deconvolution. 
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that matrices are needed to handle 
100 to 300 equations, each con-
taining 10 to 30 variables. Obvi-
ously, neuroendocrinology in its 
quantitative endeavor appears as 
a multidisciplinary entity with 
outstanding contributions from 
probability theory, systems en-
gineering, stochastic differential 
equations and the experimental 
natural sciences such as cell and 
molecular biology and other ap-
proaches to subcellular analyses.
Five of 16 chapters of [14] (that is, 31% 

of the book) deal with deconvolution anal-
ysis based on the burst intrinsic glandu-
lar secretion as the delta function simil or  

( )tS , the blood hormonal concentration 
( )tC  as the output signal, and the system 

elimination function ( )tE  as the charac-
teristic time-transference function called 

( )th  in  systems engineering. This shows 
the importance these  editors placed on 
this subject. 

It has been suggested that parathy-
roid hormone (PTH) is secreted in a pul-
satile fashion. To characterize PTH secre-
tory dynamics in healthy subjects, seven 
young women and six young men were 
studied, all of whom had hip and spine 
bone densities determined by dual pho-
ton densitometry. PTH concentrations 
were measured by immunoradiometric 
assay in blood sampled every 2 minutes 
during the course of 6 hours. Ionized 
calcium levels were obtained during 
the second and third hours of the study. 
Plasma PTH profiles were subjected to 
deconvolution analysis, which classifies 
measured hormone levels into secre-
tion and clearance components. Cross-
correlation analysis was performed to 
assess direct or inverse correlations be-
tween serum PTH and ionized calcium 
concentrations at various time lags. PTH 
was secreted in a dual fashion, with sig-
nificant basal (tonic) secretion and PTH 
pulses occurring approximately every  
20 minutes. Pulsatile PTH secretion ac-
counted for ~25% of the total secreted 
PTH, with no differences between men 
and women, nor any significant correla-
tions between PTH and ionized calcium 
concentrations. In 1993, Samuels et al. 
concluded that in normal subjects, the 
predominant mode of PTH secretion is 
tonic, with superimposed PTH pulses 

having small amplitude but high fre-
quency [15].

Another team investigated daily cor-
tisol production and clearance rates in a 
group of 18 normal unstressed pubertal 
males: nine early pubertal and nine late 
pubertal subjects [16]. Deconvolution 
analysis was applied to serum cortisol con-
centrations obtained every 20 minutes for 
24 hours. Subject-specific characterization 
of adrenocortical secretory episodes, corti-
sol production rate, and serum hormone 
half-life assessed potential roles of sexual 
maturation and changing gonadal steroid 
hormone concentrations on glucocorticoid 
physiology. No differences were observed 
between the two groups in secretory burst 
frequency and half duration, mass of corti-
sol released per secretory episode, average 
maximal rate of hormone secretion, and 
serum cortisol half-life. The investigators 
concluded that in normal 
pubertal males, 1) cortisol 
production rates as esti-
mated by deconvolution 
analysis are in agreement 
with other independent 
isotopic estimates but 
lower than many previ-
ous estimates; 2) the rise 
in serum gonadal steroid 
hormone levels is unasso-
ciated with alterations in 
the production rate or metabolic clearance 
of cortisol; and 3) increased secretory burst 
frequency, amplitude (maximal rate of 
cortisol secretion), and mass of cortisol re-
leased per adrenocortical secretory episode 
give rise to the normal diurnal rhythm of 
circulating cortisol.

Somewhat later, the same team sought 
to determine whether elevated circulat-
ing growth hormone (GH) concentrations 
in uremic prepubertal children were due 
to an increase in GH secretory activ-
ity by the pituitary gland or a decrease 
in the metabolic clearance of GH con-
sequent to reduced glomerular filtration 
rate (GFR) [17]. Deconvolution analysis 
was applied to the nighttime plasma GH 
profiles of 11 children with pretermi-
nal chronic renal failure, 12 children 
with end-stage renal disease (ESRD), 
and a control group of matched children 
with idiopathic short stature (n 12= ). 
The mean half-life of endogenous GH 
in children with ESRD and preterminal 

chronic renal failure was significantly 
higher than in controls. GH half-life cor-
related inversely with GFR. The number 
of GH secretory bursts per 10 hours in 
children with ESRD was amplified, com-
pared to those with preterminal chronic 
renal failure and controls. GH produc-
tion rate varied by a broad range in the 
three groups. It was highest in the ESRD 
group, mainly as a result of an increased 
number of GH secretory bursts, and not 
statistically different in the group with 
preterminal chronic renal failure and the 
controls. Total immunoreactive plasma 
insulin-like growth factor 1 (IGF-1) levels  
were indistinguishable among groups. 
This disruption of the normal relationship 
between circulating GH and total plasma 
IGF-1 levels in children with ESRD sug-
gests a relative insensitivity to the action 
of GH in uremia [17]. 

In 2011, Hill et al. [18] 
reported that glucocorti-
coid replacement therapy 
uses two or three daily 
regimens of hydrocortisone 
(HC) with variable distribu-
tion of the dose during the 
course of the day. Deconvo-
lution analysis  determines 
the mass of hormone that 
must be secreted to at-
tain a particular serum 

concentration. These researchers used this 
methodology to determine the amount and 
distribution of cortisol during a 24-hour 
period in 79 adults (41 male) aged 60– 
74 years and 30 children (24 male) 
aged 5–9 years. The subjects underwent  
24-hour serum cortisol profiles, with 
samples drawn at 20-minute intervals. 
Profiles were subjected to deconvolution 
analysis using a cortisol half-life of 80 
minutes to yield the amount of cortisol 
released by the adrenal gland to generate 
the corresponding serum concentration. 
Cortisol secretion occurred in discrete 
bursts. Daily cortisol secretion ranged 
from 5.6–12.4 mg/m2/days in adults and 
7.2–16.5 mg/m2/days in children; peak 
secretion was lower in adults. The team 
concluded that these observations sug-
gest an optimal dosing and distribution 
regimen for HC replacement.

The same group of researchers in 2013 
[19] reported that HC therapy is based on 
a dosing regimen derived from estimates 

Deconvolution 
analysis determines 

the mass of hormone 
that must be  

secreted to attain 
a particular serum 

concentration.
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of cortisol secretion, but little is known 
of how the dose should be  distributed 
throughout the 24 hours. Again, by 
means of deconvolution analysis, the 
team obtained HC dosing 
schedules in young chil-
dren and older adults. Data 
were apparently obtained 
from the same group of 
patients participating 
in [18]. Mean daily cor-
tisol secretion was similar 
between adults and chil-
dren, but peak  serum 
cortisol concentration was 
higher in children com-
pared with adults. The au-
thors concluded that these observations 
suggest that the daily HC replacement 
dose should be equivalent, on average, to  
6·3 mg/m2 body surface area per day in 
adults and 8·0 mg/m2 body surface area 
per day in children. Differences in dis-
tribution of the total daily dose between 
older adults and young children must be 
taken into account when using a three or 
four times daily dosing regimen.

A significant paper by Faghih and his 
group in 2014 [20] dealt with deconvo-
lution of serum cortisol, a hormone that 
shows pulsatile release controlled by a 
hierarchical system involving cortico-
tropin-releasing hormone, adrenocorti-
cotropin hormone (ACTH), and cortisol 
itself. Determination of the number, 
timing, and amplitude of these hormone 
secretory events represents a challenging 
problem of interest. These authors mod-
eled cortisol secretion from the adrenal 
glands using a second-order linear dif-
ferential equation with pulsatile inputs 
that represent cortisol pulses released in 
response to pulses of ACTH. Under the 
assumption that the number of pulses is 
between 15 and 22 pulses per 24 hours, 
they successfully deconvolved both 
simulated data sets and actual 24-hour 
serum cortisol data sets sampled every 
10 minutes from ten healthy women. As 
a result, they obtained physiologically 
plausible timings and amplitudes of each 
cortisol secretory event, with correla-
tions better than 0.96. 

Such information improves the un-
derstanding of pathological neuroen-
docrine states and helps in designing 
 optimal approaches for treating hor-

monal disorders. The model built by 
these authors is based on the stochastic 
differential equation model of diur-
nal cortisol patterns. It uses the first-

order kinetics for cortisol 
synthesis in the adrenal 
glands, cortisol infusion 
to the blood, and cortisol 
clearance by the liver;  
it also considers a doubly 
stochastic pulsatile input 
in the adrenal glands that 
has Gaussian amplitudes 
and gamma-distributed 
interarrival times [21]. 
This input can be con-
sidered an abstraction 

of hormone pulses and marks the tim-
ing and amplitude of the secretory events 
leading to cortisol secretion. It was 
assumed that between 15 and 22 secre-
tory events during a 24-hour period re-
sult in the observed cortisol profile [22]. 
This model is represented as follows:

 
( )

( ) ( )
dt

dx t
x t u t

1
1 1i=- +  (adrenal glands)

 (17) 

and

( )
( ) ( )( )

dt
dx t

x t x t erums
2

1 1 2 2i i= - , (18) 

where x1  is the cortisol concentration in 
the adrenal glands and x2  is the serum 
cortisol concentration. 1i  and 2i , respec-
tively, represent the infusion rate of corti-
sol from the adrenal glands into the blood 
and the clearance rate of cortisol by the 
liver. The equation

 ( ) ( )u t q t
i

N
i1
d x= -

= =
/  (19)

is an abstraction of the hormone puls-
es that result in cortisol secretion, 
where qi represents the amount of the 
hormone pulse initiated at time ix   
(qi  is zero if a hormone pulse did not 
occur at time ix ) and it was accepted 
that impulses occur at integer minute 
values. N  corresponds to the length 
of the input ( N 1440= ). Blood was 
collected, beginning at y0  and, then, 
with a sampling interval of ten min-
utes, for M samples ( M 144= ). The re-
covered pulses are mostly small at the 
beginning of the scheduled sleep, with 
a large pulse occurring toward the end 

of the sleep period or at the beginning 
of the wake period. Besides, there are 
also multiple small- and medium-sized 
pulses occurring during the wake pe-
riod. r2  values close to 1.0 suggest that 
the model is a good estimator.

Due to the simultaneous release 
and clearance of hormones and the un-
known timing and amplitudes of the 
secretory events, identifying the pul-
satile input to the system and the infu-
sion and clearance rates is challenging. 
Moreover, due to data collection diffi-
culties and cost, the sampling interval is 
usually relatively large (10–60 minutes) 
compared to the expected interpulse 
intervals as well as the secretion and 
clearance rates of cortisol. Hence, data 
resolution is low, making it difficult to 
identify delays and potential consecu-
tive pulses. A third obstacle is cortisol 
secretion differences in sleep and wake 
states and at different circadian times. 
Finally, there is interindividual varia-
tion, even among healthy individuals. 
In summary, the proposed algorithm 
works well, even when pulses are not 
easily identifiable, and is still applicable 
to cases in which pulses can be identi-
fied by visual inspection.

The future  
of Deconvolution research
The concept of deconvolution is pure-
ly mathematical with a relatively re-
cent incorporation in applied subjects 
and specifically in physiology, where 
the  intestinal tract appears as its first 
exploratory area. This was followed 
more steadily for use in the field of 
renography but, surprisingly, also in 
endocrinology, with many contribu-
tions and rather sophisticated pro-
cedures. Based on this development, 
we dare anticipate further news, even 
though the method still faces instabil-
ity difficulties that will no doubt call 
for researchers’ ingenuity. The simple 
matrix technique with its ill-condi-
tioned characteristics poses an insur-
mountable drawback that needs to be 
dodged by a number of computational 
tricks, because a direct approach re-
sembles trying to get through a thick, 
hard wall by sheer brute force. No 
way, but there is more than one way 
to skin a cat.

Determination of the 
number, timing, and 
amplitude of these 
hormone secretory 
events represents a 

challenging problem 
of interest. 
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Questions about possible applications 
of the procedure in other physiological 
systems, other biological areas, or even 
in the environment come up readily, and 
the systems approach may lend us a hand 
in this respect.
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