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In this note we show a one-to-one correspondence between potentially optimal solutions 
to the cluster deletion problem in a graph G and potentially optimal solutions for the 
minimum sum coloring problem in G (i.e. the complement graph of G). We apply 
this correspondence to polynomially solve the cluster deletion problem in a subclass of 
P4-sparse graphs that strictly includes P4-reducible graphs.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

A cluster graph is a graph in which every connected 
component is a clique (i.e. a complete subgraph). Clus-
ter graphs have been used in a variety of applications 
whenever clustering of objects is studied or when consis-
tent data is sought among noisy or error-prone data [1]. 
The cluster deletion problem asks for the minimum num-
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ber of edges that can be removed from an input graph 
to make the resulting graph a cluster graph. There exist 
several results for the cluster deletion problem (see for ex-
ample [3,14,12] and references therein). The cluster dele-
tion problem is known to be NP-complete [14]. Recently, 
Gao et al. [6] have shown that the greedy algorithm that 
finds iteratively maximum cliques, gives an optimal solu-
tion for the class of graphs known as cographs. It implies 
that the cluster deletion problem is polynomial-time solv-
able on cographs.

A vertex coloring of a graph is an assignment of posi-
tive integers to the vertices of the graph such that adjacent 
vertices receive different integers. The sum of a vertex col-
oring of a graph is the sum of the integers assigned to the 
vertices. The minimum sum coloring problem asks for the 
smallest sum that can be achieved by any vertex coloring 
of an input graph. The minimum sum coloring problem is 
motivated by applications in scheduling [2,7] and VLSI de-
sign [15]. In [13] it is shown that the problem is NP-hard 
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in general, but polynomial time solvable for trees. The dy-
namic programming algorithm for trees can be extended 
to partial k-trees, block graphs and cographs [8]. Recently, 
Bonomo and Valencia-Pabon [4,5] have shown that the 
minimum sum coloring problem can be solved in polyno-
mial time on a wide subclass of P4-sparse graphs.

A graph is P4-sparse if every 5-vertex subset contains 
at most one P4. The family of P4-sparse graphs generalize 
the family of cographs (i.e. P4-free graphs) and they can 
be recognized in linear time [10].

If G1 and G2 are two vertex disjoint graphs, then their 
union G1 ∪ G2 is the graph with vertex set V (G1 ∪ G2) =
V (G1) ∪ V (G2) and edge set E(G1 ∪ G2) = E(G1) ∪ E(G2). 
Similarly, their join G1 ∨G2 is the graph with V (G1 ∨G2) =
V (G1) ∪ V (G2) and E(G1 ∨ G2) = E(G1) ∪ E(G2) ∪ {(x, y) :
x ∈ V (G1), y ∈ V (G2)}.

A spider is a graph whose vertex set can be partitioned 
into S , C and R , where S = {s1, . . . , sk} (k ≥ 2) is an in-
dependent set; C = {c1, . . . , ck} is a complete set; si is 
adjacent to c j if and only if i = j (a thin spider), or si is 
adjacent to c j if and only if i �= j (a thick spider); R is al-
lowed to be empty and if it is not, then all the vertices in 
R are adjacent to all the vertices in C and non-adjacent 
to all the vertices in S . Clearly, the complement of a thin 
spider is a thick spider, and vice-versa. The triple (S, C, R)

is called the spider partition, and can be found in linear 
time [10]. The sets S , C and R are called the legs, body
and head of the spider, respectively. The size of the spider 
will be |C |. P4-sparse graphs have a nice decomposition 
theorem as follows.

Theorem 1.1. (See [11].) If G is a non-trivial P4-sparse graph, 
then either G or G is not connected, or G is a spider.

To each P4-sparse graph G one can associate a cor-
responding decomposition rooted tree T in the following 
way. Each non-leaf node in the tree is labeled with ei-
ther “∪” (union-nodes), or “∨” (join-nodes) or “SP” (spider-
partition-nodes), and each leaf is labeled with a vertex 
of G . Each non-leaf node has two or more children. Let Tx
be the subtree of T rooted at node x and let V x be the set 
of vertices corresponding to the leaves in Tx . Then, each 
node x of the tree corresponds to the graph Gx = (V x, Ex). 
A union-node (join-node) corresponds to the disjoint union 
(join) of the P4-sparse graphs associated with its children. 
A spider-partition-node corresponds to the spider with 
spider-partition (S, C, R) where G[S], G[C], and G[R] are 
its children. Finally, the P4-sparse graph associated with 
the root of the tree is just G , the P4-sparse graph repre-
sented by this decomposition tree. The decomposition tree 
associated to a P4-sparse graph can be computed in linear 
time [11].

2. Maximal sequences and optimal solutions

The following approach was used by Bonomo and 
Valencia-Pabon [4,5] in order to deal with the mini-
mum sum coloring (MSC) problem on P4-sparse graphs. 
A k-coloring of a graph G = (V , E) is a partition of the ver-
tex set V into k independent sets S1, . . . , Sk , where each 
vertex in Si is colored with color i, for 1 ≤ i ≤ k. So, for any 
such k-partition of V into independent sets, we can asso-
ciate a non-negative sequence p such that p[i] = |Si | for 
i = 1, . . . , k and p[i] = 0 for i > k. In the sequel, we deal 
with finite-support non-negative integer sequences only. 
Let |p| = max{i : p[i] > 0}.

Definition 2.1. Let p and q be two integer sequences. We 
say that p dominates q, denoted by p 	 q, if for all t ≥ 1 it 
holds that 

∑
1≤i≤t p[i] ≥ ∑

1≤i≤t q[i].

Let p be a sequence. We denote by ̃p the sequence that 
results from p when we order it in a non-increasing way. 
Clearly, p̃ 	 p.

The following lemma is the key for study the MSC prob-
lem on graphs.

Lemma 2.2. (See Lemma 3 in [5].) Let p and q be two se-
quences and let n = max{|p|, |q|}. If p 	 q and 

∑
1≤i≤n p[i] =∑

1≤i≤n q[i], then it holds that 
∑

1≤i≤n i.p[i] ≤ ∑
1≤i≤n i.q[i].

Notice that if the sequences represent partitions of the 
vertex set of a graph into independent sets, where the 
value of the i-th element of the sequence represents the 
size of the i-th independent set in the partition, then for 
the sum-coloring problem on graphs we can restrict us to 
study maximal sequences w.r.t. the partial order 	.

A similar approach has been used by Gao et al. [6]
in order to deal with the cluster deletion problem on 
cographs. In fact, notice that an optimal solution of the 
cluster deletion problem in a graph G is a partition of 
the vertex set V into cliques M1, . . . , Mt . So, for any par-
tition of V into t cliques, we can associate a sequence p
such that p[i] = |Mi | for i = 1, . . . , t and p[i] = 0 for i > t . 
Notice that if M = (|M1|, . . . , |Mt |) is an integer sequence 
associate to a partition into cliques of the set V , such that 
|M1| ≥ |M2| ≥ . . . ≥ |Mt |, then M is an integer partition of 
the integer |V |. Gao et al. [6] show the following result.

Theorem 2.3. (See Theorem 4 in [6].) Let p and q be two integer 
partitions of some positive integer n, with p �= q. If p 	 q, then 
|p| ≤ |q|, and 

∑|p|
i=1

(p[i]
2

)
>

∑|q|
i=1

(q[i]
2

)
.

By Theorem 2.3, we can also restrict us to study max-
imal sequences w.r.t. the partial order 	 in order to solve 
the cluster deletion problem on graphs. Notice also that 
maximal sequences for both problems (MSC and cluster 
deletion) are non-increasing sequences.

Clearly, there is a one-to-one correspondence between 
the maximal sequences corresponding to partitions of the 
vertex set of G into cliques and the maximal sequences 
corresponding to partitions of the vertex set of G into 
independent sets. Thus, by Theorem 2.3 and Lemma 2.2, 
there is a one-to-one correspondence between the poten-
tially optimal solutions for the cluster deletion problem of 
a graph G and the potentially optimal solutions for the 
minimum sum coloring of the complement graph G .

Nevertheless, when a graph G has more than one max-
imal sequence corresponding to partitions of its vertex set 
into cliques, the optimal solution for the cluster deletion 
problem of G and the optimal solution for the minimum 
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sum coloring of its complement G may not correspond to 
the same sequence. We will provide an example of this in 
the next section.

This suggests that the computational complexity of the 
cluster deletion problem on a graph class G and the com-
putational complexity of the minimum sum coloring prob-
lem on the class co-G (the class of complement graphs 
of graphs in G) can be different. But, to the best of our 
knowledge, there are not known examples of this be-
haviour.

3. Maximal sequences in P4-sparse graphs

The following results can be obtained directly from the 
definitions of union and join of graphs, and from the defi-
nition of a spider graph (see Section 1).

Lemma 3.1. Let G1 and G2 be graphs. Then, G1 ∪ G2 = G1 ∨ G2
and G1 ∨ G2 = G1 ∪ G2 .

Lemma 3.2. Let S P be a spider and (S, C, R) its spider parti-
tion. If S P is a thin (resp. thick) spider then, S P is a thick (resp. 
thin) spider with partition (C, S, R).

By Lemmas 3.1 and 3.2 we have that if G is a P4-sparse 
graph, then the complement graph G is also a P4-sparse 
graph. In fact, by using the tree decomposition of these 
graphs, we can deduce that union-nodes (resp. join-nodes) 
in G correspond to a join-nodes (resp. union-nodes) in G , 
and that thin spiders (resp. thick spiders) in G correspond 
to thick spiders (resp. thin spiders) in G .

The following operations between sequences were de-
fined in [4,5]: Let p and q be two sequences.

• The join of p and q, denoted by p � q, is the sequence 
that results by ordering in a non-increasing way the 
concatenation of sequences p and q.

• The sum of p and q, denoted by p + q, is the sequence 
such that its i-th value is equal to p[i] + q[i], for i ≥ 1. 
Notice that |p + q| = max{|p|, |q|}.

• p and q are non-comparable, denoted by p||q, if p � q
and q � p.

Moreover, in [4,5] the following two lemmas have been 
obtained.

Lemma 3.3. (See Lemma 4 in [5].) Let p, p′ and q be sequences. 
If ̃p 	 p̃′ then p � q 	 p′ � q.

Lemma 3.4. (See Lemma 6 in [5].) Let p, p′ and q be sequences. 
Then, p 	 p′ if and only if p + q 	 p′ + q.

In the sequel, maximal sequences of a graph G will 
correspond to potential solutions of the cluster deletion 
problem on G .

Lemma 3.5. Let G1 , G2 be two vertex disjoints graphs, and let 
G = G1 ∨ G2 . Then, every maximal sequence p of G can be ex-
pressed as p = p1 + p2 , where pi is a maximal sequence of Gi, 
for i = 1, 2.
Proof. The results follows by induction on |G|, by
Lemma 3.1 on G , and by Lemma 7 in [5] concerning maxi-
mal sequences for the minimum sum coloring of the union 
of two graphs. �
Lemma 3.6. Let G1 , G2 be two vertex disjoints graphs, and let 
G = G1 ∪ G2 . Then, every maximal sequence p of G can be ex-
pressed as p = p1 � p2 , where pi is a maximal sequence of Gi , 
for i = 1, 2.

Proof. The results follows by induction on |G|, by
Lemma 3.1 on G , and by Lemma 8 in [5] concerning max-
imal sequences for the minimum sum coloring of the join 
of two graphs. �
Lemma 3.7. Let G = (S, C, R) be a spider such that R �= ∅. 
Then, the number of maximal sequences of G is equal to the 
number of maximal sequences of G[R]. Moreover, for each max-
imal sequence q of G[R] there exists only one maximal sequence 
q′ of G with |q′| = |q| + |S| and where q′[1] = q[1] + |C |, 
q′[i] = q[i] for 2 ≤ i ≤ |q| (if |q| ≥ 2), and q′[i] = 1 for |q| +1 ≤
i ≤ |q| + |S|.

Proof. Notice that the spider G is a P4-sparse graph and 
so, G[R] (i.e. the subgraph of G induced by R) is also a 
P4-sparse graph. Then, the result follows by induction on 
|G|, by Lemma 3.2 on G , and by Lemma 11 in [5] concern-
ing maximal sequences for the minimum sum coloring of 
spiders. �
Lemma 3.8. Let G = (S, C, R) be a thick spider such that R = ∅. 
Then, G has only one maximal sequence p, with |p| = |C |, 
where p[1] = |C |, p[2] = 2, and p[i] = 1 for 3 ≤ i ≤ |C |.

Proof. The results follows by Lemma 3.2 and by Lemma 12 
in [5] concerning maximal sequences for the minimum 
sum coloring of thin spiders without head. �
Lemma 3.9. Let G = (S, C, R) be a thin spider such that 
|C | ≥ 3 and R = ∅. Then, G has only two maximal sequences p1
and p2 , with |p1| = |C | and |p2| = |C | + 1, where p1[i] = 2 for 
1 ≤ i ≤ |C |, and p2[1] = |C | and p2[i] = 1 for 2 ≤ i ≤ |C | + 1.

Proof. The results follows by Lemma 3.2 and by Lemma 13 
in [5] concerning maximal sequences for the minimum 
sum coloring of thick spiders without head. �

Notice also that the trivial graph has only one maximal 
sequence p, with |p| = 1, where p[1] = 1. Therefore, we 
have the following two theorems whose proofs are similar 
to the ones of Theorem 2 and Theorem 3 in [5], respec-
tively.

Theorem 3.10. Let G be a P4-sparse graph such that in its 
modular decomposition there are no thin spiders (S, C, R) with 
|C | ≥ 3 and R = ∅. Then,

1. G has a unique maximal sequence and an optimal solution 
for the cluster deletion problem of G can be computed from 
its modular decomposition in polynomial time.
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2. In such an optimal solution, each Mi is a maximum clique 
of G \ ⋃

1≤ j<i M j .

Theorem 3.11. Let G be a P4-sparse graph on n vertices. Let t be 
the number of thin spiders (S, C, R) with |C | ≥ 3 and R = ∅ in 
the modular decomposition of G. Then, the number of maximal 
sequences of G is at most 2t , and an optimal solution for the 
cluster deletion problem of G can be computed in 2t P (n) time, 
where P (n) is a polynomial in n.

Notice that a cograph is a P4-sparse graph without 
spiders. Moreover, P4-sparse graphs having only spiders 
whose spider partition (S, C, R) is of size equal to 2 (i.e. 
|S| = |C | = 2) are known as P4-reducible graphs. The 
class of P4-reducible graphs was introduced by Jamison 
and Olariu [9] as a generalization of cographs: a graph is 
P4-reducible if every vertex belongs to at most one P4. Fi-
nally, notice that thin spiders with size 2 are isomorphic to 
thick spiders with size 2. Therefore, by Theorem 3.10, we 
have the following corollary which generalizes the result 
by Gao et al. [6].

Corollary 3.12. Let G be a P4-reducible graph. Then,

1. G has a unique maximal sequence and an optimal solution 
for the cluster deletion problem of G can be computed from 
its modular decomposition in polynomial time.

2. In such an optimal solution, each Mi is a maximum clique 
of G \ ⋃

1≤ j<i M j .

Finally, we provide an example of a P4-sparse graph G
having more than one maximal sequence and such that the 
optimal solution for the cluster deletion problem of G and 
the optimal solution for the minimum sum coloring of its 
complement G do not correspond to the same sequence.

Let N3 be a thin spider of size 3 with no head (also 
known as net), and let G = (N3 ∪ N3) ∨ (K1 ∪ K1). By the 
theorems above, G has three different maximal sequences, 
namely p1 = [3, 3, 2, 2, 2, 2], p2 = [4, 3, 2, 2, 1, 1, 1], and 
p3 = [4, 4, 1, 1, 1, 1, 1, 1]. The internal edges in the parti-
tion into cliques induced by each maximal sequence are, 
respectively, 10, 11 and 12. So, the number of removed 
edges are, respectively, 26, 25 and 24, being p3 the se-
quence realizing the optimal solution. As for G , the sums 
of the colorings induced by each maximal sequence are, 
respectively, 45, 42 and 45, being in this case p2 the se-
quence realizing the optimal solution.

References

[1] N. Bansal, A. Blum, S. Chawla, Correlation clustering, Mach. Learn. 
56 (1–3) (2004) 89–113.

[2] A. Bar-Noy, M. Bellare, M.M. Halldórsson, H. Shachnai, T. Tamir, On 
chromatic sums and distributed resource allocation, Inf. Comput. 140 
(1998) 183–202.

[3] S. Böcker, P. Damaschke, Even faster parametrized cluster deletion 
and cluster editing, Inf. Process. Lett. 111 (2011) 717–721.

[4] F. Bonomo, M. Valencia-Pabon, Minimum sum coloring of P4-sparse 
graphs, Electron. Notes Discrete Math. 35 (2009) 293–298.

[5] F. Bonomo, M. Valencia-Pabon, On the minimum sum coloring of 
P4-sparse graphs, Graphs Comb. 30 (2) (2014) 303–314.

[6] Y. Gao, D.R. Hare, J. Nastos, The cluster deletion problem for 
cographs, Discrete Math. 313 (2013) 2763–2771.

[7] M.M. Halldórsson, G. Kortsarz, H. Shachnai, Sum coloring interval and 
k-claw free graphs with application to scheduling dependent jobs, 
Algorithmica 37 (2003) 187–209.

[8] K. Jansen, Complexity results for the optimum cost chromatic par-
tition problem, in: Proc. 24th ICALP, in: Lect. Notes Comput. Sci., 
vol. 1256, 1997, pp. 727–737.

[9] B. Jamison, S. Olariu, P4-reducible graphs – a class of uniquely tree-
representable graphs, Discrete Math. 51 (1984) 35–39.

[10] B. Jamison, S. Olariu, Recognizing P4-sparse graphs in linear time, 
SIAM J. Comput. 21 (1992) 381–406.

[11] B. Jamison, S. Olariu, A tree representation for P4-sparse graphs, Dis-
crete Appl. Math. 35 (1992) 115–129.

[12] C. Komusiewicz, J. Uhlmann, Cluster editing with locally bounded 
modifications, Discrete Appl. Math. 160 (15) (2012) 2259–2270.

[13] E. Kubicka, A.J. Schwenk, An introduction to chromatic sums, in: Proc. 
17th ACM Annual Computer Science Conference, 1989, pp. 39–45.

[14] R. Shamir, R. Sharan, D. Tsur, Cluster graph modification problems, 
Discrete Appl. Math. 144 (1–2) (2004) 173–182.

[15] T. Szkaliczki, Routing with minimum wire length in the dogleg-
free Manhattan model is NP-complete, SIAM J. Comput. 29 (1999) 
274–287.

http://refhub.elsevier.com/S0020-0190(15)00024-1/bib42616E73616C3034s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib42616E73616C3034s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib6261726E6F7939386368726F6D61746963s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib6261726E6F7939386368726F6D61746963s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib6261726E6F7939386368726F6D61746963s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib426F636B65723131s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib426F636B65723131s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib42563039s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib42563039s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib42563134s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib42563134s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib47616F3133s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib47616F3133s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib484B533033s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib484B533033s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib484B533033s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib4A616E73656E3937s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib4A616E73656E3937s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib4A616E73656E3937s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib4A2D4F2D5034726564756369626C65s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib4A2D4F2D5034726564756369626C65s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib4A2D4F2D5034737061727365s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib4A2D4F2D5034737061727365s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib4A2D4F2D503473706172736532s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib4A2D4F2D503473706172736532s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib4B6F6D757369657769637A3132s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib4B6F6D757369657769637A3132s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib4B75623839s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib4B75623839s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib5368616D69723034s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib5368616D69723034s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib537A3939s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib537A3939s1
http://refhub.elsevier.com/S0020-0190(15)00024-1/bib537A3939s1

	A one-to-one correspondence between potential solutions of the cluster deletion problem and the minimum sum coloring problem, and its application to P4-sparse graphs
	1 Introduction
	2 Maximal sequences and optimal solutions
	3 Maximal sequences in P4-sparse graphs
	References


