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Lower bounds for norms of products of polynomials
on Lp spaces
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and Jorge Tomás Rodríguez (Buenos Aires)

Abstract. For 1 < p < 2 we obtain sharp lower bounds for the uniform norm of
products of homogeneous polynomials on Lp(µ), whenever the number of factors is no
greater than the dimension of these Banach spaces (a condition readily satisfied in infinite-
dimensional settings). The result also holds for the Schatten classes Sp. For p > 2 we
present some estimates on the constants involved.

1. Introduction. This work is framed in what is sometimes called the
factor problem for homogeneous polynomials. Given homogeneous polyno-
mials P1, . . . , Pn defined on (CN , ‖ · ‖p), our aim is to find the best constant
M such that

(1.1) ‖P1 · · ·Pn‖ ≥M‖P1‖ · · · ‖Pn‖.
The constant will necessarily depend on p and on the degrees of the poly-
nomials, but not on the number N of variables. And, of course, we must set
what the norm of a polynomial is.

Recall that a mapping P : X → C is a (continuous) k-homogeneous
polynomial if there exists a (continuous) k-linear map T : X × · · · ×X → C
such that P (x) = T (x, . . . , x) for all x ∈ X. The space of continuous k-
homogeneous polynomials on a Banach space X is denoted by P(kX). It is
a Banach space under the uniform norm

‖P‖P(kX) = sup
‖z‖X=1

|P (z)|.

With this norm, inequality (1.1) was studied for polynomials defined on
finite- and infinite-dimensional Banach spaces. For instance R. Ryan and
B. Turett [RT] gave bounds for the special case where the polynomials
{Pi}ni=1 are actually continuous linear forms on X. Moreover, C. Benítez,
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Y. Sarantopoulos and A. Tonge [BST] proved that if Pi has degree ki for
1 ≤ i ≤ n, then inequality (1.1) holds with constant

M =
kk11 · · · kknn

(k1 + · · ·+ kn)k1+···+kn

for any complex Banach space. The authors also showed that this is the
best universal constant, since there are polynomials on `1 for which equality
prevails. However, for many spaces it is possible to improve this bound. For
instance, for complex Hilbert spaces, the second named author proved in [P]
that the optimal constant is

(1.2) M =

√
kk11 · · · k

kn
n

(k1 + · · ·+ kn)k1+···+kn
.

In this work we establish the best constant for complex Lp(Ω, µ) spaces
whenever 1 < p < 2. We show that in this case inequality (1.1) holds with
constant

(1.3) M =
p

√
kk11 · · · k

kn
n

(k1 + · · ·+ kn)k1+···+kn
.

The constant is optimal provided the spaces involved have dimension at
least n. This constant also works (and is optimal) for polynomials on the
Schatten classes Sp. For the remaining values of p, we obtain some estimates
of the optimal constants.

For the sake of simplicity, we first consider the finite-dimensional situ-
ation (Section 2). Then we show in Section 3 how to adapt the ideas to
handle the infinite-dimensional Lp spaces and Schatten classes. In Section 4
we address the case p > 2.

2. The finite-dimensional setting. We begin with some definitions. If
E and F are isomorphic Banach spaces, their Banach–Mazur distance (see,
for example, [Pi, Chapter 1] or [T]) is defined as

d(E,F ) = inf{‖u‖ ‖u−1‖ | u : E → F an isomorphism}.

Given a Banach space X and n ∈ N, we define

Dn(X) := sup{d(E, `n2 ) : E a subspace of X with dimE = n}.

From Corollary 5 in [L], we obtain

(2.1) Dn(Lp(Ω,µ)) ≤ n|1/p−1/2|

whenever Lp(Ω,µ) has dimension at least n.
The proof of the following lemma is inspired by Proposition 1 in [RS].
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Lemma 2.1. Let X be a Banach space and let P1, . . . , Pn : X → C be
homogeneous polynomials of degrees k1, . . . , kn respectively. Then

‖P1 · · ·Pn‖P(kX) ≥

√∏n
i=1 k

ki
i

kk
Dn(X)−k‖P1‖P(k1X) · · · ‖Pn‖P(knX),

where k =
∑n

i=1 ki.

Proof. Given ε > 0, we can take a set {x1, . . . , xn} ⊂ X of norm one
vectors such that |Pj(xj)| > (1− ε)‖Pj‖P(kjX)

for 1 ≤ j ≤ n. Let E ⊂ X be
any n-dimensional subspace containing {x1, . . . , xn} and let T : `n2 → E be
a norm one isomorphism with ‖T−1‖ ≤ Dn(X). We have

‖P1 · · ·Pn‖P(kX) ≥ ‖P1 · · ·Pn‖P(kE) ≥ ‖(P1 ◦ T ) · · · (Pn ◦ T )‖P(k`n2 )

(a)

≥

√
kk11 · · · k

kn
n

kk
‖(P1 ◦ T )‖P(k1`n2 ) · · · ‖(Pn ◦ T )‖P(kn`n2 )

≥

√
kk11 · · · k

kn
n

kk

1

‖T−1‖k
‖P1‖P(k1E) · · · ‖Pn‖P(knE)

>

√
kk11 · · · k

kn
n

kk
Dn(X)−k(1− ε)n‖P1‖P(k1X) · · · ‖Pn‖P(knX),

where (a) follows from (1.2).

Remark 2.2. If we restrict ourselves to Lp(Ω,µ) spaces and polynomials
with the same degree, we can combine Lemma 2.1 with Lewis’ result (2.1) to
obtain

(2.2) ‖P1 · · ·Pn‖P(knLp(Ω,µ)) ≥
1

nnk/p
‖P1‖P(kLp(Ω,µ)) · · · ‖Pn‖P(kLp(Ω,µ))

for 1 ≤ p ≤ 2. For 2 ≤ p ≤ ∞ we have

‖P1 · · ·Pn‖P(knLp(Ω,µ)) ≥
1

nnk/q
‖P1‖P(kLp(Ω,µ)) · · · ‖Pn‖P(kLp(Ω,µ)),

where q is the conjugate exponent of p.

Note that (2.2) is precisely (1.1) with the constant M given in (1.3). In
order to extend this result to the general case when the polynomials have
arbitrary degrees, it is convenient to consider another particular case. We
will say that P,Q : `Np → C depend on different variables if one can find
disjoint subsets I, J ⊂ {1, . . . , N} such that

P
( N∑
i=1

aiei

)
= P

(∑
i∈I

aiei

)
and Q

( N∑
i=1

aiei

)
= Q

(∑
i∈J

aiei

)
,

for all {ai}Ni=1 ⊂ C.
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For polynomials depending on different variables, (1.1) becomes an equal-
ity when M is given by (1.3), as the following lemma shows.

Lemma 2.3. Let {Pi}ni=1 be homogeneous polynomials of degrees {ki}ni=1

on `Np , depending on different variables. Write k = k1 + · · ·+ kn. Then

‖P1 · · ·Pn‖P(k`Np ) =
p

√∏n
i=1 k

ki
i

kk
‖P1‖P(k1`Np ) · · · ‖Pn‖P(kn`Np ).

Proof. First, we prove the equality for two polynomials P and Q of de-
grees k and l. We may suppose that P depends on the first r variables and
Q on the last N − r ones. Given z ∈ `Np , we can write z = x + y, where x
and y are the projections of z on the first r and the last N − r coordinates
respectively. We then have

|P (z)Q(z)| = |P (x)Q(y)| ≤ ‖P‖P(k`Np )‖Q‖P(l`Np )‖x‖kp‖y‖lp.

Since ‖z‖pp = ‖x‖pp + ‖y‖pp, we can estimate the norm of PQ as follows:

‖PQ‖P(k+l`Np ) = sup
‖z‖p=1

|P (z)Q(z)| ≤ sup
|a|p+|b|p=1

|a|k|b|l‖P‖P(k`Np )‖Q‖P(l`Np )

= p

√
kkll

(k + l)k+l
‖P‖P(k`Np )‖Q‖P(l`Np ),

the last equality being a simple application of Lagrange multipliers. In order
to see that this inequality is actually an equality, take norm one vectors x0
and y0 at which P and Q respectively attain their norms, each with nonzero
entries only in the coordinates on which the corresponding polynomial de-
pends. If we define

z0 = p

√
k

k + l
x0 + p

√
l

k + l
y0,

then z0 is a norm one vector which satisfies

|P (z0)Q(z0)| = p

√
kkll

(k + l)k+l
‖P‖P(k`Np )‖Q‖P(l`Np ).

We prove the general statement by induction on n. We assume the result
is valid for n− 1 polynomials and we know that it is valid for two. We omit
the subscripts in the norms of the polynomials to simplify the notation. We
then have ∥∥∥ n∏

i=1

Pi

∥∥∥ =
p

√
kknn (

∑n−1
i=1 ki)

∑n−1
i=1 ki

(
∑n

i=1 ki)
∑n
i=1 ki

∥∥∥n−1∏
i=1

Pi

∥∥∥‖Pn‖
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=
p

√
kknn (

∑n−1
i=1 ki)

∑n−1
i=1 ki

(
∑n

i=1 ki)
∑n
i=1 ki

p

√√√√ ∏n−1
i=1 k

ki
i

(
∑n−1

i=1 ki)
∑n−1
i=1 ki

(n−1∏
i=1

‖Pi‖
)
‖Pn‖

= p

√ ∏n
i=1 k

ki
i

(
∑n

i=1 ki)
∑n
i=1 ki

n∏
i=1

‖Pi‖.

Now we are ready to prove our main result.

Theorem 2.4. Let {Pi}ni=1 be homogeneous polynomials of degrees
{ki}ni=1 on `Np , 1 ≤ p ≤ 2. Write k = k1 + · · ·+ kn. Then

(2.3) ‖P1 · · ·Pn‖P(k`Np ) ≥
p

√∏n
i=1 k

ki
i

kk
‖P1‖P(k1`Np ) · · · ‖Pn‖P(kn`Np ).

The constant is optimal provided that N ≥ n.

Proof. We first prove the inequality for two homogeneous polynomials P
and Q of degrees k and l. If k = l, the result follows from Remark 2.2. Now
suppose k > l. Moving to `N+1

p if necessary, we take a norm one polynomial
S of degree d = k− l, depending on different variables than the polynomials
P and Q. An example of such a polynomial is (e′N+1)

d. In the following, we
identify `Np with a subspace of `N+1

p in the natural way. We use Lemma 2.3
for (a) and (b) below, and inequality (2.2) for (c), to obtain

‖PQ‖P(k+l`Np ) = ‖PQ‖P(k+l`N+1
p )‖S‖P(d`N+1

p )

(a)
= p

√
((k + l) + d)(k+l)+d

(k + l)k+ldd
‖PQS‖P(2k`N+1

p )

(b)

≥ p

√
((k + l) + d)(k+l)+d

(k + l)k+ldd
1

4k/p
‖P‖P(k`N+1

p )‖QS‖P(k`N+1
p )

(c)
= p

√
(2k)2k

(k + l)k+ldd4k
p

√
lldd

kk
‖P‖P(k`N+1

p )‖Q‖P(l`N+1
p )‖S‖P(d`N+1

p )

= p

√
kkll

(k + l)k+l
‖P‖P(k`Np )‖Q‖P(l`Np ).

The proof of the general case continues by induction on n as in the previous
lemma.

To see that the constant is optimal whenever N ≥ n, consider for each
i = 1, . . . , n the polynomial Pi = (e′i)

ki . From Lemma 2.3 we obtain equality
in (2.3).

Theorem 2.4 also holds for polynomials on `p. This is a consequence of
the following: if P ∈ P(k`p) then
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‖P‖P(k`p) = lim
N→∞

‖P ◦ iN‖P(k`Np )

where iN is the canonical inclusion of `Np in `p. The proof of this fact is rather
standard. Anyway, in the next section we will show that Theorem 2.4 holds
for Lp(µ) spaces, which covers `p as a particular case.

3. Lp spaces and Schatten classes. In this section we show that
the results obtained for `p can be extended to Lp(Ω,µ) spaces and to the
Schatten classes Sp for 1 ≤ p ≤ 2. We will sometimes omit parts of the proofs
which are very similar to those in the previous section.

Let (Ω,µ) be a measure space. From now on, the notation

Ω = A1 t · · · tAn
will mean that Ω as the union of measurable subsets {Ai}1≤i≤n such that
µ(Ai) > 0 for 1 ≤ i ≤ n, and µ(Ai ∩ Aj) = 0 for all 1 ≤ i < j ≤ n. The
following lemma is the analogue to Lemma 2.3 for Lp spaces.

Lemma 3.1. Let P,Q : Lp(Ω,µ) → C be homogeneous polynomials of
degrees k and l respectively. Suppose that Ω = A1 tA2, and that

P (f) = P (fχA1) and Q(f) = Q(fχA2)

for all f ∈ Lp(Ω,µ). Then

‖PQ‖P(k+lLp(Ω,µ)) = p

√
kkll

(k + l)k+l
‖P‖P(kLp(Ω,µ))‖Q‖P(lLp(Ω,µ)).

Proof. Given f ∈ Lp(Ω,µ) we write f = fχA1 + fχA2 and then

|P (f)Q(f)| = |P (fχA1)Q(fχA2)|
≤ ‖P‖P(kLp(Ω,µ))‖Q‖P(lLp(Ω,µ))‖fχA1‖kp ‖fχA2‖lp.

Given ε > 0, we can take norm one functions f0, g0 ∈ Lp(Ω,µ) such that

|P (f0)| > ‖P‖P(kLp(Ω,µ)) − ε and |Q(g0)| > ‖Q‖P(kLp(Ω,µ)) − ε.

By the hypotheses on P and Q we may assume that f0 = f0χA1 and
g0 = g0χA2 . We clearly have∥∥∥∥ p

√
k

k + l
f0 + p

√
l

k + l
g0

∥∥∥∥
p

= 1.

Now we can, modulo ε, proceed as in the proof of Lemma 2.3, and then let
ε go to zero to obtain the desired result.

Combining this lemma with the fact that Dn(Lp(µ)) ≤ n|1/p−1/2| we
obtain the next result.
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Theorem 3.2. Let {Pi}ni=1 be homogeneous polynomials of degrees
{ki}ni=1. Write k = k1 + · · ·+ kn. Then

‖P1 · · ·Pn‖P(kLp(Ω,µ)) ≥
p

√∏n
i=1 k

ki
i

kk
‖P1‖P(k1Lp(Ω,µ)) · · · ‖Pn‖P(knLp(Ω,µ)).

If Ω admits a decomposition Ω = A1t· · ·tAn, then the constant is optimal.

Proof. We prove the result for two polynomials. Let P and Q be homo-
geneous polynomials of degrees k and l. If k = l, the result follows from
Remark 2.2.

Now assume k > l and define an auxiliary measure space (Ω′, µ′) by
adding an additional point {c} to Ω. The measure µ′ in Ω′ is given by
µ′(U) = µ(U) if U ⊆ Ω, and µ′(U) = µ(U ∩ Ω) + 1 whenever c ∈ U . It is
clear that Ω′ = Ω t {c}.

Consider the polynomials P ′, Q′ and S of degree k, l and d = k − l
respectively, defined on Lp(Ω′, µ′) by P ′(f) = P (f |Ω), Q′(f) = Q(f |Ω) and
S(f) = (f(c))d. Observe that ‖S‖P(dLp(Ω′,µ′)) = 1. The polynomials P ′Q′
and S satisfy the conditions of Lemma 3.1. Proceeding as in the proof of
Theorem 2.4, we have

‖PQ‖P(k+lLp(Ω,µ)) = ‖P ′Q′‖P(k+lLp(Ω′,µ′))‖S‖P(dLp(Ω′,µ′))

= p

√
((k + l) + d)(k+l)+d

(k + l)k+ldd
‖P ′Q′S‖P(2kLp(Ω′,µ′))

≥ p

√
((k + l) + d)(k+l)+d

(k + l)k+ldd
1

4k/p
‖P ′‖P(kLp(Ω′,µ′))‖Q

′S‖P(kLp(Ω′,µ′))

= p

√
kkll

(k + l)k+l
‖P ′‖P(kLp(Ω′,µ′))‖Q

′‖P(lLp(Ω′,µ′))‖S‖P(dLp(Ω′,µ′))

= p

√
kkll

(k + l)k+l
‖P‖P(kLp(Ω,µ))‖Q‖P(lLp(Ω,µ)).

The general case follows by induction exactly as in the proof of Lemma 2.3,
and the optimality of the constant is analogous to that of Theorem 2.4.

Now we show how the previous proofs can be adapted to obtain the
corresponding results for the Schatten classes. Let {Pi}ni=1 be k-homogeneous
polynomials on Sp = Sp(H), the p-Schatten class of operators on the Hilbert
space H. In Corollary 2.10 of [T], Tomczak-Jaegermann proved that

Dn(Sp) ≤ n|1/p−1/2|.

Hence, by Lemma 2.1, we have
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‖P1 · · ·Pn‖P(nkSp(H)) ≥
1

nnk/p
‖P1‖P(kSp(H)) · · · ‖Pn‖P(kSp(H)).

Suppose that H = H1 ⊕ H2 (an orthogonal sum) and let π1, π2 : H → H
be the orthogonal projections onto H1 and H2 respectively. If homogeneous
polynomials P,Q : Sp(H)→ C satisfy

P (s) = P (π1 ◦ s ◦ π1) and Q(s) = Q(π2 ◦ s ◦ π2),
for all s ∈ Sp, we can think of P and Q as depending on different variables.
Moreover, for each s ∈ Sp(H), it is rather standard that

(3.1) ‖π1 ◦ s ◦ π1‖pSp + ‖π2 ◦ s ◦ π2‖pSp = ‖π1 ◦ s ◦ π1 + π2 ◦ s ◦ π2‖pSp .
Also, we have

π1 ◦ s ◦ π1 + π2 ◦ s ◦ π2 = 1
2

(
s+ (π1 − π2) ◦ s ◦ (π1 − π2)

)
.

By the ideal property of Schatten norms, the last operator has norm (in Sp)
not greater than ‖s‖Sp , so that

(3.2) ‖π1 ◦ s ◦ π1‖pSp + ‖π2 ◦ s ◦ π2‖pSp ≤ ‖s‖
p
Sp .

Now, with (3.1) and (3.2) at hand, we can follow the proof of Lemma 2.3 to
obtain the analogous result for Schatten classes.

Finally, the trick of adding a variable in Theorem 2.4 or a singleton in
Theorem 3.2 can be performed for Schatten classes by just taking the orthog-
onal sum of H with a (one-dimensional) Hilbert space. As a consequence,
mimicking the proof of Theorem 2.4 we obtain the following.

Theorem 3.3. Let P1, . . . , Pn be polynomials of degrees k1, . . . , kn re-
spectively on Sp(H) with 1 ≤ p ≤ 2. Write k = k1 + · · ·+ kn. Then

‖P1 · · ·Pn‖P(kSp(H)) ≥
p

√∏n
i=1 k

ki
i

kk
‖P1‖P(k1Sp(H)) · · · ‖Pn‖P(knSp(H)).

The constant is optimal provided that dim(H) ≥ n.

4. Remarks on the case p > 2. We end this note with some comments
on the constant for p > 2. If X is a Banach space, let M(X, k1, . . . , kn) be
the largest value of M such that

‖P1 · · ·Pn‖P(kX) ≥M‖P1‖P(k1X) · · · ‖Pn‖P(knX)

for any set of homogeneous polynomials P1, . . . , Pn onX of degrees k1, . . . , kn
respectively. From [BST], [P] and Theorem 2.4 we know that

M(`Np , k1, . . . , kn) =
p

√∏n
i=1 k

ki
i

kk
,

provided that 1 ≤ p ≤ 2 and N ≥ n. In [RS, Proposition 8], the authors
show that the best constant for products of linear functionals on an infinite-
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dimensional Banach space is worse than the corresponding one for Hilbert
spaces. In our notation, they show that

M(`2, 1, . . . , 1) ≥M(X, 1, . . . , 1)

for every infinite-dimensional Banach space X. Our next theorem, together
with Theorems 2.4 and 3.2, shows that the same holds for products of ho-
mogeneous polynomials in `Np and Lp spaces, provided that the dimension
is greater than or equal to the number of factors. That is, the constant for
Hilbert spaces is better than the constant for any other Lp space for homo-
geneous polynomials of any degree, even in the finite-dimensional setting.

Theorem 4.1. For N ≥ n and 2 ≤ p ≤ ∞, we have

M(`N2 , k1, . . . , kn) ≥M(`Np , k1, . . . , kn)

≥ (nk1+···+kn)1/p−1/2M(`N2 , k1, . . . , kn).

The same holds for Lp(Ω,µ) whenever Ω admits a decomposition as in The-
orem 3.2.

Proof. The second inequality is a direct consequence of Lemma 2.1, so
let us show the first one. Consider the linear forms on `Np defined by the
vectors

gj =
(
1, e

2πij
N , e

2πi2j
N , . . . , e

2πi(N−1)j
N

)
for j = 1, . . . , n.

These are orthogonal vectors in `N2 . We can choose an orthogonal coordinate
system such that the gi’s depend on different variables (we are in `N2 ). So
by Lemma 2.3, inequality (1.1) is an equality with the constant for Hilbert
spaces given in (1.2):

M(`N2 , k1, . . . , kn)‖gk11 ‖P(k1`N2 ) · · · ‖g
kn
n ‖P(kn`N2 ) = ‖gk11 · · · g

kn
n ‖P(k`N2 ).

For products of orthogonal linear forms this equality was observed in [A] and
for the general case (with arbitrary powers) in Remark 4.2 of [P].

On the other hand, we have

‖gkjj ‖P(kj `N2 )
= (N1/2)kj and ‖gkjl ‖P(kj `Np )

= (N1−1/p)kj .

Combining all this we obtain

M(`N2 , k1, . . . , kn) =
‖gk11 · · · gknn ‖P(k`N2 )

‖gk11 ‖P(k1`N2 ) · · · ‖g
kn
n ‖P(kn`N2 )

=
‖gk11 · · · gknn ‖P(k`N2 )

(N1/p−1/2)k1‖gk11 ‖P(k1`Np ) · · · (N1/p−1/2)kn‖gknn ‖P(kn`Np )

≥
‖gk11 · · · gknn ‖P(k`Np )N

(1/p−1/2)k

(N1/p−1/2)k1‖gk11 ‖P(k1`Np ) · · · (N1/p−1/2)kn‖gknn ‖P(kn`Np )
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=
‖gk11 · · · gknn ‖P(k`Np )

‖gk11 ‖P(k1`Np ) · · · ‖g
kn
n ‖P(kn`Np )

≥M(`Np , k1, . . . , kn).

This shows the statement for `Np . Since the space Lp(Ω,µ), with our
assumptions on Ω, contains a 1-complemented copy of `np , the statement for
Lp(Ω,µ) readily follows.
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