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Introduction

This article deals with the use of the generalized

inverted Wishart (GIW) distribution for tackling the

problem of estimating genetic covariance matrices

under a conjugated Bayesian approach. The GIW

distribution was originally introduced by Brown et al.

(1994) in the context of risk assessment of air pollu-

tion (cf. Le & Zidek 2006), and it is essentially an

extension of the inverted Wishart (IW) distribution

with a larger set of distinct parameters, a feature that

confers upon the density a great flexibility. In

particular, the GIW distribution arises as a natural

specification for the prior covariance structure of
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Summary

Consider the estimation of genetic (co)variance components from a

maternal animal model (MAM) using a conjugated Bayesian approach.

Usually, more uncertainty is expected a priori on the value of the

maternal additive variance than on the value of the direct additive vari-

ance. However, it is not possible to model such differential uncertainty

when assuming an inverted Wishart (IW) distribution for the genetic

covariance matrix. Instead, consider the use of a generalized inverted

Wishart (GIW) distribution. The GIW is essentially an extension of the

IW distribution with a larger set of distinct parameters. In this study, the

GIW distribution in its full generality is introduced and theoretical

results regarding its use as the prior distribution for the genetic covari-

ance matrix of the MAM are derived. In particular, we prove that the

conditional conjugacy property holds so that parameter estimation can

be accomplished via the Gibbs sampler. A sampling algorithm is also

sketched. Furthermore, we describe how to specify the hyperparameters

to account for differential prior opinion on the (co)variance compo-

nents. A recursive strategy to elicit these parameters is then presented

and tested using field records and simulated data. The procedure

returned accurate estimates and reduced standard errors when com-

pared with non-informative prior settings while improving the conver-

gence rates. In general, faster convergence was always observed when a

stronger weight was placed on the prior distributions. However, analyses

based on the IW distribution have also produced biased estimates when

the prior means were set to over-dispersed values.
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multivariate Gaussian data with a monotone pattern

of missing values (Garthwaite & Al-Awadhi 2001).

In connection with this, it is argued that the distri-

bution could also be used to specify a more flexible

prior genetic covariance structure in the context of

the statistical models used by animal breeders, in par-

ticular when differential information is available for

the estimation of distinct scalar components. Take,

for instance, the maternal animal model (MAM),

where usually more uncertainty (less information) is

expected on the estimated maternal additive variance

or maternal heritability than on the direct additive

variance or direct heritability. In such case, the ana-

lyst would reasonably tend to favour a different prior

specification to represent this differential uncertainty.

The objective of this research is threefold. First, the

GIW distribution will be formally introduced in its

full generality. Next, we present theoretical results

regarding the use of the GIW as the prior distribution

for the genetic covariance matrix of the MAM under

a hierarchical Bayesian analysis. Finally, we describe

a Bayesian updating approach to elicit prior parame-

ters, taking advantage of the properties of the GIW

distribution, and further estimate genetic parameters

using both field weaning weight records and simu-

lated data. Results are later compared with more

standard prior specifications, focusing on the accu-

racy of the estimates, their standard errors and the

convergence behaviour of the Markov chains.

Methods

The generalized inverted Wishart distribution

Let y1 ,…, yn be a sample of g-dimensional data vec-

tors and define Y ¼ y1; . . . ; yn

� �0
. Consider now a

Gaussian matrix-variate distribution for the random

matrix Y (n · g) thus formed, such that

vecðYÞjR � N 0;R� Að Þ; ð1Þ

where vec �ð Þ denotes the vec operator (Searle 1982,

ch. 12.9), A is a (n · n) known symmetric matrix

and R is a random (g · g) covariance matrix subject

to a hierarchical structure. Under this setting, the

latter is usually assumed to follow an IW distribution

a priori, i.e. R � IW d;Wð Þ. In this respect, note that

while the symmetric positive definite matrix W pro-

vides a full set of complementary hyperparameters

to assess the prior expectation, the uncertainty

attached to it is governed by a single scalar parame-

ter, d (Brown 2002). Instead, a more flexible

approach can be obtained through the Bartlett

decomposition (Bartlett 1933) of R.

Consider first a partition of the covariance matrix

in 2 · 2 blocks,

R ¼ R11 R12

R21 R22

� �
: ð2Þ

The Bartlett decomposition of R is such that

R ¼ TDT 0, with

D ¼ R11 0
0 R22 � R21R

�1
11 R12

� �
and T ¼ I 0

R21R
�1
11 I

� �
:

ð3Þ

Denote s � R21R
�1
11 and C � R22 � R21R

�1
11 R12.

Then, the decomposition could be regarded as a one-

to-one transformation of the covariance matrix

R! R11; s;Cð Þ, such that

R ¼ R11 R11s
0

sR11 Cþ sR11s
0

� �
: ð4Þ

In the more general case of multiple blocks, the

decomposition could be applied recursively. How-

ever, before proceeding further, we need to establish

some notation. Throughout the article, we will adopt

the one by Le et al. (1999).

Let R be arbitrarily partitioned as having k · k

blocks,

R ¼
R1;1 � � � R1;k

..

. . .
. ..

.

Rk;1 � � � Rk;k

2
64

3
75; ð5Þ

with Ri;l having dimensions gi · gl, such that

g1 + � � � + gk = g. Now, denote the leading principal

submatrix up to the jth block as R 1;...;j½ �. That is,

R 1;...;j½ � ¼
R1;1 � � � R1;j

..

. . .
. ..

.

Rj;1 � � � Rj;j

2
64

3
75: ð6Þ

Further, let R jþ1ð Þj½ � ¼ R jþ1ð Þ;1; . . . ;R jþ1ð Þ;j
� �

and

R j jþ1ð Þ½ � ¼ R jþ1ð Þj½ �� �0
, the latter based on the symmetry

of R. Then, the Bartlett decomposition could be

applied recursively, as for j = k ) 1 ,…, 1

R 1;...;jþ1½ � ¼
R 1;...;j½ � R 1;...;j½ �s0j

sjR
1;...;j½ � Cj þ sjR

1;...;j½ �s0j

" #
; ð7Þ

with sj ¼ R jþ1ð Þj½ � R 1;...;j½ �� ��1
and

Cj ¼ R jþ1ð Þ; jþ1ð Þ �R jþ1ð Þj½ � R 1;...;j½ �� ��1
R j jþ1ð Þ½ �.
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Consider now a conformable partition of the data

matrix Y into k blocks,

Y ¼ Y 1½ �; . . . ;Y k½ �
� �

ð8Þ

with Y i½ � ¼ y
i½ �

1 ; . . . ; y
i½ �

n

� �0
for the ith block. The

blocks have dimension n · gl, such that

g1 + � � � + gk = g. The notation stresses the fact that

there is not necessarily a one-to-one correspondence

between a data block and each coordinate of the

vectors y’s, although for convenience we shall

assume so in future developments, so that gl = 1 for

all l and thus Y i½ � could be regarded as a vector.

Now, using properties of the normal distribution

(cf. Bauwens et al. 1999, Appendix A.2.3) and the

notation from the multiple-block Bartlett decomposi-

tion aforementioned, we can express the joint den-

sity of Y as the product of the following sequence of

conditional distributions (Brown 2002)

Y ½1� � Nð0;A� R1;1Þ
Y ½2�jY ½1� � NðY ½1�s1;A� C1Þ

..

.

Y ½jþ1�jY ½1�; . . . ;Y ½j� � NðY ½1;...;j�sj;A� CjÞ;

ð9Þ

for j = 2 ,…, k ) 1, with Y 1;...;j½ � ¼ Y 1½ �; . . . ;Y j½ �� �
.

We have now arrived at the main objective of this

section: the definition of the GIW distribution.

Notice that Equation (9) gives an insight into how to

set a more parameterized prior distribution for the

covariance matrix R. Based on the mutual indepen-

dence between R1;1 and pairs sj;Cj

� �
, j = 1

,…, k ) 1, a property that rests on the Bartlett

decomposition, assume that a priori

R1;1 � IW d0;Q0ð Þ
sjjCj � N s0j;H j � Cj

� �
Cj � IW dj þ g 1;...;j½ �;Qj

� �
;

ð10Þ

with g 1;...;j½ � ¼ g1 þ � � � þ gj. In Equation (10), d0;Q0;f
dj; s0 j;Qj;H j; j ¼ 1; . . . ; k � 1g embodies a set H of

hyperparameters. Then, it is said that the covariance

matrix R follows a GIW Hð Þ distribution (Brown

2002).

The GIW distribution is essentially characterized

by the larger set of parameters it involves, a feature

that offers great flexibility while specifying prior

knowledge or expert opinion regarding the covari-

ance structure of the data. Furthermore, it has the

advantage of computation simplicity as the Bartlett

parameters follow distributions easy to sample from,

namely Gaussian and lower-order IW densities.

Finally, notice the GIW is equivalently defined in a

recursive fashion, as the principal leading submatrix

R 1;...;j½ � of R can be regarded as being distributed

R 1;...;j½ � � GIWðdi;Qi; s0i;H i; i ¼ 1; . . . ; j � 1Þ ð11Þ

successively for j = k – 1 ,…, 2, while setting

R 1;1½ � � R1;1 � IW d0;Q0ð Þ for j = 1.

Prior specification using the GIW: theoretical results

Our goal now is to develop some theory on the use

of the GIW distribution in the context of a hierar-

chical Bayesian analysis of Gaussian performance

data. In particular, consider the problem of estimat-

ing the genetic (co)variance components for the

additive genetic model with maternal effects

through a Gibbs sampler (cf. Sorensen & Gianola

2002, ch. 13.3). Here, it is standard to assume a

priori an IW distribution for the genetic covariance

matrix. Yet, we will show that setting a GIW distri-

bution instead broadens considerably the range of

possible prior specification, while keeping the main

advantage of the approach: conditional conjugacy.

We will first introduce the model and some basic

notation.

The maternal animal model

Maternal animal models (MAMs) are mixed linear

models used to fit records on maternally influenced

traits. The additive covariance structure in these

models is based on the theory of the covariance

among relatives of Willham (1963), and its formula-

tion within the mixed linear models theory is

indebted to Quaas & Pollak (1980). On using sub-

scripts ‘o’ and ‘m’ to differentiate between the direct

and the maternal effects, respectively, we can

express the model equation as

y ¼ Xbþ Zoao þ Zmam þ Zpep þ eo ð12Þ

where y (n · 1) is a data vector and X (n · p) is the

incidence matrix for the fixed effects vector

b (p · 1). Additionally, ao and am are (q · 1) random

vectors with entries corresponding to the direct and

maternal breeding values, respectively, and

ep (d · 1) is a random vector accounting for mater-

nal permanent environmental effects. Accordingly,

Zo, Zm and Zp are the corresponding incidence

matrices. Finally, eo (n · 1) is a random vector of

errors. To simplify the notation, let a0 ¼ a0o; a0m
� �

.

All random effects are defined as deviations from

their mean values, and thus, their expectation is 0.
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The model is then completed with the following

covariance specification

Cov
a
ep

eo

2
4

3
5 ¼ R� A 0 0

0 Idr2
em

0
0 0 Inr2

eo

2
4

3
5; ð13Þ

where A is the (q · q) numerator relationship

matrix and R is a (2 · 2) matrix containing scalar

genetic (co)variance components, i.e.

R ¼ R11 R12

R21 R22

� �
� r2

ao
raoam

raoam
r2

am

� �
: ð14Þ

The estimation of the latter parameters under a

hierarchical Bayesian approach requires the specifica-

tion of a prior distribution for matrix R. In this

respect, usually an IW distribution is set, as it turns

out that the full conditional distribution belongs to

the same family, a property known as conditional

conjugacy (Daniels & Pourahmadi 2002). In fact, the

conditional conjugacy property is one of the more

attractive features of the IW distribution, as it enables

the use of well-known sampling algorithms for esti-

mation purposes, such as the Gibbs sampler (Gelfand

& Smith 1990). A more detailed description of the

Bayesian analysis for maternal influenced traits can

be found in Cantet et al. (1992), whereas details in

the estimation of the (co)variance components

through a Gibbs sampler are in the study by Jensen

et al. (1994).

Partition of the vector of breeding values

Let the prior distribution of the vector of breeding

values in the MAM [Equation (12)] be

a ¼ ao

am

� �
� N 0;R� Að Þ: ð15Þ

Based on the results presented in the previous sec-

tion, consider expressing this joint density as the

product of the following distributions

ao � N 0;R11 � Að Þ
amjao � N aos;C� Að Þ;

ð16Þ

with s ¼ R12R
�1
11 and C ¼ R22 � R21R

�1
11 R12.

Assume now the GIW density is used to represent

prior uncertainty about the matrix R, so that the

Bartlett parameters (R11, s and C) can be regarded as

being distributed

R11 � S0v
�2
t0

sjC � N s0;C�Hð Þ
C � S1v

�2
t1þ1;

ð17Þ

where Sv�2
t stands for a scaled inverted chi-square

distribution with parameters (t, S), a special case for

an IW distribution with a scalar scale matrix. Note

finally that the set of hyperparameters in Equation

(17) is H ¼ t0; t1; S0; S1; s0;Hf g. All of these param-

eters must be defined by the analyst.

Conditional posterior distributions of the Bartlett parameters

As it is standard, the Bayesian analysis proceeds by

forming the joint posterior distribution of all the

unknowns that arises from the model. This is

accomplished by multiplying the likelihood function

times each of the prior densities. Next, the full con-

ditional posterior distribution of any parameter of

interest is derived by keeping the remaining ones

fixed. In particular, the full conditional posterior

distribution of the genetic covariance matrix R

under the MAM model [Equation (12)] will be pro-

portional to

p RjH;Dð Þ / p aojR11ð Þ � p R11jS0; t0ð Þ
� p amjao; s;Cð Þ � p sjC; s0;Hð Þ � p CjS1; t1ð Þ;

ð18Þ

where D ¼ b; ao; am; ep; r2
em
; r2

eo
; y

n o
.

Explicitly, and after some rearrangement, we

arrive at

p RjH;Dð Þ

/ R11ð Þ�
1
2 qþt0þ2ð Þ � exp �Q11 þ S0

2R11

� 	
� Cð Þ�

1
2 qþt1þ1ð Þþ2½ �

� exp � s2Q11 � 2sQ12 þ Q22ð Þ þH�1 s� s0ð Þ2 þ S1

2C

( )
;

ð19Þ

where we have made the use of the following nota-

tion for the symmetric matrix of sums of squares

and cross-products

Q ¼ Q11 Q12

Q21 Q22

� �
� a0oA�1ao a0oA�1am

a0mA�1ao a0oA�1am

� �
: ð20Þ

Equation (19) evidences that the full conditional

posterior distribution of the genetic covariance

matrix R can be regarded as proportional to the

product of three distinct distributions related to the

Bartlett parameters, i.e.

The generalized inverted Wishart distribution S. Munilla & R. J. C. Cantet
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p RjH;Dð Þ / p R11jH;Dð Þ � p s;CjH;Dð Þ
¼ p R11jH;Dð Þ � p sjC;H;Dð Þ � p CjH;Dð Þ:

ð21Þ

We will show next that this density is in fact a

GIW, by proving that these three distributions are in

agreement with the ones corresponding to the Bart-

lett parameters as defined in Equation (10). The

proof will be sketched here, as the focus is on pre-

senting the main results. A more detailed derivation

of some important results is left to the Appendix A.

Note first that the independence between R11 and

the pair s;Cð Þ is self-evident. By keeping the factors

that only depend on R11, one can write

p R11jH;Dð Þ / R11ð Þ�
1
2 qþt0þ2ð Þ � exp �Q11 þ S0

2R11

� 	
:

ð22Þ

On defining ~S0 ¼ Q11 þ S0 and ~t0 ¼ qþ t0, Equa-

tion (22) is recognized as the kernel of the scaled

inverted chi-square distribution

R11jH;D � ~S0v
�2
~t0
: ð23Þ

Next, disregard all terms that do not depend on s
from the argument of the exponential function in

Equation (19), so as to obtain

p sjC;H;Dð Þ / exp � s2Q11 � 2sQ12ð Þ þH�1 s� s0ð Þ2

2C

( )
:

ð24Þ

After performing some algebraic manipulations on

this expression, in Appendix A it is shown that

p sjC;H;Dð Þ /

exp �
Q11 þ H�1ð Þ s� Q12 þ s0H�1ð Þ Q11 þH�1ð Þ�1

h i2

2C

8><
>:

9>=
>;;

ð25Þ

from where it is deduced that

sjC;H;D � N
Q12 þ s0H�1

Q11 þH�1
;

C
Q11 þH�1


 �
: ð26Þ

Maybe a more insightful representation of the lat-

ter result can be achieved on defining the following

identities (Brown 2002):

~H � Q11 þH�1
� ��1

;W � ~H �H�1 and ŝ � Q�1
11 Q12:

ð27Þ

After some algebra, the parameters in Equation

(26) can be expressed such that

sjC;H;D � N ~s0;C� ~H
� �

; ð28Þ

where ~s0 ¼ Ws0 þ 1�Wð Þŝ. This representation

indicates that the conditional posterior mean is a

weighted average of the prior mean and of the infor-

mation provided by the data through the quotient of

quadratic forms. Note further that the weights will

depend on the definition of the hyperparameter H.

For instance, setting H ¼ S�1
0 is the standard choice

if one is to retain the same mean structure as with

the IW distribution (Brown 2002). In this case,

W ¼ Q11S�1
0 þ 1

� ��1
, which shows that if prior and

data-based information on the direct additive vari-

ance are equal, so will be the weights given to both

terms on the posterior mean of s. On the other

hand, as the information provided by the data

increases, then the data-based term will be given a

greater weight.

Continuing now with the main argument, it

remains to be deduced the conditional posterior den-

sity of C. From Equation (19),

p CjH;Dð Þ / Cð Þ�
1
2 qþt1þ1ð Þþ2½ � � exp � S	1 þ S1

2C

� 	
; ð29Þ

where S	1 is the result of collecting all terms from

the exponential function that do not depend on s.

Equation (29) is easily recognized as the kernel of

the following scaled inverted chi-square distribution

CjH;D � ~S1v
�2
~t1þ1; ð30Þ

with ~S1 ¼ S	1 þ S1 and ~t1 ¼ qþ t1. Further, it is

shown in Appendix A that

S	1 ¼ am � aoŝð Þ0A�1 am � aoŝð Þ þWQ11 ŝ� s0ð Þ2: ð31Þ

It is possible to gain some insight into the latter

expression by noting that there are three sources of

information contributing to the value that takes the

scale parameter of the conditional distribution of C.

First, there is prior information contributed by S1.

Second, there is information contributed by the data

through the quadratic form on the adjusted maternal

breeding values, as it can be seen in the first term in

the right-hand side of Equation (31). In fact, it can

be shown that this term is the expression for the

S. Munilla & R. J. C. Cantet The generalized inverted Wishart distribution
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maximum likelihood estimator of C underthe distri-

bution of amjao if ŝ is taken as the true value for s.

The third source of information apparently arises

from the latter substitution, accounting for the fact

that s was estimated by ŝ.

Retrieving matrix R

Equations (23), (28) and (30) imply that the genetic

covariance matrix R follows conditionally a

GIW ~t0; ~t1; ~S0; ~S1; ~s0; ~H
� �

distribution a posteriori. As a

consequence, the conditional conjugacy property

holds, and the estimation of the genetic (co)variance

components can be attained through the Gibbs sam-

pler. As a matter of fact, the algorithm simply

requires sampling sequentially from the correspond-

ing distributions of the Bartlett parameters and after-

wards retrieving matrix R by applying the Bartlett

decomposition backwards, i.e. by calculating

R ¼ R11 R11s
sR11 Cþ s2R11

� �
: ð32Þ

Different prior specifications

As we have seen, on assuming a GIW prior for the

genetic covariance matrix R, the analyst must define

the full set of hyperparameters H ¼ t0; t1; S0;f
S1; s0;Hg, a task that bestows flexibility while speci-

fying his prior knowledge. In the remainder of this

section, we will discuss three different prior specifi-

cations. First, we will define a diffuse prior that

reflects complete uncertainty about the covariance

matrix a priori. Next, we will present the particular

set H that equivalently retrieves a sample from an

IW distribution. Finally, and based on this latter set,

we will suggest to model differential uncertainty

among scalar (co)variance components through a

different specification of the parameters t0 and t1.

First assume that the prior distribution for R is dif-

fuse with probability function proportional to

Rj j�
1
2t ¼ R11ð Þ�

1
2t � C�

1
2t, with t ¼ 3 corresponding to

the Jeffreys invariant prior, according to Brown

(2002). Therefore, the full conditional posterior dis-

tribution of the genetic covariance matrix can be

explicitly written as

p RjH;Dð Þ / R11ð Þ�
1
2 qþtð Þ � exp � Q11

2R11

� 	

� Cð Þ�
1
2 qþtð Þ � exp � s2Q11 � 2sQ12 þ Q22ð Þ

2C

� 	
:

ð33Þ

Now, resorting to the same arguments that we

have used to derive the full conditional posterior dis-

tribution of the Bartlett parameters, it is verifiable

that R follows conditionally a GIW ~t0; ~t1; ~S0; ~S1; ~s0;
�

~HÞ distribution a posteriori, with ~t0 ¼ qþ t� 2, ~t1

¼ qþ t� 3, and

~S0 ¼ Q11;

~S1 ¼ Q22 �Q�1
11 Q2

12;

~s0 ¼ Q�1
11 Q12;

~H ¼ Q�1
11 ;

ð34Þ

where Qij symbolize the (i,j)-entry of the symmet-

ric matrix of sums of squares and cross-products

defined by Equation (20).

Conversely, assume an IW distribution prior for R

under a conjugate approach, but consider the possi-

bility of sampling sequentially from the conditional

posterior distributions of the Bartlett parameters.

This sampling strategy is advantageous from an algo-

rithmic point of view, as it requires sampling only

three standard normal deviates, while a straight for-

ward generation will require many more (Smith &

Hocking 1972). As a matter of fact, the available

routines to sample from the Wishart distribution are

based on this principle, as the algorithms usually rest

on the Bartlett decomposition (e.g. the F77 WSHRT

routine by Smith & Hocking 1972). It is shown in

Appendix B that the equivalence is based on defin-

ing the following set of hyperparameters

S0 ¼ R	11;

S1 ¼ R	22 � R	212R
	�1
11 ;

s0 ¼ R	12R
	�1
11 ;

H ¼ R	�1
11 ;

ð35Þ

where R	 ¼ R	ij

n o
represents the scale matrix of the

prior distribution of R, and further defining

t0 ¼ tþ 1 and t1 ¼ t, where t is a common prior

degree of belief parameter.

Indeed, a different specification of the parameters

t0 and t1 can be used in a straightforward way to

model the differential uncertainty expected between

the estimates of the maternal and the direct additive

variances. Such strategy is explored in the next sec-

tion. In Appendix B, we present a sampling algo-

rithm, easy to accommodate within the existing

Gibbs sampling routines.

Prior specification using the GIW: an application

As a standard practice, most beef cattle breed associ-

ations run genetic evaluations on an annual or bian-
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nual basis as a part of their performance recording

programmes (BIF 2002, ch. 5). The main outcomes

of these evaluations are breeding values predictions,

or functions thereof, computed for sires, dams and

their progeny in the population under study. The

predictions, in turn, are obtained by solving the

mixed model equations (cf. Henderson 1984) that

arise from the model used to fit the data, conditional

on the estimated (co)variance components. Now,

although (co)variance components estimation should

be performed before each run of the genetic evalua-

tion, in practice, the estimation is usually under-

taken every several years, when a large enough

amount of data has been accrued. In any case,

assume the estimation is accomplished through a

hierarchical Bayesian analysis via the Gibbs sampler.

In this context, it seems reasonable to use the pos-

terior summaries of the distribution of the (co)vari-

ance components from the previous run to set the

corresponding hyperparameters for the subsequent

one, in the spirit of a Bayesian updating scheme.

Taking advantage of the flexibility afforded by the

GIW distribution, in this section, we describe the

application of such strategy in a (co)variance compo-

nents estimation problem using both field records

and simulated data. The strategy is further compared

against other prior specifications.

Field data sets

The full data set belongs to the firm ‘Estancias y

Cabañas Las Lilas’, from Argentina, and comprised

7229 weaning weight records of Angus calves, born

between 1972 and 2008. Every year, the firm under-

takes a genetic evaluation as a selection tool and as

a sales marketing strategy for their seedstock. Still,

(co)variance components are not estimated with the

same frequency, although several estimations were

performed as the data have accrued over the years.

In an attempt to mimic the scheme, we have used

the full data file for creating two subsets. The first

one included 4480 records from individuals born up

to the year 1986, whereas the second subset con-

tained all 6290 records taken on individuals born

before the year 2000. A detailed description of the

data sets we have analyzed is presented in Table 1.

The goal was to estimate (co)variance components

via the Gibbs sampler for the full data file under

several prior specifications. In general, prior distribu-

tions were parameterized as it is described by Soren-

sen & Gianola (2002, ch. 13.3). Specifically, scale

parameters were set after specifying some ‘reason-

able’ values as the mean of the prior distribution. In

turn, the degrees of belief parameters were used to

describe the uncertainty attached to those values.

Beforehand, the MAM defined by Equation (12) was

fitted, and (co)variance components were estimated

using the ASReml (Gilmour et al. 2006) package

[REML]. Next, several hierarchical Bayesian analy-

ses were undertaken via the Gibbs sampler, with dif-

ferent strategies regarding prior opinion on the

(co)variance components.

In the first strategy assayed, complete uncertainty

was assumed, and thus, a diffuse prior sampling

scheme was employed [Diffuse]. In this case, it was

not necessary to define any hyperparameter. Instead,

the estimation algorithm was based on sampling

from fully conditional posterior distributions that

depend only on functions of the quadratic forms of

the data [see Equation (34)]. Furthermore, as the

MCMC chains are independent of the initial values

once the procedure has attained convergence, the

coupling chain method (Garcı́a-Cortés et al. 1998)

could be used in a straight forward way to ascertain

convergence.

Second, a meaningful prior opinion was consid-

ered through the knowledge of the REML point esti-

mates, and then conjugated inverted-gamma

distributions (inverted chi-square and IW) were

assumed as priors for all the (co)variance compo-

nents, parameterized so that they reflect uncertainty

through the degrees of belief parameters. Specifi-

cally, the prior scale parameter for each (co)variance

component was set after specifying the REML esti-

mates as the mean of the prior distribution (see

Appendix B for a detailed description of such param-

Table 1 Main features of the Angus and the simulated weaning

weight data sets

Subset1 Subset2 Full set Simulated1

Records2 4480 6290 7229 4492

Pedigree 6080 8553 9936 5012

Pedigree connections3 5.9 14.7 21.9 –

Sires

No 119 199 264 65

% of sires recorded 7 16 20 69

Mean number of calves 38 32 27 69

Dams

No 1608 2127 2444 1376

% of dams recorded 45 55 57 64

Mean number of calves 3 3 3 3

1Averaged over 39 replicates. Some variability arose from an assumed

fertility rate of 0.9.
2Weaning weights taken on individuals averaging 200 days of age.
3Non-zeroes in matrix A (in millions). Not computed for simulated data

sets.
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eterization). Further, aiming to evaluate the influ-

ence of this prior specification on the results, two

other sets of prior mean values for the (co)variance

components were used. These sets corresponded to

the REML point estimates 
 twice their standard

errors. In turn, two different values for the degrees

of belief parameters were set: 20 [IW20] and 100

[IW100], respectively. These values were chosen to

reflect, respectively, mild and strong confidence on

the prior means. Table 2 contains a summary of the

prior means and degrees of belief used in each of the

analyses undertaken.

In the third strategy, an educated prior opinion

was examined using the posterior summaries of the

(co)variance components, obtained for each of the

two data subsets through a diffuse sampling scheme

estimation, to set the hyperparameters of the Bartlett

prior densities in the full data set analysis ([GIW_S1]

and [GIW_S2], respectively). These analyses were

undertaken assuming a GIW distribution for the

genetic covariance matrix a priori. In such case, the

full set H of hyperparameters needed to be defined.

The specification was made in the following way.

Using the outcomes from the subsets estimation, we

first derived the degrees of belief parameters, t0 and

t1, by equating the estimated marginal posterior

means and variances of R11 and C to the theoreti-

cal means and variances of scaled inverted chi-

square distributions, i.e.

t0 ¼
2� m̂i R11ð Þ½ �2

v̂i R11ð Þ þ 4;

t1 ¼
2� m̂i Cð Þ½ �2

v̂i Cð Þ þ 4;

ð36Þ

where m̂i �ð Þ and v̂i �ð Þ denote, respectively, the esti-

mated marginal posterior mean and variance of the

corresponding Bartlett parameter distributions,

obtained from the data subset i (i = 1, 2). Next, we

used the prior specification from Equation (35) to

set the hyperparameters S0, S1, s0 and H. Specifi-

cally, the entries of the scale matrix R	 were com-

puted as

R	11 ¼ t0 þ 2ð Þ � M̂i R11ð Þ;
R	12 ¼ R	21 ¼ R	11 � M̂i sð Þ;
R	22 ¼ R	212R

	�1
11

� �
þ t1 þ 3ð Þ � M̂i Cð Þ;

ð37Þ

where M̂i �ð Þ stands for the estimated marginal pos-

terior mode of the corresponding Bartlett parameter

distributions, obtained from data subset i (i = 1, 2).

Note that this prior parameterization entails inter-

preting the estimated marginal posterior modes as

some ‘reasonable’ values for the prior.

A final analysis was launched using this latter

strategy recursively, i.e. specifying the Bartlett

parameters prior distributions for the second subset

with the outcomes of the first one and then repeat-

ing the whole procedure for the full data set

[GIW_S2|S1]. More precisely, assume that the firm

undertook two different estimations of (co)variance

components at the years 1986 and 2000. Assume

further that in the 1986 evaluation, when data from

subset 1 had been collected, the estimation was

accomplished via the Gibbs sampler with a diffuse

sampling scheme, as the analyst had no prior opin-

ion on the values of the parameters at that time. At

the year 2000, in turn, not only new data had been

accrued (i.e. subset 2), but also the results from the

previous estimation were available. Hence, the esti-

mation procedure comprised fitting data subset 2

under a prior specification as the one described in

the preceding paragraph. Likewise, the GIW_S2|S1

Table 2 Angus data. Prior means and degrees of belief used to spec-

ify prior knowledge for the different analyses undertaken in this study

Analyses3

Prior means1

Degrees of

belief2

Dir.

heritability

Mat.

heritability

Dir–mat

correl. t t0 t1

REML – – – – – –

Diffuse – – – – – –

IW20_1 0.26 0.16 )0.69 20 – –

IW20_2 0.20 0.12 )0.66 20 – –

IW20_3 0.30 0.19 )0.75 20 – –

IW100_1 0.26 0.16 )0.69 100 – –

IW100_2 0.20 0.12 )0.66 100 – –

IW100_3 0.30 0.19 )0.75 100 – –

GIW_S1 0.25 0.18 )0.71 – 32 34

GIW_S2 0.21 0.14 )0.62 – 62 44

GIW_S2|S1 0.25 0.16 )0.67 – 105 85

1Figures in this table were computed as functions of the elicited prior

means for the (co)variance components. The three sets of values in

both IW20 and IW100 analyses correspond to the REML point esti-

mates, REML – 2*SE and REML + 2*SE, respectively. For the different

GIW analyses, in turn, prior means were defined as the (co)variance

components posterior modes obtained after fitting the data.
2t = degree of belief parameter from an inverted Wishart distribution;

t0 and t1 are the degrees of belief parameters of the scaled inverted

chi-square distributions from the Bartlett decomposition.
3Dashed lines subdivide analyses regarding uncertainty attached to

the (co)variance components prior means into ‘full uncertainty’, ‘mild

prior opinion’, ‘strong prior opinion’ and ‘educated prior opinion’ in

ascending order.
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analysis involved using the posterior summaries

obtained from this latter estimation to parameterize

the prior distribution for the genetic covariance

matrix before fitting the full data set. The values for

the prior means and degrees of belief specified are

displayed in Table 2.

Technical details concerning the implementation

are described next. The Gibbs sampler used in this

study was a single-site, systematic scan sampler, spe-

cifically written in Fortran 90. As a special feature,

the genetic covariance matrix sampling step was

coded following the algorithm presented in Appen-

dix B. For every analysis, the programme was exe-

cuted and a chain of 100 000 rounds was obtained.

Further, the coupling method (Garcı́a-Cortés et al.

1998) was implemented for the samples of the dif-

fuse sampling scheme, and convergence was assessed

considering a maximum difference between chains

of 10)3 for every (co)variance component, which

occurred at iteration 7606. Being conservative, thus,

we discarded the first 10 000 samples in every out-

come as burn-in. Posterior summaries for all (co)var-

iance components and functions thereof, as well as

autocorrelations among samples, were computed

using the programme POSTGIBBSF90, from the

BLUPF90 (Misztal et al. 2002) package. In particular,

posterior means, posterior standard deviations, and

autocorrelations for the direct heritability, the mater-

nal heritability and the direct–maternal genetic cor-

relation were used as the criteria for comparison.

Simulation study

For further insight into the estimation procedures, a

stochastic simulation study was carried out. Closed

random mating populations with overlapping genera-

tions were simulated. Within each replicate, a non-

recorded base population of 500 cows was randomly

mated to 20 bulls and produced the first generation of

progeny. Phenotypes of these individuals were next

sampled using the MAM [Equation (12)] as the data

generation process. In the following step, the eldest

sires and dams from the parental population were

culled, according to a replacement rate of 0.25 for

males and 0.20 for females. Their replacements were

selected from the current generation using the esti-

mated direct breeding values, obtained after fitting

the MAM and solving the corresponding mixed model

equations, as the selection criteria. A second genera-

tion was then created through random mating, with

the proviso that parent–offspring matings be avoided,

and the whole procedure was further repeated up to

the tenth generation. Fifty such replicates were cre-

ated and analyzed in this study. The main features of

the simulated population structure, averaged over the

replicates, were included in Table 1.

All simulated populations were analyzed using the

same strategies regarding prior opinion about the

(co)variance components as the ones employed with

the Angus data set. For each replicate, the MAM

was fitted, and (co)variance components were esti-

mated via the REML, Diffuse and IW100 analyses,

as described earlier. In addition, a GIW analysis was

undertaken in two steps. First, (co)variance compo-

nents were estimated for a subset including records

up to the eighth generation through a diffuse sam-

pling scheme. Next, posterior summaries were com-

puted and used to set the hyperparameters of the

Bartlett prior densities in a full data set analysis. For

Table 3 Simulated data. Estimates and standard errors for direct heritability, maternal heritability and direct–maternal genetic correlation under

different strategies with regard to prior opinion on the (co)variance components

Analyses1

Direct heritability (True

value = 0.25)

Maternal heritability (True

value = 0.15)

Dir–mat correlation (True

value = )0.70)

Estimate SE Estimate SE Estimate SE

REML 0.24 
 0.04 0.05 
 0.01 0.15 
 0.03 0.04 
 0.00 )0.69 
 0.09 0.09 
 0.02

Diffuse 0.24 
 0.05 0.04 
 0.01 0.14 
 0.04 0.03 
 0.01 )0.72 
 0.13 0.09 
 0.03

IW100_1 0.24 
 0.04 0.03 
 0.00 0.15 
 0.03 0.02 
 0.00 )0.69 
 0.09 0.04 
 0.01

IW100_2 0.17 
 0.04 0.02 
 0.00 0.08 
 0.04 0.01 
 0.00 )0.60 
 0.16 0.06 
 0.02

IW100_3 0.29 
 0.05 0.03 
 0.00 0.20 
 0.03 0.02 
 0.00 )0.72 
 0.06 0.04 
 0.01

GIW 0.23 
 0.04 0.03 
 0.00 0.14 
 0.04 0.02 
 0.01 )0.70 
 0.12 0.06 
 0.02

References: Estimate = REML point estimate or Bayesian posterior mean (averaged over 39 replicates 
 standard deviation); SE = REML approxi-

mate standard error or Bayesian posterior standard deviation (averaged over 39 replicates 
 standard deviation).
1Prior means for each replicate under the IW100 analyses correspond to the REML 
 2*SE estimates. Refer to main text for a detailed description

of the GIW analysis.

Dashed lines subdivide analyses into ‘‘full uncertainty’’, strong prior opinion, and ‘‘educated prior opinion’’ in ascending order.
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every Bayesian estimation procedure, 30 000 rounds

of the Gibbs sampler were obtained: the first 10 000

were discarded as burn-in, and the remaining ones

were used to compute posterior summaries. In the

same way that we did with the field records data

file, posterior means, posterior standard deviations,

and autocorrelations for the direct heritability, the

maternal heritability and the direct–maternal genetic

correlation, averaged over replicates, were used to

compare results.

A small digression is necessary at this point. Ele-

ven of the fifty replicates have exhibited conver-

gence problems while analyzing their corresponding

subset. Basically, the marginal posterior modes of

the (co)variance components taken as prior means

for the full analyses have produced non-positive def-

inite genetic covariance matrices, and thus, the

Gibbs sampler has aborted. A deeper analysis showed

that in those cases the coupling method failed to

assess convergence before 10 000 rounds, which

suggests a greater number of iterations would have

been necessary. Trying not to obscure the conclu-

sions then, and as the number of iterations per anal-

ysis was limiting because of run-time, we chose not

to include those replicates. As a consequence, the

results presented in this study were computed aver-

aging the remaining 39 replicates.

Results

Estimates and standard errors of genetic parameters

for the Angus weaning weight data are presented in

Table 4. Focusing first on the estimates, note that

even though not all analyses have returned exactly

the same results, the figures were overall quite simi-

lar among procedures: direct and maternal heritabili-

ties were in the order of 0.25 and 0.15, respectively,

whereas the direct–maternal genetic correlation was

around )0.69. Most variability was observed among

the IW100 analyses because of the strong influence

exerted by the prior means we have set. On the con-

trary, the IW20 analyses exhibited less dispersion

and, indeed, the estimates were closer to the ones

obtained under the REML and Diffuse analyses

irrespective of the prior means. Now, regarding the

standard errors, notice a consistent pattern has

become apparent: in those analyses where a stronger

weight has been put on the prior means, smaller

standard errors were obtained compared with the

less informative prior approaches. In particular, the

GIW_S2|S1 recursive analysis showed the smallest

standard errors.

In turn, Table 3 displays estimates and standard

errors of genetic parameters for the simulated data

sets, averaged over replicates. In general, the results

followed the trend we have described for the analy-

sis of field data. After fitting the same model we had

used to generate the data, both the REML estimates

and the Diffuse posterior means were on average

very close to the true values simulated. Moreover,

when the prior means of the genetic parameters in

the IW100 analyses were set to the corresponding

REML estimates, the posterior means were also

unbiased with respect to the true values. In addition,

Table 4 Angus data. Estimates and standard

errors for direct heritability, maternal herita-

bility and direct–maternal genetic correlation

under different strategies with regard to prior

opinion on the (co)variance components

Analyses1

Direct heritability Maternal heritability Dir–mat correlation

Estimate SE Estimate SE Estimate SE

REML 0.26 0.04 0.16 0.03 )0.69 0.07

Diffuse 0.25 0.04 0.15 0.03 )0.69 0.08

IW20_1 0.25 0.04 0.15 0.02 )0.69 0.07

IW20_2 0.23 0.04 0.14 0.02 )0.69 0.07

IW20_3 0.26 0.04 0.16 0.02 )0.71 0.06

IW100_1 0.25 0.03 0.15 0.02 )0.69 0.04

IW100_2 0.21 0.03 0.12 0.02 )0.68 0.05

IW100_3 0.29 0.03 0.18 0.02 )0.73 0.04

GIW_S1 0.28 0.04 0.17 0.02 )0.71 0.05

GIW_S2 0.24 0.03 0.15 0.02 )0.66 0.05

GIW_S2|S1 0.27 0.02 0.16 0.02 )0.69 0.04

References: Estimate = REML point estimate or Bayesian posterior mean; SE = REML approxi-

mate standard error or Bayesian posterior standard deviation.
1Refer to main text and Table 2 for a full description of the analyses undertaken. Dashed lines

subdivide analyses into ‘full uncertainty’, ‘‘mild prior opinion’’, ‘‘strong prior opinion’’ and ‘‘edu-

cated prior opinion’’ in ascending order.
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standard errors were smaller. Likewise, the GIW

analysis returned on average accurate estimates and

reduced standard errors. Now, when the prior means

were set to over-dispersed values in the IW100 anal-

yses, posterior means deviated from the true genetic

parameters.

Figure 1 shows autocorrelation plots of genetic

parameters for the Angus data set. For a better rep-

resentation, only one of the three correlograms for

the IW20 and IW100 analyses has been plotted as

the curves within analysis were very similar. Like-

wise, we have depicted only the GIW_S2|S1 autocor-

relation plot. Notice that the IW100 and GIW

analyses showed better convergence rates compared

with the Diffuse and the IW20 analyses.

Finally, lag10 and lag200 autocorrelations of the

genetic parameters for the simulated data sets are

presented in Table 5. Again, an improved mixing of

the chain and thus faster convergence were observed

when a stronger weight was placed on the prior dis-

tributions. In fact, IW100 and GIW analyses showed

the better convergence behaviour. However, differ-

ences in the autocorrelations between these two

analyses have arisen. Looking at lag200 autocorrela-

tions, it becomes apparent that those differences are

more important for the maternal heritability and the

direct–maternal genetic correlation than for the

direct heritability. In this respect, it is worth recalling

that in the IW100 analyses, the whole prior genetic

covariance matrix distribution was constrained by a

single degree of belief parameter (t = 100), whereas

in the GIW analyses, two different degrees of belief

parameters were involved (averaging t0 = 64 and

t1 = 19, respectively).

Discussion

In this study, the GIW distribution is introduced into

the animal breeding literature. The description was

based extensively on the works by Brown (2002)

and Le et al. (1999). In particular, we have acknowl-

edged its flexibility to elicit prior knowledge regard-

ing the distribution of the genetic covariance matrix

in the framework of a hierarchical Bayesian analysis.

Still, other applications may arise following the rea-

soning described here. For instance, a straight for-

ward application would be to use the GIW

distribution as it was originally intended for, i.e. as a
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Figure 1 Angus data. Autocorrelation plots for

direct heritability, maternal heritability and direct–

maternal genetic correlation.

Table 5 Simulated data. Lag10 and lag200 autocorrelations among samples for direct heritability, maternal heritability and direct–maternal genetic

correlation

Analyses1

Direct heritability Maternal heritability Dir–mat correlation

Lag10 Lag200 Lag10 Lag200 Lag10 Lag200

Diffuse 0.92 
 0.06 0.48 
 0.14 0.95 
 0.06 0.62 
 0.14 0.96 
 0.02 0.55 
 0.17

IW100_1 0.83 
 0.03 0.12 
 0.07 0.84 
 0.02 0.12 
 0.08 0.83 
 0.02 0.09 
 0.06

IW100_2 0.83 
 0.03 0.15 
 0.09 0.87 
 0.02 0.20 
 0.12 0.85 
 0.02 0.15 
 0.07

IW100_3 0.82 
 0.03 0.11 
 0.06 0.82 
 0.02 0.10 
 0.08 0.80 
 0.02 0.07 
 0.05

GIW 0.85 
 0.03 0.19 
 0.10 0.91 
 0.04 0.33 
 0.16 0.90 
 0.04 0.29 
 0.23

References: Lag10 and lag 200 autocorrelations averaged over 39 replicates (
 SD).
1Prior means for each replicate under the IW100 analyses correspond to the REML 
 2*SE estimates. Refer to main text for a detailed description

of the GIW analysis. Dashed lines subdivide analyses into ‘full uncertainty’, ‘strong prior opinion’ and ‘educated prior opinion’ in ascending order.
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natural specification for the prior covariance struc-

ture of multivariate Gaussian data with a monotone

pattern of missing data (Garthwaite & Al-Awadhi

2001). Such an application in the context of multi-

ple-trait animal models is the core of the full conju-

gate Gibbs sampler (FCG), an alternative procedure

to ‘data augmentation’ algorithms with faster con-

vergence rates (Cantet et al. 2004).

Additionally, we have derived theoretical results

regarding the use of the GIW as the prior distribution

for the genetic covariance matrix of the MAM in the

context of a hierarchical Bayesian analysis. In partic-

ular, we have proven that the conditional conjugacy

property holds for the GIW, and hence, (co)variance

component estimation through a Gibbs sampler

using this distribution is feasible. In fact, it has been

shown that the IW can be regarded as a special case

of the GIW, by setting a specific set of hyperparame-

ters. Further, we have demonstrated that both an

extension to represent differential uncertainty and a

diffuse prior specification are straightforward.

Finally, we have sketched a sampling algorithm easy

to fit within existing Gibbs sampler routines.

Now, eliciting priors is another issue. In this

research, we have studied a strategy that we believe

arise naturally given the standard practice of genetic

evaluations. The strategy is based on using previously

estimated values of the (co)variance components to

assess the hyperparameters on the next round, in a

recursive fashion. In particular, we have derived the

degrees of belief of the Bartlett parameters by equat-

ing marginal posterior means and variances from a

subset of the data to their corresponding theoretical

expectation and variance. Thus, we have followed an

intuitive Bayesian updating approach, exploiting ‘the

‘‘memory’’ property of the Bayes theorem’ (Gianola

& Fernando 1986). A more formal treatment is lack-

ing, however, as the strategy poses a question we

have not answered in this study: does this recursive

procedure truly ‘target and pursue’ the unknown

parameters, or does it get stuck with the singularity

of the estimates that may occur in a data subset? The

answer may lay in the fact that, ultimately, the

genetic parameters are not immutable quantities over

time, as their true values may be redefined as infor-

mation accrues and data structure changes.

In any case, our proposal was tested on both field

records and simulated data and further compared

with other prior specification approaches. The recur-

sive strategy has returned accurate point estimates

and reduced standard errors when compared with

non-informative prior settings while improving con-

siderably the convergence rates. A note of caution is

in order here, as these advantages have appeared to

be associated with the value of the prior degrees of

belief specified. In fact, the IW analyses with strong

prior opinion have also produced low standard errors

and better convergence behaviour. However, when

the prior means were set to over-dispersed values,

the estimates were biased with respect to the true

values simulated. The risk of biasing the estimates by

using strong prior opinion has already been pointed

out in the review by Misztal (2008).

In conclusion, we have shown that differential

uncertainty regarding prior knowledge on the

genetic (co)variance components in the framework

of a MAM is easily accounted for through a GIW

prior specification for the genetic covariance matrix.

Moreover, as conditional conjugacy holds, parameter

estimation can be readily accomplished via the Gibbs

sampler.
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Appendices

Appendix A. Results on posterior conditional distri-

butions

Several results were presented in connection with

the full conditional distributions of the Bartlett

parameters resulting from the decomposition of the

genetic covariance matrix R under the MAM

[Equation (12)]. Here a more detailed derivation of

those results is provided.

Let us start with the full conditional distribution

of s as expressed in Equation (24), arrived at after

disregarding all terms that do not depend on s from

the argument of the exponential function in the

Equation (19)

p sjC;H;Dð Þ / exp � s2Q11 � 2sQ12ð Þ þH�1 s� s0ð Þ2

2C

( )
:

ðA:1Þ

Completing the squares in the first term in the

exponential produces

s2Q11 � 2sQ12 ¼ Q11 s2 � 2sQ�1
11 Q12

� �
¼ Q11 s2 � 2sQ�1

11 Q12 þ Q�1
11 Q12

� �2
h
� Q�1

11 Q12

� �2
i

¼ Q11 s� Q�1
11 Q12

� �2 � Q�1
11 Q2

12:

ðA:2Þ

The last term in Equation (A.2) does no depend

on s, and thus, it is absorbed within the normaliz-

ing constant. The next step involves combining the

quadratic forms.

Q11 s� Q�1
11 Q12

� �2 þH�1 s� s0ð Þ2 ðA:3Þ

To do so, we make use of the following identity

(Sorensen & Gianola 2002, p. 227)

M z �mð Þ2 þ B z � bð Þ2 ¼ M þ Bð Þ z � cð Þ2

þ MB

M þ B
m� bð Þ2;

ðA:4Þ

with c ¼ M þ Bð Þ�1 Mmþ Bbð Þ. Note that on equat-

ing M ¼ Q11, m ¼ Q12Q�1
11 , B ¼ H�1, b ¼ s0, and

z ¼ s, i.e. subsequently dropping the second term in

Equation (A.4), as it does not depend on s, we arrive
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at Equation (25), from where it can be deduced that

a posteriori s is conditionally distributed as a uni-

variate normal variable.

Next, we will derive the expression for the scale

parameter of the conditional posterior distribution of

C, i.e. ~S1, as presented in Equation (31). As it was

stated before, this step involves collecting all factors

from the exponential function in Equation (19) that

do not depend on s. These are (i) the prior scale

parameter for C, i.e. S1 ; (ii) the quadratic form in the

maternal breeding values, Q22; (iii) the term

�Q�1
11 Q2

12, discarded while completing squares in

Equation (A.2); and (iv) the second term in the right-

hand side of Equation (A.4), which after the appro-

priate replacement and on using the set of identities

defined in Equation (27), renders WQ11 ŝ� s0ð Þ2.
Now, operating on the quadratic forms by adding

and subtracting Q�1
11 Q2

12,

Q22 � 2Q�1
11 Q2

12 þQ�1
11 Q2

12 ¼ Q22 � 2Q12ŝþ Q12ŝ

¼ Q22 � 2Q12ŝþ Q11ŝ
2

¼ a0mA�1am � 2 a0oA�1am

� �
ŝ

þ a0oA�1aoŝ
2

¼ am � aoŝð Þ0A�1 am � aoŝð Þ;
ðA:5Þ

and thus

~S1 ¼ am � aoŝð Þ0A�1 am � aoŝð Þ þWQ11 ŝ� s0ð Þ2 þ S1:

ðA:6Þ
Formulas regarding the conditional posterior distri-

bution of a covariance matrix in the more general

case of multiple-block Bartlett decomposition can be

found in Brown (2002) and Le et al. (1999).

Appendix B. Results on prior specification and the

sampling algorithm

Assume now that the analyst defines an IW prior for

R under a conditional conjugate approach. In such

case, we have stated that Equation (35) defines the

particular set of prior hyperparameters of a GIW dis-

tribution that equivalently retrieves a sample from

the corresponding conditional posterior IW distribu-

tion. Here, we prove such equivalence.

More specifically, consider a Bayesian analysis of

the MAM via the Gibbs sampler as described in

Sorensen & Gianola (2002). There, the genetic

covariance matrix is sampled from the conditional

posterior IW distribution defined by IW tþ q;Q	ð Þ,
with Q	 ¼ Qþ R	. Furthermore, Q is the matrix of

sums of squares and cross-products defined in Equa-

tion (20), and R	 represents the scale matrix of the

prior distribution of R, usually parameterized as

R	 ¼ tS	, where S	 represents a matrix of a priori

‘reasonable’ values for the genetic (co)variance com-

ponents, and t is a common degree of belief on

those values a priori.

On the other hand, it can be shown that replacing

the set of hyperparameters in Equation (35) in

Equations (23), (28) and (30) yields the following

posterior conditional distributions for the Bartlett

parameters

R11jH;D � Q	11v
�2
~t0
;

sjC;H;D � N Q	�1
11 Q	12;Q

	�1
11 C

� �
;

CjH;D � Q	22 � Q	�1
11 Q	212

� �
v�2

~t1þ1;

ðB:1Þ

with ~t0 ¼ t0 þ q ¼ tþ qþ 1 and

~t1 ¼ t1 þ q ¼ tþ q.

Now, to prove that both sampling strategies are

equivalent, it will be shown next that the product of

the kernels of the three densities in Equation (B.1)

retrieves the kernel of the appropriate IW distribu-

tion. Explicitly, and after replacing the Bartlett

parameters with the corresponding entries of the

covariance matrix R, the multiplication yields

p R11jH;Dð Þ � p sjC;H;Dð Þ � p CjH;Dð Þ

/ ðR11Þ�
1
2½ðtþqþ1Þþ2� � ðR22 � R�1

11 R2
12Þ
�1

2½ðtþqÞþ1þ2�

� exp � 1

2

Q	11

R11
þ Q	11ðR�1

11 R12 � Q	�1
11 Q	12Þ

2

ðR22 � R�1
11 R2

12Þ

"(

þ ðQ
	
22 � Q	�1

11 Q	212Þ
ðR22 � R�1

11 R2
12Þ

#)
: ðB:2Þ

Note first that

R11ð Þ�
1
2 tþqþ1ð Þþ2½ � R22 � R�1

11 R2
12

� ��1
2 tþqð Þþ1þ2½ �

¼ R11R22 � R21R12ð Þ�
1
2 tþqþ3ð Þ ¼ Rj j�

1
2 tþqþ3ð Þ: ðB:3Þ

Now, working out the exponentials, we arrive at
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exp � 1

2

Q	11

R11
þ

Q	11 R�1
11 R12 � Q	�1

11 Q	12

� �2 þ Q	22 � Q	�1
11 Q	212

� �
R22 � R�1

11 R2
12

" #( )

¼ exp � 1

2

Q	11

R11
þ Q	11R

�2
11 R2

12 � 2Q	12R
�1
11 R12 þ Q	22

R22 � R�1
11 R2

12

� �� 	

¼ exp � 1

2

Q	11R22 � Q	12R12

Rj j


 �
þ Q	22R11 � Q	12R12

Rj j


 �� �� 	

¼ exp � 1

2
Q	11R

11 þ Q	12R
12

� �
þ Q	22R

22 � Q	12R
12

� �� � 	

¼ exp � 1

2
tr R�1Q	
� �� 	

;

ðB:4Þ

where Rij symbolize the (i,j)-entry of matrix R�1:

Equations (B.3) and (B.4) show that Equation

(B.2) can be recognized as the kernel of an

IW tþ q;Q	ð Þ distribution. Therefore, an IW prior

for the genetic covariance matrix under a MAM can

be regarded as a special case for a GIW prior when

defining the specific set of hyperparameters in Equa-

tion (35). Moreover, note that Equation (B.1) sug-

gests a sampling algorithm. Assume the analyst

wishes to set different values for the parameters t0

and t1 to reflect differential uncertainty a priori.

Then, the following algorithm will retrieve samples

from the conditional posterior distribution of the

genetic covariance matrix R :

1 (a) Define t0 and t1, and form matrix R	

sequentially with the following entries:

R	11 ¼ t0 þ 2ð ÞS	11:

R	12 ¼ R	21 ¼ S	12S	�1
11

� �
R	11:

R	22 ¼ t1 þ 3ð Þ S	22 � S	212S	�1
11

� �
þ R	212R

	�1
11

� �
:

(b) Compute ~t0 ¼ qþ t0 and ~t1 ¼ qþ t1.

2 Form matrix Q	 ¼ Qþ R	.

3 Sample R11 from R11jH;D � Q	11v
�2
~t0

.

4 Sample C from CjH;D � Q	22 � Q	�1
11 Q	212

� �
v�2

~t1þ1.

5 Sample s from sjC;H;D � N Q	�1
11 Q	12;Q

	�1
11 C

� �
.

6 Retrieve matrix R by calculating

R ¼ R11 R11s
sR11 Cþ s2R11

� �
:

7 Repeat 2–6 within each cycle of the Gibbs sam-

pler.

The definition of the prior scale matrix in the step

1(a) of the algorithm aforementioned is based on

using some ‘reasonable’ values for the prior genetic

(co)variance components (the entries in matrix S	 )

as statements about the mode of the distributions of

the Bartlett parameters and next on solving back for

each entry of matrix R	. In particular, on defining

t0 ¼ tþ 1 and t1 ¼ t, the algorithm will retrieve an

IW sample, with prior scale matrix R	 ¼ tþ 3ð ÞS	.
In that case, matrix S	 represents a statement about

the mode of the corresponding IW prior distribution.
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