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Wave-packet dynamics in nonlinear Schrödinger equations
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Coherent states play an important role in quantum mechanics because of their unique properties under time
evolution. Here we explore this concept for one-dimensional repulsive nonlinear Schrödinger equations, which
describe weakly interacting Bose-Einstein condensates or light propagation in a nonlinear medium. It is shown
that the dynamics of phase-space translations of the ground state of a harmonic potential is quite simple: The
center follows a classical trajectory whereas its shape does not vary in time. The parabolic potential is the only
one that satisfies this property. We study the time evolution of these nonlinear coherent states under perturbations
of their shape or of the confining potential. A rich variety of effects emerges. In particular, in the presence of
anharmonicities, we observe that the packet splits into two distinct components. A fraction of the wavepacket is
transferred toward incoherent high-energy modes, while the amplitude of oscillation of the remaining coherent
component is damped toward the bottom of the well.
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I. INTRODUCTION

Coherent states were introduced in quantum mechanics by
Schrödinger to describe minimum-uncertainty wave packets
that satisfy the correspondence principle. The standard coher-
ent states are defined as translations of the Gaussian ground
state of the harmonic-oscillator potential. The peculiarity of
those states is that, during the time evolution in such a
potential, they remain of minimum uncertainty at all times.
This remarkable quasiclassical evolution is highly nontrivial in
quantum mechanics, the general rule being the spreading of the
wave packet and the delocalization of the probability density.
The harmonic-oscillator coherent states arise in systems whose
dynamical symmetry group is the Heisenberg-Weyl group.
They can be generalized to systems with different symmetry
groups, such as the SU(2) spin coherent states, and appear in
a wide range of physical situations [1,2].

If an initial Gaussian wave packet is subjected to the
action of an anharmonic potential, it will generally spread
out. In some cases, after the initial spreading, the quantum
state may periodically return almost completely to its initial
state. This revival of the wave packet occurs in systems
where the spectrum may be expanded locally in terms of a
quantum number, a characteristic situation of one-dimensional
integrable Hamiltonian systems [2,3]. In contrast, if the
corresponding classical dynamics is chaotic, the wave packet
will spread and relax toward the phase-space chaotic region,
with time-dependent fluctuations of the density that reflect
interference effects. The structure of the underlying classical
Hamiltonian thus has a strong influence on the dynamics of the
packet and may produce quite different effects depending on
the integrable or chaotic nature of the classical dynamics [4].

Here we are interested in a situation where the classi-
cal dynamics is simple; thus we consider integrable one-
dimensional Hamiltonian systems. However, the difficulty is
related to the more general character of the quantum dynamics
considered since we include nonlinear terms in the Schrödinger
equation. The resulting nonlinear Schrödinger equation [the

Gross-Pitaevskii equation (GPE)] has a wide range of physical
applications. It emerges, in particular, in two important cases:
in the description of a Bose-Einstein condensate (BEC) of
weakly interacting particles [5] and in the description of
electromagnetic waves (light) propagating through a nonlinear
medium [6].

The first point we are interested in is determining if, in
the nonlinear case, coherent states still exist in the sense
of a set of initial states that are able to propagate in time
without spreading or changing their shape. This question
is particularly relevant in the context of BECs since the
mere existence of a coherent motion means, physically, that
the condensate is preserved in time and the atoms do not
diffuse to different modes during the motion. We consider
here the particular case of a positive nonlinear coefficient,
which corresponds to a BEC of repulsive interactions or to a
defocusing medium in nonlinear optics. The most elementary
expectation would be that the additional repulsive nonlinear
term in the Schrödinger equation enhances the spreading of
an initial wave packet. This is of course true for the free
propagation. However, as in the case of the linear Schrödinger
equation, we find that a particular role is played by the
harmonic confining potential. For that potential it is shown
that the phase-space translations of the nonlinear ground state
behave as coherent states, e.g., during the time evolution the
center of the packet follows a classical phase-space trajectory,
without any change of its shape. These translations therefore
constitute a set of nonlinear coherent states, which will be
properly defined in Sec. II A. This behavior is specific of
the harmonic potential. Furthermore, we study the stability
of the nonlinear coherent states under deformations of their
shape. For small deformations, the packet remains coherent
and its center follows the corresponding classical trajectory,
with superimposed small shape oscillations of frequency given
by the multipole modes of the ground state. Remarkably, this
result holds also for large initial perturbations. For instance,
the motion of a very compressed initial Gaussian state can

013841-11050-2947/2012/85(1)/013841(9) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.013841


MOULIERAS, MONASTRA, SARACENO, AND LEBOEUF PHYSICAL REVIEW A 85, 013841 (2012)

be decomposed into a standard dipolar motion of its center
and a superimposed large-amplitude shape expansion and
compression cycle.

The next relevant question concerns the evolution of
a nonlinear coherent state subjected to an arbitrary one-
dimensional (1D) confining potential. In contrast to the linear
case, when both anharmonicities and nonlinearities are present
the spreading and revival of the packet are not observed
and a different phenomenology emerges. We find, as in
previous studies [7], that for small anharmonicities and small
amplitudes of oscillation the packet keeps, to a good approxi-
mation, its coherence. Its center follows a classical trajectory
with superimposed small shape fluctuations. However, as the
anharmonicity or the amplitude increase, a different process
appears. The packet splits into two components, where part of
the packet is damped toward the bottom of the potential, while
the rest leaves the packet to form an incoherent higher-energy
phase-space cloud.

II. WAVE-PACKET DYNAMICS IN A HARMONIC
POTENTIAL

A. Coherent states of the Gross-Pitaevskii equation

We consider the one-dimensional time-dependent Gross-
Pitaevskii equation

ih̄
∂�(x,t)

∂t
= − h̄2

2m

∂2�(x,t)

∂x2
+ V (x)�(x,t)

+ [gN |�(x,t)|2 − μ]�(x,t), (1)

which describes, in the mean-field approximation, the dynam-
ics of a Bose-Einstein condensate of N identical bosons, in
the presence of repulsive interactions (g > 0), in an external
potential V (x) [5]. Here, �(x,t) is the normalized wave
function of the condensate, m is the mass of each particle,
g is the interaction constant, and μ is the chemical potential.
Aside from cold-atom physics, it has been shown that Eq. (1)
provides an accurate description of many interesting physical
problems, among which we can mention hydrodynamics [8]
or nonlinear optics [6]. In the latter case, the 1D GPE can be
derived from the propagation of light in a two-dimensional
nonlinear medium under both the monochromatic and the
paraxial approximations.

We assume that V (|x| → ∞) → ∞ and look for solutions
of the GPE that evolve in time without changing their shape.
We thus seek solutions in the form

�(x,t) = φ(x − x0(t),t)exp

[
ip0(t)

h̄

(
x − x0(t)

2

)]
, (2)

where x0(t) and p0(t) are real functions of time. This
solution represents a time-dependent evolution in which the
wave function is translated along the phase-space trajectory
(x0(t),p0(t)). The substitution of Eq. (2) into Eq. (1) gives

ih̄
∂φ

∂t

∣∣∣∣
x−x0(t),t

= −h̄2

2m

∂2φ

∂x2

∣∣∣∣
x−x0(t),t

+ V (x)φ(x − x0(t),t)

+ [gN |φ(x − x0(t),t)|2 − μ]φ(x − x0(t),t)

+ ih̄

(
ẋ0(t) − p0(t)

m

)
∂φ

∂x

∣∣∣∣
x−x0(t),t

− p0(t)

2

(
ẋ0(t) − p0(t)

m

)
φ(x − x0(t),t)

+ ṗ0(t)

(
x − x0(t)

2

)
φ(x − x0(t),t), (3)

where ẋ0(t) ≡ dx0/dt and ṗ0(t) ≡ dp0/dt . Equation (3) takes
a simpler form if the phase-space trajectory (x0(t),p0(t))
coincides with a trajectory of the corresponding classical
noninteracting problem

ẋ0(t) = p0(t)

m
,

ṗ0(t) = − ∂V

∂x

∣∣∣∣
x0(t)

.

Making the change of notation x − x0(t) → x, Eq. (3) simpli-
fies to

ih̄
∂φ

∂t
= − h̄2

2m

∂2φ

∂x2
+ (gN |φ|2 − μ)φ

+
[
V (x + x0(t)) − ∂V

∂x

∣∣∣∣
x0(t)

(
x + x0(t)

2

)]
φ, (4)

in which φ and its derivatives are now evaluated in (x,t).
Equation (4) shows that in the reference frame of the classical
trajectory, the particle experiences a time-dependent potential.
In the new reference frame, the coherent state should be a
stationary state of Eq. (4). The stationarity condition imposes
a time-independent potential. This leads, for any x, to the
condition

d

dx0

[
V (x + x0) − ∂V

∂x

∣∣∣∣
x0

(
x + x0

2

)]
= 0. (5)

In particular, for x = 0 it takes the form

x0
∂2V

∂x2
0

− ∂V

∂x0
= 0. (6)

This equation is satisfied if and only if V (x) is a quadratic
function of x. Hence, the only function that produces, in
the new reference frame, a time-independent potential
is the harmonic one. Finally, for a harmonic potential and
in the reference frame that follows the classical phase-space
trajectory, the quantum equation of motion takes the form

ih̄
∂φ

∂t
= − h̄2

2m

∂2φ

∂x2
+ V (x)φ + (gN |φ|2 − μ)φ. (7)

Therefore, the coherent states of the GPE are defined by its
stationary states, which satisfy the equation

− h̄2

2m

∂2φ0

∂x2
+ V (x)φ0 + gN |φ0|2 = μφ0. (8)

It follows that, for a harmonic potential,

�0(x,t) = φ0(x − x0(t))exp

[
ip0(t)

h̄

(
x − x0(t)

2

)]
(9)

is a time-dependent exact solution of Eq. (1). Here,
(x0(t),p0(t)) is a phase-space trajectory of the corresponding
noninteracting classical system. In other words, the time
evolution of the wave packet defined by Eq. (9) reduces simply
to the time evolution of its center, which follows a classical
trajectory. Among the different possible stationary states φ0 of
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FIG. 1. (Color online) Time evolution of a shifted ground state
of the GPE with a harmonic confining potential with the parameters
γ = 115 and d = 5. Husimi representations of the wave function are
given at times ωt/2π = 0 (a), 0.25 (b), 0.5 (c), and 0.75 (d). The
solid (red) curve is the classical trajectory of the corresponding linear
problem of energy given by the center of the initial packet.

Eq. (8), it is customary to define as the standard coherent state
the ground state, which minimizes the energy as well as its
spatial extension [9]. From now on we refer to the set �0(x,t),
with φ0 defined as the ground state of Eq. (8) and x0(0) and
p0(0) arbitrary, as the set of nonlinear coherent states.

It is easy to see that the previous results are not only valid
for a quadratic nonlinearity of the GPE, but that they hold
in fact for an arbitrary exponent ∼gN |�(x,t)|α . This remark
extends our results to a large family of nonlinear Schrödinger
equations.

In order to illustrate the previous results, we have numer-
ically computed the time evolution of Eq. (1) and plotted
the phase-space Husimi distribution of the wave function at
different times. This distribution is defined as

H(x,p,t) = |〈xp|�(t)〉|2,
where |xp〉 is a standard linear harmonic-oscillator coherent
state centered around the phase-space point (x,p), whose x

representation reads

〈x|x0p0〉 =
(
mω

πh̄

)1/4

exp

(
− (x − x0)2

x2
HO

)
exp

[
ip0

h̄

(
x − x0

2

)]
.

(10)

The typical width of a standard coherent state in the x

and p directions is xHO ≡ (2h̄/mω)1/2 and pHO ≡ (2h̄mω)1/2,
respectively. To obtain Fig. 1 we numerically calculate the
ground state φ0(x) of the Gross-Pitaevskii equation in a
harmonic trap V (x) = 1

2mω2x2 and then compute the time
evolution of a translated ground state �(x,t = 0) = φ0(x +
d). In order to characterize the intensity of the nonlinearity,
it is convenient to define a dimensionless parameter. In terms
of the characteristic width xHO and energy h̄ω of the ground

FIG. 2. (Color online) Time evolution of the linear Schrödinger
equation with a harmonic potential with the parameters γ = 0 and
d = 5. The initial state is the same as in Fig. 1 (a shifted ground state
of the GPE). Husimi representations of the wave function are given
at times ωt/2π = 0 (a), 0.25 (b), 0.5 (c), and 0.75 (d).

state of the noninteracting harmonic oscillator, we define the
parameter γ = 2gN/xHOh̄ω,

γ ≡
√

2m

h̄ω

gN

h̄
. (11)

As predicted above, in the nonlinear case the wave-packet
dynamics reduces to a simple phase-space translation of its
center, which follows the corresponding classical trajectory
[solid (red) curve in the figure]. During this process, its shape
does not vary in time and there is no rotation either. In
particular, the shape of its projection onto the x axis does
not change in time.

This behavior qualitatively differs from the dynamics of
the linear Schrödinger equation (noninteracting case), where
the motion of an arbitrary initial wave function in a harmonic
trap consists in a phase-space rigid rotation with respect to the
origin [10]: Defining z = x/xHO + ip/pHO, it is known that
the linear evolution of an arbitrary initial Husimi distribution
H0(z) in a harmonic oscillator reads

H(z,t) ≡ H(x,p,t) = H0(zeiωt ). (12)

This implies a rigid phase-space rotation of any initial state.
To stress the difference between the linear and the nonlinear

dynamics, we plot in Fig. 2 the linear evolution of the same
initial state as in Fig. 1. We observe that, in contrast to the
nonlinear evolution, the initial packet now rotates as it follows
the classical trajectory and therefore changes its shape as a
function of time in the position representation. The coherent
state of the linear case corresponds, necessarily, to a perfectly
spherical Gaussian initial packet, a shape that is invariant under
rotations in any representation.

We remark that the classical trajectory followed by the
center of the packet has no dependence on the interaction
parameter g. It is a classical trajectory of the noninteracting
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problem, fixed by the initial position of the packet. In
particular, the frequency of the oscillation is independent of
the interaction, a result demonstrated by Kohn [11] for the
cyclotron frequency of interacting particles, which was later
generalized to interacting particles in a parabolic confining
potential [12].

The experimental realization of nonlinear coherent states,
as well as the control of their initial phase-space location, is a
natural procedure in the context of cold-atom physics. This is
because cold atoms are usually trapped in parabolic magnetic
potentials and the corresponding BEC is thus a coherent
state centered at the bottom of the potential. Phase-space
translations of that state are easily implemented by a sudden
shift of the trap with respect to the condensate. The study of
dipolar oscillations were among the first experimental tests of
excited collective states [13]. More recently, dipole excitations
were used to test transport properties of BECs across an
impurity [14–16] or through disordered potentials [14,16,17].
Dipole oscillations were also proposed as a test of the
existence of a superfluid phase for light moving in a nonlinear
medium [18].

The quantum dynamics in the presence of nonlinearities is
thus particularly simple if the initial state is a coherent state. In
the following sections, we will explore in detail the question
of what happens to an arbitrary initial state, which will be
particularly relevant in the context of nonlinear optics since, in
contrast to BECs, in optics Gaussians are the natural transverse
intensity profiles.

B. Stability of the oscillations

In this section, we study the stability under deformations
of the initial wave packet �0(x,t) [Eq. (9)] in the presence
of a harmonic confining potential V (x) = 1

2mω2x2. For this
purpose we look for solutions of the GPE having the form
of Eq. (2) and where φ(x,t) = φ0(x) + δφ(x,t). Actually, the
problem of the stability of the time-dependent solution �0(x,t)
is equivalent to the problem of stability of the stationary ground
state of Eq. (1). The first-order expansion in δφ of Eq. (7) leads
to

ih̄
∂δφ

∂t
= − h̄2

2m

∂2δφ

∂x2
+ V (x)δφ − μδφ

+ gN
(
2|φ0|2δφ + φ2

0δφ
∗), (13)

which, with its complex-conjugate equation, forms the so-
called Bogoliubov–de Gennes (BdG) system. Since φ0 is real,
the BdG system reduces to

ih̄
∂

∂t

[
δφ

δφ∗

]
= M

[
δφ

δφ∗

]
, (14)

where

M =
[


 gNφ2
0

−gNφ2
0 −


]

and


 = − h̄2

2m

∂2

∂x2
+ V (x) + 2gN |φ0|2 − μ.

The stability of the solution φ0 is given by the sign of the
eigenvalues h̄ωn of M , which are the energies of the elementary
excitations [un,vn], given by

h̄ωn

[
un

vn

]
= M

[
un

vn

]
. (15)

Our calculations are the 1D equivalent of the 2D work of
Ref. [19] and we will not give the technical details here.
For instance, in the strongly interacting limit (the so-called
Thomas-Fermi limit), the spectrum is given, for n ∈ N∗, by

ωn

ω
=

√
n(n + 1)

2
. (16)

This result shows that the frequencies become, in that
limit, independent of the nonlinearity and the n = 1 dipolar
excitation is unchanged ω1 = ω. All eigenvalues are real, a
fact that ensures the dynamical stability of the coherent state
under small deformations.

In the following we use a different method to test the stabil-
ity of the motion of coherent states under shape deformations.
We use the virial theorem for the GPE [20,21] and, applying
a variational principle, recover the former results as well as
some extensions of their regime of validity. The virial theorem
states that for a solution �(x,t) of Eq. (1), the average spatial
extension 〈x2〉 of �(x,t) verifies

∂2
t 〈x2〉 = 1

m

[
4EK + 2ENL − 2

〈
x

∂V

∂x

〉]
, (17)

where

EK ≡
∫

h̄2

2m
|∂x�(x,t)|2dx, (18)

ENL ≡ g

2

∫
|�(x,t)|4dx, (19)

EP ≡
∫

V (x)|�(x,t)|2dx, (20)

and ∂x ≡ ∂
∂x

, ∂t ≡ ∂
∂t

, and 〈A(x)〉 ≡ ∫
A(x)|�(x,t)|2dx for

any function A(x). This theorem has been used in particular to
study the collapse dynamics of a BEC. It is important to men-
tion that Eq. (17) follows from the fact that � extremizes the
Gross-Pitaevskii functional E[�] = EK + ENL + EP . The
quantity E = EK + ENL + EP does not depend on time. In
the particular case V (x) = 1

2mω2x2, the relation 〈x ∂V
∂x

〉 = 2EP

leads to

∂2
t 〈x2〉 = 1

m
[4EK + 2ENL − 4EP ]. (21)

For instance, for the noninteracting case, g = 0, ENL = 0, and
thus E = EK + EP is a constant determined by the initial
condition. Then, Eq. (21) simplifies to

∂2
t 〈x2〉 = −4ω2

(
〈x2〉 + E

mω2

)
. (22)

This means that for any initial wave function, the spatial
extension of �(x,t) is an oscillatory function of time, with
frequency 2ω, a fact clearly shown in Fig. 2. Indeed, since, as
we mentioned previously, the dynamics in the noninteracting
(linear) case of a harmonic oscillator is simply a rigid rotation
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in phase space, it is clear that every half period of the oscillator
the spatial extension returns to its initial value.

We now take into account the presence of interactions and
more particularly we assume to be in the Thomas-Fermi limit
γ → ∞. The reason for this assumption is that in this case an
explicit form of the ground state φTF

0 (x) is known:

φTF
0 (x) =

√
μ − 1

2mω2x2

gN
(23)

[for x2 � 2μ/mw2, whereas φTF
0 (x) = 0 for x2 > 2μ/mw2].

In order to solve Eq. (21), we assume that the wave function
is able, during its time evolution, to follow the classical
trajectory as well as vary its spatial extension, denoted L.
For |x − x0(t)| < L(t) we write it in the form

�L(x,t) = C(L(t))

√
1 − [x − x0(t)]2

L(t)2

× exp

[
ip0(t)

h̄

(
x − x0(t)

2

)]
(24)

and �L(x,t) = 0 if |x − x0(t)| > L(t). In the latter expression,
C(L) = √

3/4L ensures the normalization of �L(x,t) at any
time. Let us substitute Eq. (24) into the virial theorem (21),
in which all terms depend only on L(t), x0(t), and p0(t),
respectively denoted L, x0, and p0 for a matter of readability,
and their derivatives ẋ0 ≡ ∂x0(t)

∂t
, ṗ0 ≡ ∂p0(t)

∂t
, and L̇ ≡ ∂L(t)

∂t
:

2

5
(LL̈ + L̇2) + 2(x0ẍ0 + ẋ0

2)

= 4
p2

0

2m2
− 2ω2

(
x2

0 + L2

5

)
+ 3gN

5mL
. (25)

Using the classical equations of motion, all the terms contain-
ing information concerning the classical trajectory vanish and
we finally obtain

LL̈ + L̇2 = −ω2L2 + 3gN

2mL
. (26)

The equilibrium solution of the latter differential equation
is Leq = ( 3gN

2mω2 )1/3, which coincides with the usual spatial
extension of the Thomas-Fermi solution. Let us now consider
small deviations with respect to its extension and write L(t)
in Eq. (26) in the form L(t) = Leq + δL(t). Performing a
first-order expansion in u(t) ≡ δL(t)/Leq � 1, we get

ü + 3ω2u = 0, (27)

which describes a periodic oscillatory motion of the width
of the wave packet of frequency

√
3ω. This frequency

corresponds to the n = 2 quadrupole mode of the excitation
spectrum of Eq. (16). To summarize, in the two limiting
situations γ = 0 and γ → ∞ the quadrupole deformations
of the time-dependent coherent state are stable and the
corresponding frequencies are 2ω and

√
3ω, respectively.

In order to study the intermediate regime, for which we
have no analytical expression of the ground state, we choose
to use a normalized Gaussian ansatz �η(x,t) (which tends

to the correct form in the absence of nonlinearities), with a
time-dependent width η(t),

�η(x,t) = 1

[2πη2(t)]1/4
exp

(
− [x − x0(t)]2

4η(t)2

)

× exp

[
ip0(t)

h̄

(
x − x0(t)

2

)]
. (28)

The same procedure as before leads to the following differen-
tial equation for η(t) :

2(ηη̈ + η̇2) = h̄2

2m2η2
− 2ω2η2 + gN

2
√

πmη
. (29)

Replacing in Eq. (28) the stationary width η0 ≡ xHO/2 of the
linear g = 0 limit of Eq. (29) gives the function �η0 (x,t),
which coincides with the well-known definition of the usual
coherent state of the harmonic oscillator, defined by the
complex parameter z = x0/xHO + ip0/pHO. For a nonzero
interaction constant, u(t) ≡ η(t)/η0 verifies

uü + u̇2 = ω2

[
1

u2
− u2 + γ√

π

1

u

]
. (30)

Let us denote by ueq(γ ) the strictly positive equilibrium
solution of Eq. (30). The term ueq(γ ) is an increasing function
of γ , equal to 1 for γ = 0, and tends to infinity in the limit γ →
∞. Similarly as above, we perform a first-order expansion
writing u(t) = ueq(γ ) + δu(t) and assuming δu(t) � ueq(γ )
to obtain again a second-order differential equation

δ̈u + 2δu = 0, (31)

where  is, in this approximation, the quadrupole frequency

2 = ω2

(
3 + 1

ueq(γ )4

)
. (32)

Note that Eqs. (30) and (32) have been already obtained by a
variational principle in Ref. [7] including also the fourth-order
moment as the time-dependent parameter. In the linear limit
γ = 0, ueq(0) = 1 and we recover  = 2ω, as it should. In
the other limit of strong nonlinearity, ueq(γ → ∞) → ∞
and we recover  = ω

√
3, which is the correct result, as

shown previously. In Fig. 3 we plot a comparison of Eq. (32)

FIG. 3. (Color online) Normalized square quadrupole frequency
for different values of the nonlinear parameter γ . The dashed (black)
line represents the numerically computed frequency, and the solid
(blue) line represents the analytical result obtained using a Gaussian
ansatz variational principle.

013841-5



MOULIERAS, MONASTRA, SARACENO, AND LEBOEUF PHYSICAL REVIEW A 85, 013841 (2012)

FIG. 4. (Color online) Time evolution of the GPE with a harmonic confining potential with the parameter γ = 115. The initial state is the
shifted Gaussian ground state of the linear problem. Husimi representations of the wave function are given at times ωt/2π = 0 (a), 0.02 (b),
0.13 (c), 0.25 (d), 0.50 (e), 0.51 (f), 0.53 (g), and 0.75 (h).

for arbitrary γ to a numerical calculation of the quadrupole
frequency. Despite the fact that the Gaussian ansatz is correct
only in the linear limit, we see that it provides a quite good
approximation of the quadrupole frequency for arbitrary γ .
(The following numerical simulation is performed. For any
γ , we numerically compute the ground state of the GPE.
We spatially shift it from the bottom of the potential and
apply a (norm-preserving) deformation [getting δL(t = 0) =
0.1Leq] in order to excite the quadrupole mode. Then, the
real-time evolution of the GPE is computed and the frequency
that maximizes the Fourier transform on δL(t) is finally
found.)

The previous results show the stability of the coherent states
(and therefore of a condensate) under small shape pertur-
bations when moving in a harmonic potential and provide
the typical frequencies involved. We have also numerically
explored the evolution of packets whose initial shape strongly
deviates from the coherent state. For instance, in Fig. 4 we
show the nonlinear evolution of a Gaussian coherent state
of the linear problem (defined as the translated Gaussian
ground state of that problem). What is observed is the
usual dipole oscillation following the corresponding classical
trajectory with a superimposed large-amplitude quadrupole
vibration. The spatial width of the initial Gaussian state is
small compared to the corresponding nonlinear state (see
Fig. 1). It follows that, because of the repulsive interactions, the
packet strongly spreads in phase space, predominantly in the p

direction [particles accelerate; see Fig. 4(b)]. This acceleration
produces a spatial spreading of the packet whose barycenter
follows the corresponding classical trajectory [Fig. 4(c)].
At this point the expansion stops, compensated for by the
harmonic confinement, and a compression phase follows, to
recover its initial shape. The process can start again. We
have numerically computed the period of the expansion and
compression cycle and found a period (normalized to the
harmonic-oscillator period) T0/T � 0.551, which is close to,

but nevertheless different from, the quadrupole frequency
predicted from Fig. 3 for the corresponding value of γ ,
T4/T � 0.575.

III. ANHARMONIC EXTERNAL POTENTIAL

We now explore the robustness of the motion of nonlinear
coherent states when the considered potential differs from the
harmonic oscillator. More generally, we wish to explore the
nonlinear motion of initial wave packets under an arbitrary
potential. Experimentally, this is a relevant problem since
anharmonic potentials are either used on purpose [22] or they
come as corrections to the nearly harmonic usual traps. From
a theoretical point of view, frequency shifts and coupling
of collective modes due to anharmonicities were explicitly
investigated in the past [7].

As an example we consider a potential of the form

V (x) = 1
2mω2x2(1 + αx2), (33)

where α controls the strength of the anharmonicity. We
consider as the initial state the nonlinear coherent state of
the corresponding harmonic oscillator, i.e., we compute the
ground state of the nonlinear equation with α = 0 (the use
of the true ground state does not qualitatively modify the
results). This state is then shifted along the x direction in
order to locate the center of the packet at x = −d, with d

positive. The time evolution of such a state is then computed
for the full potential including the quartic term. As d increases,
the strength of the quartic term of the potential compared
to the harmonic one increases. This strength is measured by
the dimensionless parameter β = αd2. We thus study how
the dynamics of the initial packet changes as a function
of β.

Figure 5 shows the time evolution for β = 0.04. Before
analyzing the results, it is useful to show the time evolution
in the linear case. In the absence of nonlinear terms in the
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FIG. 5. (Color online) Time evolution of the linear Schrödinger equation (γ = 0, top row) and of the GPE (γ = 115, bottom row) in
the presence of an anharmonic (quartic) confining potential with the parameters α = 0.01 and β = 0.04. For each panel, the initial state is
the corresponding (linear or nonlinear) coherent state, computed for α = 0. Husimi representations of the wave functions are given at times
ωt/2π = 0 (a) and (e), 3 (b) and (f), 12 (c) and (g), and 40.5 (d) and (h).

Schrödinger equation the time evolution is made of cycles of
spreadings of the wave packet followed by a revival, i.e., after
the spreading the packet returns, to a good approximation, to
its initial state and the process starts again. This is indeed what
is observed when γ = 0 for an arbitrary value of β (see the
top row of Fig. 5).

The motion of the corresponding coherent state in the
presence of nonlinearities is quite different. For small values
of β, such as in the bottom panel of Fig. 5, we observe that
the nonlinear dynamics is more robust than the linear one.
For such values of β no spreading is observed. The packet
keeps, to a good approximation, its initial shape during the
time evolution, while the center follows the classical trajectory.
Small-amplitude dipole oscillations are observed, as well as a
periodic motion of the tilting angle of the axis of the packet
with respect to the x axis; however, the packet (e.g., the
condensate) roughly preserves its coherence.

Things change qualitatively as β increases, as shown in
Fig. 6. For larger initial amplitudes of the oscillation, at fixed
α, a strong deformation of the packet is observed during its
time evolution. The packet no longer preserves its coherence.
As it evolves, a filamentary structure develops from the packet
and winds in the clockwise direction around it. This filament
extends up to very high energies [see Fig. 6(b)]. By energy
and mass conservation, the remaining packet has a smaller size
and its center now occupies classical orbits of smaller energy,
e.g., its amplitude of oscillation decreases. As time goes on,
the winding filament compresses toward the packet. In this
process, the different loops of the filament start to interfere.
Finally, the reduced packet is completely damped at the bottom
of the well and coexists with a low-density component that
occupies a large fraction of the higher-energy phase space, as
shown in Fig. 6(d).

This is a remarkable process that completely differs
from what is known from the time evolution of the linear

Schrödinger equation. Using the language of Bose-Einstein
condensates, one can summarize it as follows (a similar effect
is expected, e.g., for light motion in a nonlinear medium).
In the presence of anharmonicities, the kinematic energy
stored as center-of-mass motion of the condensate is not
preserved, as for a harmonic potential. Instead, during the
dynamical evolution, one observes the emergence of two
components. The initial packet is not totally destroyed. In the
course of time, it loses part of its mass and its amplitude of
oscillation diminishes to eventually be almost stopped at the

FIG. 6. (Color online) Time evolution of the GPE in the presence
of an anharmonic (quartic) confining potential, with the parameters
γ = 115, α = 0.01, and β = 0.5. Husimi representation of the wave
function at times ωt/2π = 0 (a), 1.5 (b), 4 (c), and 40 (d).
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FIG. 7. (Color online) Fluidity factor, defined by the ratio of the
average amplitude of oscillation in a stationary regime and the initial
amplitude d , versus β = αd2 for γ = 115 and α = 0.01. The initial
state is a shifted nonlinear coherent state. The inset shows the same
plot for different values of α, using, for both axes, the same scale as
in the main figure.

bottom of the potential. The fraction of the condensate that
leaves the packet occupies, in the course of time, high-energy
trajectories in an incoherent way. One may speak of some
sort of evaporative process in which the initial kinematic
energy of the center of mass is transformed during the time
evolution into incoherent motion of high-energy particles
(evaporation), whereas the remaining fraction of the conden-
sate cools down toward the bottom of the potential (damping
effect).

At a given evolution time, the amplitude of oscillation of
the remaining packet depends on β. To illustrate this point,
we have computed, as a function of β, the time average
of 2[〈x〉(t)/d]2, where 〈x〉(t) = ∫ ∞

−∞ x|ψ(x,t)|2dx. The time
average is computed for long times, starting from a time such
that the evolution of 〈x〉(t) looks stationary in time. This factor,
which we call the fluidity factor, is equal to one at β = 0 (no
damping of the wave packet) and equal to zero for a packet
totally damped, almost at rest at the bottom of the potential. The
result is represented in Fig. 7. A strong decrease is observed
as β increases. For small values of β, there is no plateau
where strictly no damping is observed. The fluctuations are
due to the interactions between the low-density high-energy
component with the main wave-packet component. It may well
be that if we further increase in time the position of the time
average window, the fluidity factor globally decreases. That
would mean that at very long times the packet is always fully
damped. We cannot give, for the moment, a definite answer to
this point.

We have also explored the dependence of this process on the
different parameters. The inset of Fig. 7 shows the dependence
of the fluidity factor on β for packets that propagate in
potentials with different values of α. The superimposition of
the curves shows that, on average, this quantity depends on α

and d only through β = αd2.

IV. CONCLUSION

We have shown the existence of nonspreading states for the
repulsive GPE, the so-called nonlinear coherent states. They
are defined as phase-space translations of the ground state of
the nonlinear equation in the presence of a harmonic confining
potential. Due to the repulsive interaction, they are strongly
elongated in the spatial direction. In the presence of a harmonic
potential, the nonlinear coherent states do not vary their
shape during the time evolution; their center simply follows
a corresponding classical trajectory (of the linear problem).
This means that the center-of-mass motion is decoupled from
other modes of the system. In particular, they are stable under
shape deformations. We have computed the corresponding
frequencies of oscillation for different nonlinearities. In the
presence of a harmonic potential, the nonlinear coherent states
thus preserve their coherence during the time evolution.

The physics is quite different when the nonlinear coherent
states evolve in an anharmonic potential. We found that
the time evolution now leads to a partial destruction of the
initial packet (or of the condensate in BECs). During the
time evolution, the system splits into two components. A
fraction of the initial density leaves the packet to occupy
high-energy phase-space trajectories (the evaporative process).
The remaining fraction of the packet continues to oscillate
around the bottom of the well but, by energy conservation,
its amplitude now decreases (the damping process). The
anharmonicity of the potential thus induces a coupling between
the dipole mode and other excitation modes. The initial
center-of-mass kinematic energy is now partially transferred
to a fraction of the particles that leave the system, while the
amplitude of the collective dipole motion of the remaining
coherent component is damped. This process depends on the
anharmonicity and the initial amplitude through the parameter
β, with a stronger damping for stronger values of β.

In the presence of interactions, the revival phenomenon
that occurs in linear quantum mechanics thus disappears and
is replaced by a totally different mechanism. In the language
of cold-atom physics, the condensate is partially destroyed and
damped when it evolves in an anharmonic confining potential.

Coherent transport and superfluidity are often tested by
adding an external perturbation, for instance, the study of the
damping of dipolar oscillations in BECs in the presence of an
obstacle [14,16]. In one dimension, the dissipative mechanism
that breaks superfluidity is related to the emission of solitons.
In addition, loss of coherence and damping of collective
excitations are predicted as temperature increases [23]. Here,
we have shown loss of coherence and dissipative effects in
the absence of obstacles, simply induced by the presence of
anharmonicities in the confining potential.

Many interesting problems remain open, such as a study of
the motion of initial nonlinear packets in higher-dimensional
potentials, integrable or chaotic. The nature of the evaporative
process described here should be further investigated using
methods that go beyond the mean-field approximation. Many
studies already exist for the propagation of 1D packets
in the presence of random potentials [14,24–26]. However,
the present one-dimensional results show already the deep
differences that exist between the linear and nonlinear cases in
the presence of simple potentials. Experimental tests of these
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differences are relatively easy, in particular, in the cold-atom
context, by shifting a BEC with respect to an anharmonic
potential. In this paper we have also explored the nonlinear
dynamics of Gaussian wave packets in both harmonic and
anharmonic potentials, a problem that is relevant in optics
experiments.
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