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Abstract

Our propose here is to provide a Hopf lemma and a strong minimum principle for weak supersolutions of

(−�p)su = c(x)|u|p−2u in �

where � is an open set of RN , s ∈ (0, 1), p ∈ (1, +∞), c ∈ C(�) and (−�p)s is the fractional p-Laplacian.
© 2017 Elsevier Inc. All rights reserved.

Keywords: Fractional p-Laplacian; Hopf’s lemma; Strong minimum principle

1. Introduction

It is well known that the Hopf’s lemma is one of the most useful and best known tool in 
the study of partial differential equations. Just to name a some of its applications, this lemma is 
crucial in the proofs of the strong maximum principle, and the anti-maximum principle and in 
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the moving plane method. For a review on the topic in the local case, see for instance [27,28] and 
the references therein.

Our propose here is to provide a Hopf lemma and a strong minimum principle for the frac-
tional p-Laplacian

(−�p)su(x) := 2K(s,p,N) lim
ε→0+

∫
RN\Bε(x)

|u(x) − u(y)|p−2(u(x) − u(y))

|x − y|N+sp
dy x ∈R

N

where p ∈ (1, ∞), s ∈ (0, 1), and K(s, p, N) is a normalization factor. The fractional p-Laplacian 
is a nonlocal version of the p-Laplacian and is an extension of the fractional Laplacian (p = 2).

In the last few years, the nonlocal operators have taken relevance because they arise in a num-
ber of applications in many fields, for instance, game theory, finance, image processing, Lévy 
processes, and optimization, see [7,9,16,3,14] and the references therein. From of the mathe-
matical point of view, the fractional p-Laplacian has a great attractive since two phenomena are 
present in it: the nonlinearity of the operator and its nonlocal character. See for instance [10,5,6,
12,21,23,24,31,19] and the references therein.

1.1. Statements of the main results

Before starting to state our results we need to introduce the theoretical framework for them.
Throughout this paper, � is an open set of RN , s ∈ (0, 1), p ∈ (1, ∞) and to simplify notation, 

we omit the constant K(s, p, N). From now on, given a subset A of RN we set Ac = R
N \ A, 

and A2 = A × A.
The fractional Sobolev spaces Ws,p(�) is defined to be the set of functions u ∈ Lp(�) such 

that

|u|pWs,p(�) :=
∫
�2

|u(x) − u(y)|p
|x − y|N+sp

dxdy < ∞.

The fractional Sobolev spaces admit the following norm

‖u‖Ws,p(�) :=
(
‖u‖p

Lp(�) + |u|pWs,p(�)

) 1
p

,

where

‖u‖p

Lp(�) :=
∫
�

|u(x)|p dx.

The space Ws,p(Rn) is defined similarly.
We will denote by W̃ s,p(�) the space of all u ∈ Ws,p(�) such that ũ ∈ Ws,p(Rn), where 

ũ is the extension by zero of u. The dual space of W̃ s,p(�) is denoted by W−s,p′
(�) and the 

corresponding dual pairing is denoted by 〈·, ·〉.
The space Ws,p(�) is the space of all functions u ∈ L

p
loc(R

N) such that for any bounded 
�′ ⊆ � there is an open set U ⊃⊃ �′ so that u ∈ Ws,p(U), and

[u]s,p :=
∫
N

|u(x)|p−1

(1 + |x|)N+sp
dx < ∞.
R
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Remark 1.1. Suppose that � is bounded. Then u ∈ Ws,p(�) if only if there is an open set 
U ⊃⊃ � such that u ∈ Ws,p(U), and [u]s,p < ∞. In addition, W̃ s,p(�) ⊂Ws,p(�).

Further informations on fractional Sobolev spaces and many references may be found in [1,
11,13,18,21].

Now, let us introduce our notion of weak super(sub)-solution. Given f ∈ W−s,p′
(�), we say 

that f ≥ (≤)0 if for any ϕ ∈ W̃ s,p(�), ϕ ≥ 0 we have that 〈f, ϕ〉 ≥ (≤)0.
When � is bounded, we say that u ∈Ws,p(�) is a weak super(sub)-solution of (−�p)su = f

in � if ∫
R2N

(u(x) − u(y))p−1(ϕ(x) − ϕ(y))

|x − y|N+sp
dxdy ≥ (≤)〈f,ϕ〉

for each ϕ ∈ W̃ s,p(�), ϕ ≥ 0.
When � is unbounded, we say that u ∈ Ws,p(�) is a weak super(sub)-solution of 

(−�p)su = f in � if for all bounded open set �′ ⊂ � we have that u is a weak su-
per(sub)-solution of (−�p)su = f in �′.

In both cases, u is a weak solution of (−�p)su = f in � if u is a super and sub-solution of 
(−�p)su = f .

Given a function c ∈ L1
loc(�), we say that u ∈ Ws,p(�) is a weak super(sub)-solution 

of (−�p)su = c(x)|u|p−1u in � if f = c(x)|u|p−2u ∈ W−s,p′
(�), and u ∈ Ws,p(�) is a 

weak super(sub)-solution of (−�p)su = f in �. Finally, we say that u is a weak solution of 
(−�p)su = c(x)|u|p−2u in � if u is a super and sub-solution of (−�p)su = c(x)|u|p−2u.

Our first result is the following minimum principle.

Theorem 1.2. Let c ∈ L1
loc(�) be a non-positive function and u ∈ Ws,p(�) be a weak super-

solution of

(−�p)su = c(x)|u|p−2u in �. (1.1)

1. If � is bounded, and u ≥ 0 a.e. in �c then either u > 0 a.e. in � or u = 0 a.e. in RN .
2. If u ≥ 0 a.e. in RN then either u > 0 a.e. in � or u = 0 a.e. in RN .

Remark 1.3. Observe that c ∈ L1
loc(�) then c(x) ≥ c−(x) = min{0, c(x)} ∈ L1

loc(�). Then, if u
is a weak super-solution of (1.1) and u ≥ 0 a.e. in RN then u is also a weak super-solution of

(−�p)su = c−(x)up−1 in �.

Then, by Theorem 1.4, u > 0 a.e. in � or u = 0 a.e. in RN . That is, in the case u ≥ 0 a.e. in Rn, 
the non-positivity assumption on the function c is not necessary.

In fact, the previous result also holds for all measurable functions c for which there is d ∈
L1

loc(�) such that c ≥ d a.e. in �.

Under the assumption that c and u also are continuous functions, by the properties that all 
continuous weak super-solutions are viscosity super-solutions and using a test function, we can 
remove “a.e.” in the statement of our previous theorem. For more details, see Section 2.
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Theorem 1.4. Let c ∈ C(�) be a non-positive function and u ∈ Ws,p(�) ∩ C(�) be a weak 
super-solution of (1.1).

1. If � is bounded, and u ≥ 0 a.e. in �c then either u > 0 in � or u = 0 a.e. in RN .
2. If u ≥ 0 a.e. in RN then either u > 0 in � or u = 0 a.e. in RN .

Lastly, we show our Hopf lemma.

Theorem 1.5. Let � satisfy the interior ball condition in x0 ∈ ∂�, c ∈ C(�), and u ∈ Ws,p(�) ∩
C(�) be a weak super-solution of (1.1).

1. If � is bounded, c(x) ≤ 0 in � and u ≥ 0 a.e. in �c then either u = 0 a.e. in RN or

lim inf
BR�x→x0

u(x)

δR(x)s
> 0 (1.2)

where BR ⊆ � and x0 ∈ ∂BR and δR(x) is distance from x to Bc
R .

2. If u ≥ 0 a.e. in RN then either u = 0 a.e. in RN or (1.2) holds.

Now, we give a brief resume about the Hopf’s lemma and the strong minimum principle for 
the fractional Laplacian. In [8, Proposition 2.7] the authors show the strong minimum principle 
and a generalized Hopf lemma for fractional harmonic functions. Whereas, in [30], under the 
assumption � is a smooth bounded domain, it is proven a Hopf lemma for weak solutions of a 
Dirichlet problem. See also [15,29]. For a Hopf lemma with mixed boundary condition, see [2].

Finally, Theorems 1.4 and 1.5 are known for the fractional Laplacian only for pointwise solu-
tions, see [17]. See also [20] for p = 2 and [26] for p �= 2. Thus, our results generalize the results 
of [17] in two way: for nonlinear operators and weak solutions.

To complete the introduction, we want to make a little remark related to our result and the 
optimal regularity of the Dirichlet problem. Given f ∈ L∞(�), if � ⊂ R

N is a bounded smooth 
domain and u is a weak solution of

(−�p)su = f (x) in �, u = 0 in �c,

then, by [21, Theorem 1.1], there is α = α(N, s, p) ∈ (0, 1) such that u ∈ Cα(�). In fact that, we 
cannot expect more than s-Hölder continuity, see [21, Section 3].

Also, by Theorem 1.5, we can deduce that α ≤ s. Suppose that there exists a function c ∈
C(�) such that c ≤ 0 in � and c(x)|u(x)|p−2u(x) ≤ f (x) (for instance, if f ≥ 0 we can take 
c ≡ 0). Then u is a weak super-solution of

(−�p)su = c(x)|u(x)|p−2u(x) in �.

Thus, by Theorem 1.5, α ≤ s.

2. Preliminaries

Let’s start by introducing the notations and definitions that we will use in this work. We also 
gather some preliminaries properties which will be useful in the forthcoming sections.
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If t ∈R and q > 0, we will denote |t |q−1t by tq . For all functions u : � →R we define

u+(x) := max{u(x),0} and u−(x) := max{−u(x),0},
�+ := {x ∈ � : u(x) > 0} and �− := {x ∈ � : u(x) < 0}.

Our next remark shows that u+ and u− belong to the same space as u.

Remark 2.1. If X = Ws,p(�) or W̃ s,p(�) or Ws,p(�), and u ∈X then u+, u− ∈X owing to

|u−(x) − u−(y)| ≤ |u(x) − u(y)| and |u+(x) − u+(y)| ≤ |u(x) − u(y)|

for all x, y ∈ �.

The proof of the following results can be found in [21].

Lemma 2.2. [21, Lemma 2.8] Suppose f ∈ L1
loc(�) and u ∈ Ws,p(�) is a weak solution of 

(−�p)su = f in �. Let v ∈ L1
loc(R

N) be such that

dist(supp(v),�) > 0 and
∫
�c

|v(x)|p−1

(1 + |x|)N+sp
dx < ∞,

and define for a.e. Lebesgue point x ∈ � of u

h(x) = 2
∫

supp v

(u(x) − u(y) − v(y))p−1 − (u(x) − u(y))p−1

|x − y|N+sp
dy.

Then u + v ∈Ws,p(�) and is a weak solution of (−�p)s(u + v) = f + h in �.

Theorem 2.3. [21, Theorem 3.6] Let � be a bounded domain such that ∂� is C1,1, and δ�(x) =
dist(x, �c). There exists ρ = ρ(N, p, s, �) such that δs

� is a weak solution of (−�p)sδs
� = f in 

�ρ = {x ∈ � : δ�(x) < ρ} for some f ∈ L∞(�ρ).

Proposition 2.4. [21, Proposition 2.10] Let � be bounded, u, v ∈ Ws,p(�) satisfy u ≥ v in �c

and for all ϕ ∈ W̃ s,p(�), ϕ ≥ 0∫
R2N

(u(x) − u(y))p−1(ϕ(x) − ϕ(y))

|x − y|N+sp
dxdy ≥

∫
R2N

(v(x) − v(y))p−1(ϕ(x) − ϕ(y))

|x − y|N+sp
dxdy.

Then u ≥ v a.e. in �.

We also have a comparison principle for sub-solutions and super-solutions of (1.1).
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Proposition 2.5. Let � be bounded, u, v ∈ Ws,p(�) be nonnegative super-solution and sub-
solution of (1.1) in � respectively. If c(x) ≤ 0 in � and u ≥ v a.e. in �c then u ≥ v a.e. in �.

Proof. We first observe that since u, v ∈ Ws,p(�) we have that (v − u)+ ∈ W̃ s,p(�). Then, 
using that u, v are super-solution and sub-solution of (1.1) in � respectively, we get∫

R2N

(v(x) − v(y))p−1 − (u(x) − u(y))p−1

|x − y|N+sp
((v(x) − u(x))+ − (v(y) − u(y))+)dxdy

≤
∫
�

c(x)(v(x)p−1 − u(x)p−1)(v(x) − u(x))+dx ≤ 0.

The proof follows by the argument of [23, Lemma 9]. �
Our next result is referred to the regularity of the weak solutions.

Lemma 2.6. Let � ⊂R
N be smooth bounded domain and c ∈ L∞(�). If u ∈ W̃ s,p(�) is a weak 

solution of (1.1) then there is α ∈ (0, 1) such that u ∈ Cα(�).

Proof. By [25, Lemma 2.3] and bootstrap argument, we have that u ∈ L∞(�). Therefore, by 
[21, Theorem 1.1], u ∈ Cα(�) for some α ∈ (0, 1). �
2.1. Viscosity solution

In he rest of this section, � is bounded open set with smooth boundary and c ∈ C(�).
Following [22], we define our notion of viscosity super-solution of (1.1). We start to introduce 

some notation

Ls,p(RN) =
{
u ∈ L

p−1
loc (RN) : [u]s,p < ∞

}
.

The set of critical points of a differential function u and the distance from the critical points are 
denoted by

Nu := {x ∈ � : ∇u(x) = 0}, du(x) := dist(x,Nu),

respectively. Let D ⊂ � be an open set. We denote the class of C2-functions whose gradient and 
Hessian are controlled by du as

C2
β(D) :=

{
u ∈ C2(�) : sup

x∈D

(
min{du(x),1}β−1

|∇u(x)| + |D2u(x)|
du(x)β−2

)
< ∞

}
.

We are now in condition to introduce our definition. We say that a function u : RN →
[−∞, ∞] is a viscosity super-solution of (1.1) if it satisfies the following four assumptions:

(VS1) u < ∞ a.e. in RN and u > −∞ everywhere in �;
(VS2) u is lower semicontinuous in �;
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(VS3) If φ ∈ C2(Br(x0)) for some Br(x0) ⊂ � such that φ(x0) = u(x0) and φ ≤ u in Br(x0), 
and one of the following holds
(a) p > 2/(2−s) or ∇φ(x0) �= 0;
(b) 1 < p ≤ 2/(2−s); ∇φ(x0) = 0 such that x0 is an isolate critical point of φ, and φ ∈

C2
β(Br(x0)) for some β > sp/p−1;

then (−�p)sφr(x0) ≥ c(x0)u(x0)
p−1, where

φr(x) =
{

φ if x ∈ Br(x0),

u(x) otherwise; (2.3)

(VS4) u− ∈ Ls,p(RN).

A function u is a viscosity sub-solution of (1.1) if −u is a viscosity super-solution. Finally, 
u is a viscosity solution if it is both a viscosity super-solution and sub-solutions.

To prove the following results, we borrow ideas and techniques of [23, Proposition 11].

Lemma 2.7. Let c ∈ C(�). If u ∈ Ws,p(�) ∩ C(�) is a weak super-solution of (1.1) such that 
u ≥ 0 in �c then u is a viscosity super-solution of (1.1).

Proof. Let’s observe that, by our assumptions, u satisfies (VS1), (VS2) and (VS4). Thus, we 
only need verify property (VS3). We prove it by contradiction. Suppose the conclusion in the 
lemma is false. Then there exist x0 ∈ �, and φ ∈ C2(Br(x0)) such that

• φ(x0) = u(x0), and φ ≤ u in Br(x0) ⊂ �;
• Either (a) or (b) in (VS3) holds;
• (−�p)sφr(x0) < c(x0)|φr(x0)|p−2φr(x0) = c(x0)|u(x0)|p−2u(x0).

Then, by continuity (see [22, Lemma 3.8]), there is δ ∈ (0, r) such that

(−�p)sφr(x) < c(x)u(x)p−1

for all x ∈ Bδ(x0).
By [22, Lemma 3.9], there exist θ > 0, ρ ∈ (0, δ/2) and μ ∈ C2

0(Bρ/2(x0)) with 0 ≤ μ ≤ 1 and 
μ(x0) = 1 such that v = φr + θμ satisfies

sup
Bρ(x0)

|(−�p)sφr(x) − (−�p)sv(x)| < inf
Bδ/2(x0)

c(x)u(x)p−1 − (−�p)sφr(x).

Then

(−�p)sv(x) < c(x)u(x)p−1

for all x ∈ Bρ(x0). Then, v = φr ≤ u in Bρ(x0)
c and by [23, Lemma 10], for any ϕ ∈

W̃ s,p(Bρ(x0)), ϕ ≥ 0
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∫
R2N

(u(x) − u(y))p−1(ϕ(x) − ϕ(y))

|x − y|N+sp
dxdy ≥

∫
R2N

(v(x) − v(y))p−1(ϕ(x) − ϕ(y))

|x − y|N+sp
dxdy.

Therefore, by Proposition 2.4, u ≥ v in Bρ . Thus u(x0) = φr(x0) > φr(x0) + θ = v(x0) which 
is a contradiction. �
3. Strong minimum principle

Let us now prove a strong minimum principle for weak super-solutions of (1.1). To this end, 
we follow the ideas in [4] and prove first the next logarithmic lemma (see [12, Lemma 1.3]).

Lemma 3.1. Let c ∈ L1
loc(�), and u ∈ Ws,p(�) be a weak super-solution of (1.1). If u ≥ 0 a.e. 

in BR(x0) ⊂⊂ � then for any Br = Br(x0) ⊂ BR/2(x0) and 0 < h < 1 we have that∫
B2

r

1

|x − y|N+sp

∣∣∣∣log

(
u(x) + h

u(y) + h

)∣∣∣∣p dxdy ≤

CrN−sp

⎧⎪⎨⎪⎩h1−prsp

∫
Bc

2r

u−(y)p−1

|y − x0|N+sp
dy + 1

⎫⎪⎬⎪⎭ + ‖c‖L1(B2r )
,

where C depends only on N, s, and p.

Proof. Let 0 < r < R/2, 0 < h < 1 and φ ∈ C∞
0 (B3r/2) be such that

0 ≤ φ ≤ 1, φ ≡ 1 in Br and |Dφ| < Cr−1 in B3r/2 ⊂ BR.

Since v = (u + h)1−pφp ∈ W̃ s,p(�) and u is a super-solution of (1.1), we have that∫
B3r/2

c(x)
up−1(x)φp(x)

(u(x) + h)p−1
dx

≤
∫

R2N

(u(x) − u(y))p−1

|x − y|N+ps

(
φp(x)

(u(x) + h)p−1
− φp(y)

(u(y) + h)p−1

)
dxdy.

(3.4)

In the proof of Lemma 1.3 in [12], it is showed that right side of the above inequality is bounded 
by

CrN−sp

⎧⎪⎨⎪⎩h1−prsp

∫
(B2r )

c

(u−(y))p−1

|y − x0|N+sp
dy + 1

⎫⎪⎬⎪⎭
−

∫
(Br )2

1

|x − y|N+sp

∣∣∣∣log

(
u(x) + h

u(y) + h

)∣∣∣∣p dxdy,
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where C depends only on N, s, and p. Then, by (3.4) and using that 0 ≤ up−1(u + h)1−pφp ≤ 1
in B3r/2, the lemma holds. �
Lemma 3.2. Let c ∈ L1

loc(�) be a non-positive function and u be a weak super-solution of (1.1). 
Then,

(a) If u ≥ 0 a.e. in �c and u = 0 a.e. in � then u = 0 a.e. in RN .
(b) If � is bounded, and u ≥ 0 a.e. in �c then u ≥ 0 a.e. in �.

Proof. First, we prove (a). Let ϕ ∈ C∞
0 (�) be non-negative function, then

0 ≤
∫

R2N

(u(x) − u(y))p−1(ϕ(x) − ϕ(y))

|x − y|N+sp
dxdy

= −2
∫

�c×�

u(y)p−1ϕ(x)

|x − y|N+sp
dxdy

due to u = 0 a.e. in �. Thus, since u ≥ 0 a.e. in �c then u = 0 a.e. in �c. Hence u = 0 a.e. in R
N .

Now we prove (b). Since u ∈Ws,p(�) and u ≥ 0 in �c we have that u− ∈ W̃ s,p(�). Then

0 ≤ −
∫
�

c(x)(u−(x))pdx =
∫
�

c(x)(u(x))p−1u−(x)dx

≤
∫

R2N

(u(x) − u(y))p−1(u−(x) − u−(y))

|x − y|N+sp
dx

owing to c(x) ≤ 0 in � and u is a weak super-solution of (1.1). Observe that

(u(x) − u(y))p−1(u−(x) − u−(y)) ≤

≤
{

−(u−(x) − u−(y))p if x, y ∈ �−,

−(u−(x) + u+(y))p−1u−(x) if x ∈ �−, y ∈ �c−

consequently

0 ≤
∫

R2N

(u(x) − u(y))p−1(u−(x) − u−(y))

|x − y|N+sp
dx

≤ −
∫

�2−

|u−(x) − u−(y)|p
|x − y|N+sp

dxdy − 2
∫

�−×�c−

(u−(x) + u+(y))p−1u−(x)

|x − y|N+sp
dxdy

≤ 0.

Therefore u− ≡ 0 a.e. in RN . Then in both cases we have that u ≥ 0 a.e. in RN . �
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Now, we prove our strong minimum principle under the assumption that � is connected.

Lemma 3.3. Let c ∈ L1
loc(�) be a non-positive function and u ∈ Ws,p(�) be a weak super-

solution of (1.1).

1. If � is bounded and connected, and u ≥ 0 a.e. in �c then either u > 0 a.e. in � or u = 0 a.e. 
in �.

2. If � is connected, u ≥ 0 a.e. in RN then either u > 0 a.e. in � or u = 0 a.e. in �.

Proof. By Lemma 3.2, u ≥ 0 a.e. in RN .
Proceeding as in the proof of Theorem A.1 in [4] and using Lemma 3.1, we have that If � is 

bounded and connected u �= 0 a.e. in �, then u > 0 a.e. in �.
If � is unbounded and connected, then there is a sequence of bounded connected open sets 

{�n}n∈N such that �n ⊂ �n+1 ⊂ � for all n ∈ N and � = ∪n∈N�n. If u �= 0 a.e. in � then 
there is n0 ∈ N such that u �= 0 a.e. in �n for all n ≥ n0. Thus u > 0 a.e. in �n for all n ≥ n0, 
since for all n ≥ n0 we have that �n is a bounded connected open set, u is be a nonnegative 
weak super-solution of (−�)spu = c(x)up−1 in �n and u �= 0 a.e. in �n. Therefore u > 0 a.e.
in �. �

In fact, as our operator is non-local, we do not need to assume that the domain is connected.

Lemma 3.4. Let c ∈ L1
loc(�) be a non-positive function and u ∈ Ws,p(�) be a weak super-

solution of (1.1).

1. If � is bounded, and u ≥ 0 a.e. in �c then either u > 0 a.e. in � or u = 0 a.e. in �.
2. If u ≥ 0 a.e. in RN then either u > 0 a.e. in � or u = 0 a.e. in �.

Proof. By Lemma 3.3, we only need to show that u �= 0 a.e. in � if only if u ��= 0 a.e. in all 
connected components of �. That is, we only need to show that if u �≡ 0 in � then u �≡ 0 in all 
connected components of �.

Suppose, on the contrary, that there is a connected component U of � such that u = 0 a.e. 
in U . Since u is a weak super-solution of (1.1), it follows from Lemma 3.2 that u ≥ 0 in RN . 
Moreover, for any nonnegative function ϕ ∈ W̃ s,p(�) we get

0 ≤
∫

R2N

(u(x) − u(y))p−1(ϕ(x) − ϕ(y))

|x − y|N+sp
dxdy

= −2
∫
U

∫
Uc

(u(x))p−1ϕ(y)

|x − y|N+sp
dxdy

due to u = 0 a.e. in U . Then u = 0 a.e. in Uc, that is u = 0 a.e. in RN , which is a contradiction 
to the fact that u �= 0 a.e. in �. �

Then, by Lemmas 3.2 and 3.4, we get Theorem 1.2.
To conclude this section, we prove Theorem 1.4. The key of the proof is Theorem 1.2 and the 

next result.
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Lemma 3.5. Let c ∈ C(BR(x0)) and u ∈ Ws,p(BR(x0)) ∩ C(BR(x0)) be a weak super-solution 
of

(−�p)su = c(x)up−1 in BR(x0). (3.5)

If u ≥ 0 in BR(x0)
c then either u > 0 in BR(x0) or u = 0 a.e. in RN .

Proof. We will show that if there is x ∈ BR = BR(x0) such that u(x) = 0 then u = 0 a.e. in R
N .

We start observing that, by Lemma 3.2, u ≥ 0 a.e. in BR . Moreover, by Theorem 1.2, either 
u > 0 a.e. in BR or u = 0 a.e. in RN .

On the other hand, by Lemma 2.7, u is a viscosity super-solution of (3.5). Then, since u ≥ 0
in BR , for any ε > 0 and β > max{2, 2/2−s} the function

φε = −ε|x − x|β

is an admissible test function. Therefore

(−�p)sφε
r (x) ≥ c(x)φ

ε
r (x)

p−1 = 0

for some r ∈ (0, R − |x − x0|). See (2.3) for the definition of φε
r .

Then

0 ≤ εp−1
∫

Br(x)

|y − x|β(p−1)−N−psdy −
∫

Br (x0)
c

u(y)p−1

|y − x|N+ps
dy. (3.6)

Since β > max{2, 2/2−s}, we get

εp−1
∫

Br (x)

|y − x|β(p−1)−N−psdy = εp−1ωN

β(p − 1) − ps
rβ(p−1)−ps → 0 as ε → 0,

where ωN denotes the volume of the unit ball in RN . Then, by (3.6), we get u = 0 a.e. in Br(x)
c. 

Therefore u = 0 a.e. RN . �
Now we can prove Theorem 1.4.

Proof of Theorem 1.4. By Theorem 1.2, we have that u > 0 a.e. in � or u = 0 a.e. in RN . 
Suppose that there is x0 ∈ � such that u(x0) = 0. Since � is open, c, u ∈ C(�), there is R > 0
such that BR(x0) ⊂ � and c, u ∈ C(BR(x0)). Moreover, since u is a weak super-solution of (1.1), 
we have that u is a weak super-solution of

(−�p)su = c(x)up−1 in BR(x0).

Then, by Lemma 3.5, u = 0 a.e. in RN since u(x0) = 0. Therefore u > 0 in � or u = 0 in �. �
Remark 3.6. In the case u ≥ 0 a.e. in Rn, the non-positivity assumption over the function c is 
not necessary, see Remark 1.3.
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4. A Hopf lemma

First, we can show the Hopf’s lemma in a ball.

Lemma 4.1. Let B be a ball in RN of radius R > 0, c, u ∈ C(B), u be a weak super-solution of

(−�p)su = c(x)up−1 in B

and δ(x) = dist(x, Bc). If u ≥ 0 a.e. in RN or c(x) ≤ 0 in B and u ≥ 0 a.e. in Bc then either 
u ≡ 0 a.e. in RN or

lim inf
B�x→x0

u(x)

δs(x)
> 0 (4.7)

for all x0 ∈ ∂B .

Proof. By Theorem 1.4 and Remark 3.6, we have that either u = 0 a.e. in RN or u > 0 in B . 
Suppose u �≡ 0 in B , then we want to show that (4.7) holds true for all x0 ∈ ∂B .

By Theorem 2.3, there exists ρ = ρ(N, p, s, B) > 0 such that δs is a weak solution of 
(−�p)sδs = f in Bρ = {x ∈ B : δ(x) < ρ} for some f ∈ L∞(Bρ). Let K ⊂⊂ Bc

ρ ∩B be a closed 
ball and α > 0 be a constant (to be determined later). Owing to Lemma 2.2, w = δs + αχK is a 
weak solution of (−�p)sw = f + hα in Bρ where

hα(x) = 2
∫
K

(δs(x) − δs(y) − α)p−1 − (δs(x) − δs(y))p−1

|x − y|N+sp
dxdy

for a.e. x ∈ Bρ . Since u ∈ L∞(B) and dist(K, Bρ) > 0, it is clear that

hα(x) → −∞ uniformly in Bρ as α → ∞.

Then, we choose α large enough such that

sup{f (x) + hα(x) : x ∈ Bρ} ≤ inf{c(x)(u(x))p−1 : x ∈ Bρ}. (4.8)

Let ε ∈ (0, 1) be such that

ε(Rs + α) < inf{u(x) : x ∈ B,δ(x) ≥ ρ}.

Thus v = εw ≤ u in Bc
ρ and using (4.8) we have that for all ϕ ∈ W̃ s,p(�), ϕ ≥ 0∫
R2N

(v(x) − v(y))p−1(ϕ(x) − ϕ(y))

|x − y|N+sp
dxdy

≤
∫

R2N

(u(x) − u(y))p−1(ϕ(x) − ϕ(y))

|x − y|N+sp
dxdy.
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Then, by Proposition 2.4, v ≤ u in Bρ . Therefore

ε ≤ u(x)

δs(x)
∀x ∈ Bρ.

Thus (4.7) holds true for all x0 ∈ ∂B . �
To conclude this section, we show our Hopf Lemma.

Proof of Theorem 1.5. By Theorem 1.4 and Remark 3.6, we have that either u = 0 a.e. in RN

or u > 0 in �. Suppose u �≡ 0 in �. Since � satisfies the interior ball condition in x0 ∈ ∂�, there 
is a ball B ⊂ � such that x0 ∈ ∂B . Then, by Lemma 4.1, (1.2) holds true. �
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