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Abstract We obtain convolution inequalities in Lebesgue and Lorentz spaces with power
weights when the functions involved are assumed to be radially symmetric. We also present
applications of these results to inequalities for Riesz potentials of radial functions in weighted
Lorentz spaces and embedding theorems for radial Besov spaces with power weights.
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1 Introduction

The aim of this paper is to study boundedness properties of the convolution operator

( f ∗ g)(x) =
∫

Rn

f (x − y)g(y) dy
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168 P. L. De Nápoli, I. Drelichman

in Lebesgue and Lorentz spaces with power weights, when restricted to radially symmetric
functions.

To state our results, first we need to introduce some notation. Given a measurable function
f in R

n , we denote its distribution function with respect to the weight w(x) = |x |αp by

μ f (s) =
∫

{x :| f (x)|>s}
|x |αp dx, s > 0.

The weighted Lorentz space L(p, q;α) is the space of all measurable functions in R
n

such that ‖ f ‖p,q;α is finite, with

‖ f ‖p,q;α =
⎛
⎝q

∞∫

0

sq−1μ f (s)
q
p ds

⎞
⎠

1
q

, 1 < p < ∞, 1 ≤ q < ∞,

‖ f ‖p,∞;α = sup
s>0

sμ f (s)
1
p , 1 ≤ p < ∞.

When p = q , we recover the weighted Lebesgue space L(p, p;α) = L(p;α) with

‖ f ‖p,α =
⎛
⎝

∫

Rn

| f (x)|p|x |αp dx

⎞
⎠

1
p

, 1 ≤ p < ∞

‖ f ‖∞;α = ess supx∈Rn | f (x)w(x)|.
When α = 0 we simply write L p . Finally, by Lrad(p, q;α), Lrad(p, α) or L p

rad we denote
the subspaces of radial functions of the corresponding spaces.

Following [8], given functional spaces X, Y, Z , we shall write X ∗ Y ⊂ Z to indicate that
for functions f ∈ X, g ∈ Y , then f ∗ g ∈ Z and there exists a positive constant C such that

‖ f ∗ g‖Z ≤ C‖ f ‖X‖g‖Y .

Then, the classical Young’s inequality reads

Theorem 1 (Young’s inequality)

L p ∗ Lq ⊂ Lr

for 1 ≤ p, q, r ≤ ∞, provided that 1
r = 1

p + 1
q − 1.

In Lorentz spaces, the result is due to O’Neil [12]:

Theorem 2

L(p0, q0) ∗ L(p1, q1) ⊂ L(p, q)

for 1 < p0, p1, p < ∞, provided that 1
p = 1

p0
+ 1

p1
− 1 and 0 ≤ 1

q ≤ 1
q0

+ 1
q1

≤ 1.

In the case of power weights, the above theorems were generalized by Kerman [8]. Partial
results for the L p case can also be found in [2].

Theorem 3 [8, Theorem 3.1]

L(p;α) ∗ L(q;β) ⊂ L(r;−γ )

provided
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Weighted convolution inequalities for radial functions 169

1. 1
r = 1

p + 1
q + α+β+γ

n − 1, 1 < p, q, r < ∞, 1
r ≤ 1

p + 1
q ,

2. α < n
p′ , β < n

q ′ , γ < n
r ,

3. α + β ≥ 0, β + γ ≥ 0, γ + α ≥ 0.

Theorem 4 [8, Theorem 4.1]

L(p0, q0;α) ∗ L(p1, q1;β) ⊂ L(p, q;−γ )

provided

1. 1
p = 1

p0
+ 1

p1
+ α+β+γ

n − 1,< p0, p1, p < ∞,≤ 1
q ≤ 1

q0
+ 1

q1
≤ 1,

2. α < n
p′

0
, β < n

p′
1
, γ < n

p ,

3. α + β > 0, β + γ > 0, γ + α > 0.

Further weighted inequalities for convolutions can be found in [1,9,11,13] (see also refer-
ences therein). However, the fact that one can improve Theorems 3 and 4 when the functions
involved are assumed to be radial was seemingly overlooked, and is the object of the present
paper. Namely we will prove:

Theorem 5

Lrad(p;α) ∗ Lrad(q;β) ⊂ Lrad(r;−γ )

provided

1. 1
r = 1

p + 1
q + α+β+γ

n − 1, 1 < p, q, r < ∞, 1
r ≤ 1

p + 1
q ,

2. α < n
p′ , β < n

q ′ , γ < n
r ,

3. α + β ≥ (n − 1)(1 − 1
p − 1

q ), β + γ ≥ (n − 1)( 1
r − 1

q ), γ + α ≥ (n − 1)( 1
r − 1

p )

4. max{α, β, γ } > 0 or α = β = γ = 0.

Theorem 6

Lrad(p0, q0;α) ∗ Lrad(p1, q1;β) ⊂ Lrad(p, q;−γ )

provided

1. 1
p = 1

p0
+ 1

p1
+ α+β+γ

n − 1 , 1 < p0, p1, p < ∞, 0 ≤ 1
q ≤ 1

q0
+ 1

q1
≤ 1,

2. α < n
p′

0
, β < n

p′
1

, γ < n
p ,

3. α + β > (n − 1)(1 − 1
p0

− 1
p1

), β + γ > (n − 1)( 1
p − 1

p1
), γ + α > (n − 1)( 1

p − 1
p0

),

4. max{α, β, γ } > 0.

Remark 1 Theorem 5 also holds for r = 1 and will be proved separately (see Theorem 8).
Moreover, it can be seen from the proof of Theorem 5 that it also holds for p = 1 (or q = 1,
but not both), provided the inequalities in α+β, β +γ and α+γ are strict and β < n( 1

r − 1
p )

(respectively, α < n( 1
r − 1

p )).

Notice that the hypotheses of Theorem 3 are more restrictive than those of Theorem 5
(see Fig. 1 below for a comparison in a special case). Indeed, in the first case, at most one
among α, β, γ can be negative, while in the latter, this condition is relaxed to at most two.
Moreover, the condition on α + β in Theorem 5 is only seemingly more restrictive than that
of Theorem 3 when 1 − 1

p − 1
q > 0, since in that case one has that

α + β = n

(
1 − 1

p
− 1

q
+ 1

r
− γ

n

)
> n

(
1 − 1

p
− 1

q

)
> (n − 1)

(
1 − 1

p
− 1

q

)
.
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170 P. L. De Nápoli, I. Drelichman

β

α1/2

1/2

β

α1

1

(a)Non-radial case (Theorem 3) (b)Radial case (Theorem 5)

Fig. 1 Comparison of admissible values in the αβ-plane when n = 2, p = q = 2, r = 4

Similar considerations apply also to the conditions on α + γ and β + γ , and in the case
of Theorem 6 compared to Theorem 4.

The restriction to radially symmetric functions is natural, for instance, for applications to
partial differential equations in R

n , but one could also be tempted to ask whether one can
improve the conditions on α+β, α+γ and β+γ of Theorem 3 by restricting the convolution
to functions invariant with respect to a different subgroup of the orthogonal group. However,
the answer is negative, as we will show below (see Remark 3).

The rest of the paper is as follows. In Sect. 2, we prove some preliminary results; in
Sect. 3, we prove Theorem 5 and in Sect. 4, we outline the proof of Theorem 6 and obtain, as
a corollary, weighted estimates for fractional integrals of radial functions in Lorentz spaces.
Finally, in Sect. 5, we present embedding theorems with power weights for radial Besov
spaces.

2 Preliminary results

First, we show that the conditions of Theorem 3 on α+β, β+γ and α+γ cannot be improved
for arbitrary functions, or indeed for any set of functions invariant with respect to a subgroup
of the orthogonal group other than the radial functions. This can be done by applying the
convolution inequality to the heat kernel, as was done in [2] to prove the necessity of the
scaling and integrability conditions (see [2, Theorem 2.1]).

Remark 2 If

L(p;α) ∗ L(q;β) ⊂ L(r;−γ )

then α + β ≥ 0, α + γ ≥ 0 and β + γ ≥ 0.

Proof One can verify easily that L(p;α)∗L(q;β) ⊂ L(r;−γ ) implies the scaling condition

1

r
= 1

p
+ 1

q
+ α + β + γ

n
− 1

(or see [2] for proof). We will first show that α + β ≥ 0.
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Weighted convolution inequalities for radial functions 171

Let Wt (x) = (4π t)−n/2e−|x |2/(4t) be the heat kernel in R
n and let Wt,y(x) = Wt (x − y)

for y ∈ R
n . Then, we have Wt,y ∗ Wt,−y = W2t whence, if the claimed inclusion holds, one

gets

‖W2t‖r;−γ ≤ C‖Wt,y‖p;α‖Wt,−y‖q;β ∀ y ∈ R
n,∀ t > 0. (1)

Now, setting z = x√
2t

, we have that

‖W2t‖r;−γ = (2t)(−n−γ+n/r)/2‖W1‖r;−γ = t (−n−γ+n/r)/2C(n, γ, r).

Similarly, setting z = x−y√
t

,

‖Wt,y‖p;α = t (−n+α+n/p)/2

⎛
⎝

∫

Rn

|W1(z)|p
∣∣∣z + y√

t

∣∣∣αp
dz

⎞
⎠

1/p

,

and setting z = x+y√
t

,

‖Wt,−y‖q;β = t (−n+β+n/q)/2

⎛
⎝

∫

Rn

|W1(z)|q
∣∣∣∣z − y√

t

∣∣∣∣
βq

dz

⎞
⎠

1/q

.

Therefore, replacing in (1) and noting that the powers of t cancel out due to the scaling
condition, one has that, for some C > 0 depending only on the parameters p, q, r, α, β, γ

and the dimension n,

C ≤
⎛
⎝

∫

Rn

|W1(z)|p
∣∣∣∣z + y√

t

∣∣∣∣
αp

dz

⎞
⎠

1/p ⎛
⎝

∫

Rn

|W1(z)|q
∣∣∣∣z − y√

t

∣∣∣∣
βq

dz

⎞
⎠

1/q

.

Choosing y = λ
√

t y0 for some y0 ∈ R
n fixed with |y0| = 1, we get, for any λ > 0,

Cλ−α−β ≤
⎛
⎝

∫

Rn

|W1(z)|p
∣∣∣ z

λ
+ y0

∣∣∣αp
dz

⎞
⎠

1/p ⎛
⎝

∫

Rn

|W1(z)|q
∣∣∣ z

λ
− y0

∣∣∣βq
dz

⎞
⎠

1/q

whence, letting λ → +∞, we deduce that α + β ≥ 0, since otherwise we would get
‖W1‖p‖W1‖q ≥ +∞, a contradiction.

In a similar way, using the relations

Wt ∗ Wt,y = W2t,y

and

Wt,y ∗ Wt = W2t,y

(or a duality argument) we can prove the necessity of the conditions β + γ ≥ 0, α + γ ≥ 0.

Remark 3 A natural question is whether the conditions α+β ≥ 0, α+γ ≥ 0 and β +γ ≥ 0
can be improved, if we restrict our attention to functions invariant by some subgroup G of
the orthogonal group O(n), for instance, if these conditions can be relaxed for functions in
R

3 with cylindrical symmetry, which are invariant with respect to rotations in the x, y-plane
(a subgroup of O(3) isomorphic to O(2)).
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172 P. L. De Nápoli, I. Drelichman

The argument in the preceding remark also shows that they cannot be improved if the
action of G on the sphere Sn−1 has a fixed point, i.e., if there exist some y0, |y0| = 1, such
that

g · y0 = y0 ∀ g ∈ G.

(as in the case of functions with cylindrical symmetry in R
3). It is enough to observe that if

we choose y0 in the previous argument as that fixed point, then the functions Wt,y , Wt,−y

and W2t , with y = λ
√

t y0 as before are G-invariant, so the same argument applies.

Now, note that a key point in the proof of Theorems 3 and 4 is the relationship between
the convolution operator and the fractional integral, or Riesz potential, given by

(Tγ f )(x) =
∫

Rn

f (y)

|x − y|γ dy, 0 < γ < n. (2)

Indeed, the proof in [8] invokes known weighted estimates for this operator proved by Stein
and Weiss [16]. We will follow that method of proof but use instead the following result
proved by the authors and Durán in [4, Theorem 1.2], which gives the weighted inequalities
when Tγ is restricted to radial functions. The result for p > 1 was previously proved by
different means in [14, Theorem 1.2]. An alternative proof for all p ≥ 1 can also be found
in [6, Theorem 5.1], where also sharpness of the result is proved.

Theorem 7 [4, Theorem 1.2] Let n ≥ 1, 0 < γ < n, 1 < p < ∞, α < n
p′ , β < n

q , α +β ≥
(n − 1)( 1

q − 1
p ), and 1

q = 1
p + γ+α+β

n − 1. If p ≤ q < ∞, then the inequality

‖Tγ f ‖q;−β ≤ C‖ f ‖p;α

holds for all radially symmetric f ∈ L p(Rn, |x |pαdx), where C is independent of f . If
p = 1, then the result holds provided α + β > (n − 1)( 1

q − 1).

Once we establish Theorem 6, we will also be able to extend this result to Lorentz spaces.
However, for now, we postpone a proof of this fact and prove that, as an almost immediate
consequence of the previous theorem, one has the following special case of our convolution
inequalities that we will need later:

Theorem 8 If, for 1 < p, q < ∞, we have

2 = 1

p
+ 1

q
+ α + β + γ

n
,

1

p
+ 1

q
≥ 1,

α <
n

p′ , β <
n

q ′ , 0 < γ < n,

and

α + β ≥ (n − 1)

(
1 − 1

p
− 1

q

)
, (3)

then

Lrad(p;α) ∗ Lrad(q;β) ⊂ Lrad(1;−γ ).

The result also holds for p = 1 (or q = 1) provided that the inequality in (3) is strict.
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Weighted convolution inequalities for radial functions 173

Proof It suffices to consider the case f, g ≥ 0. Then, by Tonelli’s theorem,
∫

Rn

( f ∗ g)(x)|x |−γ dx =
∫

Rn

(Tγ f )(x)g(−x) dx

whence, by Hölder’s inequality and Theorem 7, given our conditions, we obtain

‖ f ∗ g‖1;−γ ≤ C‖Tγ f ‖q ′;−β‖g‖q;β ≤ C‖ f ‖p;α‖g‖q;β

The above result coincides with Theorem 5 for r = 1. The result for other values of r will
be obtained by duality and multilinear interpolation. The next two results make this explicit.

Lemma 1 Suppose a and b are real numbers and 1 < r ≤ ∞, 1 ≤ s < ∞. Let f, g be
non-negative functions on R

n, f radially symmetric, and define the linear operator T f by

(T f g)(x) =
∫

Rn

f (x − y)g(y) dy.

Then,

T f : Lrad(r; a) → Lrad(s; b),

with operator norm C is equivalent to

T f : Lrad(s′; −b) → Lrad(r ′; −a)

with the same norm.

Proof It follows easily by using duality. Or follow the proof in [8, Lemma 3.2] restricting
the operator to radial functions.

Theorem 9 [3] Suppose T is a multilinear operator satisfying

T : L(pi , wi ) × L(p′
i , w

′
i ) → L(p′′

i , w′′
i )

with norm Ki , i = 0, 1. Then,

T : L(pt , wt ) × L(p′
t , w

′
t ) → L(p′′

t , w′′
t )

with norm at most K 1−t
0 K t

1, where pt , p′
t , p′′

t , wt , w
′
t and w′′

t are given by

1

pt
= 1 − t

p0
+ t

p1
,

1

qt
= 1 − t

q0
+ t

q1
and wt = w

pt (1−t)/p0
0 w

pt t/p1
1 .

Remark 4 When wi = |x |αi pi , w′
i = |x |α′

i p′
i , w′′

i = |x |α′′
i p′′

i , clearly one has αt = (1 −
t)α0 + tα1, α′

t = (1 − t)α′
0 + tα′

1 and α′′
t = (1 − t)α′′

0 + tα′′
1 .

Remark 5 Since we will actually use the above theorem to interpolate between the subspaces
of radial functions of the corresponding spaces, a comment is in order. In general, one cannot
freely interpolate between subspaces and guarantee that the intermediate space is the expected
subspace. However, the subspaces Lrad(p, α) in R

n are isomorphic to spaces L(p, α + n−1
p )

in (0,∞), so one may interpolate in the latter setting and use the fact that the interpolation
commutes with the standard isomorphism.
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174 P. L. De Nápoli, I. Drelichman

3 Convolution in weighted Lebesgue spaces

In this section, we prove Theorem 5. First, we claim the following:

Remark 6 By Theorem 3, it suffices to establish Theorem 5 in the following cases:

1. α + β ≤ 0, γ > 0
2. β + γ ≤ 0, α > 0
3. α + γ ≤ 0, β > 0

Proof We may assume max{α, β, γ } = γ > 0 since the other cases follow similarly. More-
over, by symmetry between α and β, it suffices to consider the following three possibilities:

γ > 0 ≥ α ≥ β. This is contained in case 1 above.
γ ≥ α ≥ β ≥ 0, γ = 0. This is contained in Theorem 3.
γ ≥ α ≥ 0 ≥ β, γ = 0. If α + β ≤ 0, it reduces to case 1 above. If instead α + β > 0,
it follows that α + γ ≥ 0, β + γ ≥ 0 and the result is again contained in Theorem 3.

Proof (Theorem 5) We begin by considering the case α + β ≤ 0, γ > 0.
Now, α + β ≤ 0 clearly implies 1

p + 1
q ≥ 1, so this case is analogous to the first case of

the proof of Theorem 3 given in [8], and the result follows by interpolation between Hölder’s
inequality and Theorem 8, that is, using Theorem 9 with the endpoints

r0 = ∞,
1

p0
+ 1

q0
= 1, α0 = β0 = γ0 = 0

and

r1 = 1, 2 = 1

p1
+ 1

q1
+ α1 + β1 + γ1

n
,

1

p1
+ 1

q1
≥ 1

α1 <
n

p′
1
, β1 <

n

q ′
1
, 0 < γ1 < n

α1 + β1 ≥ (n − 1)

(
1 − 1

p1
− 1

q1

)
.

Hence, t = 1
r and α1 = rα , β1 = rβ , γ1 = rγ .

We need to check that the hypotheses of Theorem 8 are satisfied. Clearly 0 < γ1 < n.
The remaining conditions depend on the choice of p0. We begin by considering β1 < n

q ′
1
,

which is equivalent to

1

p0
<

1 − 1
q − β

n

1 − 1
r

. (4)

In order to choose p0, we consider the following two cases:

Case 1: If the right-hand side is greater than 1, that is 1
r − 1

q >
β
n , we choose p0 = 1.

Then, q0 = ∞ , 1
p1

= r( 1
p + 1

r − 1) and 1
q1

= r
q . Given this, one can check that condition

2 = 1
p1

+ 1
q1

+ α1+β1+γ1
n follows from 1

r = 1
p + 1

q + α+β+γ
n − 1, that condition α1 < n

p′
1

follows from α < n
p′ , that condition 1

p1
+ 1

q1
≥ 1 follows from 1

p + 1
q ≥ 1, and that condition

α1 + β1 ≥ (n − 1)(1 − 1
p1

− 1
q1

) follows from α + β ≥ (n − 1)(1 − 1
p − 1

q ).

Case 2: If 1
r − 1

q ≤ β
n , we choose 1

p0
= (1 − ε)(1 − 1

q − β
n )/(1 − 1

r ) for small positive ε that

we will choose later. Then, 1
q0

= [ 1
q + β

n − 1
r + ε(1 − 1

q − β
n )]/(1 − 1

r ), 1
p1

= r [ 1
p − (1 − ε)
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Weighted convolution inequalities for radial functions 175

(1 + 1
q + β

n )] and 1
q1

= r [ 1
r − β

n − ε(1 − 1
q − β

n )]. Therefore, condition α1 < n
p′

1
follows

from the scaling condition and the fact that γ > 0, provided we choose ε < γ/( n
q ′ − β),

condition 1
p1

+ 1
q1

≥ 1 follows from 1
p + 1

q ≥ 1, condition 2 = 1
p1

+ 1
q1

+ α1+β1+γ1
n follows

from 1
r = 1

p + 1
q + α+β+γ

n − 1 and condition α1 + β1 ≥ (n − 1)(1 − 1
p1

− 1
q1

) follows from

α + β ≥ (n − 1)(1 − 1
p − 1

q ).
This completes the case α + β ≤ 0 , γ > 0. By Lemma 1, one has then the result for

γ + β ≤ 0 , α > 0 and α + γ ≤ 0 , β > 0, which in view of Remark 6 complete the proof.

Remark 7 If p = 1, as mentioned in Remark 1, one can choose p0 = p1 = 1 above, since
obviously 1

p + 1
q ≥ 1. However, by Eq. (4), in this case one needs β < n( 1

r − 1
q ) to follow

through the proof. By symmetry, if q = 1, one needs α < n( 1
r − 1

p ).

4 Convolution in weighted Lorentz spaces

Proof (Theorem 6). The proof can be carried out exactly as the proof of Theorem 4 given in
[8], once we establish that, under the assumptions of the theorem, the restricted weak type
inequality

∫

H

(χF ∗ χG)(x)|x |−γ p dx

≤ C

⎛
⎝

∫

F

|x |αp0 dx

⎞
⎠

1
p0

⎛
⎝

∫

G

|x |βp1 dx

⎞
⎠

1
p1

⎛
⎝

∫

H

|x |γ p dx

⎞
⎠

1
p′

holds for F, G, H ⊂ R
n of finite measure, such that χF and χG are radial. Indeed, if

1
p ≤ 1

p0
+ 1

p1
, by Hölder’s inequality

∫

H

(χF ∗ χG)(x)|x |−γ p dx ≤ C‖χF ∗ χG‖p;−γ

⎛
⎝

∫

H

|x |−γ p dx

⎞
⎠

1
p′

and the result follows by Theorem 5. If instead one has 1
p > 1

p0
+ 1

p1
, the result holds even

for non-necessarily radial functions and is contained in [8, Proposition 4.2].
Since the rest of the proof is as in [8], noticing again that one may interpolate between

radial subspaces for similar reasons as those of Remark 5, we leave the details to the reader.

As an application of Theorem 6, one has the following result for Riesz potentials [defined
by (2)] of radial functions in Lorentz spaces with power weights, which extends the result
obtained in [8, Theorem 4.5] for non-necessarily radial functions in a similar way.

Theorem 10 Let 0 < λ < n, 1 < p0 < ∞, α < n
p′

0
, γ < n

p , α + γ > (n − 1)( 1
p − 1

p0
) and

1
p = 1

p0
+ α+λ+γ

n − 1. Then,

Tλ : Lrad(p0, q0;α) → Lrad(p, q;−γ )

for q ≥ q0.
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Proof Assume f radial. Then, by Theorem 6,

‖Tλ f ‖p,q;−γ ≤ C‖|x |−λ‖p1,q1;β ‖ f ‖p0,q0;α

provided we also have 1
p = 1

p0
+ 1

p1
+ α+β+γ

n − 1, β < n
p′

1
, α + β > (n − 1)(1 − 1

p0
− 1

p1
),

β + γ > (n − 1)( 1
p − 1

p1
) and max{α, β, γ } > 0.

We claim that it suffices to take q1 = ∞, 1
p1

< min{ 1
p′

0
, 1

p } and let β
n = λ

n − 1
p1

. Indeed,

with this choice of parameters, ‖|x |−λ‖p1,q1;β < ∞ and 1
p = 1

p0
+ α+λ+γ

n − 1. Moreover,
by the conditions on α and γ and the choice of p1,

α + β = n

(
1

p
− 1

p0
− 1

p1
− γ

n
+ 1

)
> (n − 1)

(
1 − 1

p0
− 1

p1

)

and

β + γ = n

(
1

p
− 1

p0
− 1

p1
− α

n
+ 1

)
> (n − 1)

(
1

p
− 1

p1

)
.

Finally, since by the condition on p1

α + β + γ

n
= 1

p
+ 1

p′
0

− 1

p1
> 0,

one clearly has max{α, β, γ } > 0, as required.

5 Applications to weighted embeddings of radial Besov spaces

In this section, we show how Theorem 5 can be used to obtain weighted embedding theo-
rems for radial Besov spaces with power weights. We will follow closely the proof recently
given by Meyries and Veraar in the non-radial case [10] (see also references therein for
previously known results); this will allow us to be sketchy in the standard part of the
proof and to point out precisely in which steps one can obtain improvements in the radial
case.

One should note that the result in [10] is not the more general available, since results
for general A∞ weights (which include power weights) have been obtained by Haroske and
Skrzypczak in [7], where also compactness of the embeddings and entropy numbers are
analyzed. However, the proofs in [10] are much simpler if one is interested in obtaining the
embeddings for power weights only. Moreover, they have the advantage of being presented
in such a way that they also hold for the general vector-valued case.

To keep our presentation as simple as possible, we will only consider the scalar case, but
the vector-valued case can be obtained as in [10] using Lemma 3 and Theorem 11 below
instead of [10, Lemma 4.5] and [10, Proposition 4.1], respectively. The same can be done
if one is interested in obtaining the improvements in the radial case for embeddings for
Triebel–Lizorkin and potential spaces also presented in [10].

Finally, we remark that until now only unweighted embeddings were known to improve
in the radial case with respect to the non-radial case, both in the Besov and Triebel–Lizorkin
settings (see, for instance, [15]). The authors together with N. Saintier are currently working
in A∞ weighted versions in the radial case and their compactness properties [5], but they
require completely different, more sophisticated techniques.

We begin with some necessary definitions.
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Definition 1 (Construction of the Littlewood-Paley partition) Let ϕ ∈ S (Rn) be such that
0 ≤ ϕ̂(ξ) ≤ 1 for all ξ ∈ R

n , ϕ̂(ξ) = 1 if |ξ | ≤ 1, and ϕ̂(ξ) = 0 if |ξ | ≥ 3
2 . Let ϕ̂0 = ϕ̂, and

ϕ̂k(ξ) = ϕ̂(2−kξ) − ϕ̂(2−k+1ξ) for all ξ ∈ R
n and k ≥ 1.

Finally, let � be the set of all sequences (ϕn)n≥0 constructed in the above way.

For ϕ as in the definition and f ∈ S ′(Rn) one sets

Sk f := ϕk ∗ f = F−1[ϕ̂k f̂ ],
which belongs to C∞(Rn) ∩ S ′(Rn). Since

∑
k≥0 ϕ̂k(ξ) = 1 for all ξ ∈ R

n , we have∑
k≥0 Sk f = f in the sense of distributions.

Definition 2 Let p, q ∈ [1,∞], s ∈ R. The (inhomogeneous) Besov space Bs(p, q;α) is
defined as the space of all f ∈ S ′(Rn) for which

‖ f ‖Bs (p,q;α) :=
⎛
⎝∑

k≥0

2ks‖Sk f ‖q
p;α

⎞
⎠

1/q

< ∞.

with the usual modifications for q = ∞. The corresponding radial version will be denoted
by Bs

rad(p, q;α). The following elementary embedding for Besov spaces is well known and
will be useful later to prove the main embedding theorem.

Lemma 2 For all q0, q1 ∈ [1,∞], p ∈ [1,∞], s ∈ R, γ > −n and ε > 0 there holds

Bs+ε
rad (p, q0, γ /p) ↪→ Bs

rad(p, q1, γ /p).

Proof See [17, Section 2.3.2].

With the above definitions, we are ready to state a weighted Nikol’skij–Plancherel–Pólya
type inequality for radial functions (Theorem 11) which is the key step in the embedding
proof. First, we prove the following elementary lemma.

Lemma 3 If η ∈ S (Rn) is a Schwartz function and gx (z) = χB(x,1)(z), there holds |η(x −
y)| ≤ Tγ gx (y) for all 0 < γ < n.

Proof Since η is a Schwartz function, there is a constant C such that |η(y)| ≤ C(1 + |y|)−γ

for all y ∈ R
n , whence, noting that if z ∈ B(x, 1) then |z − y| < 1 + |x − y|, we have

Tγ gx (y) =
∫

B(x,1)

1

|z − y|γ dz ≥ C

(1 + |x − y|)γ ≥ |η(x − y)|.

Theorem 11 Let 1 < p0, p1 ≤ ∞. Let γ0, γ1 > −n. Then, if f : R
n → R is a radial

function such that supp( f̂ ) ⊆ {x ∈ R
n : |x | < 1}. Then

‖ f ‖p1; γ1
p1

≤ C‖ f ‖p0; γ0
p0

provided that either

p0 ≥ p1 and
γ0

p0
− γ1

p1
> n

(
1

p1
− 1

p0

)
(5)

or

p0 < p1 and
γ0

p0
− γ1

p1
≥ (n − 1)

(
1

p1
− 1

p0

)
. (6)
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Remark 8 It is immediate to see that the above Theorem is an improvement of [10, Proposition
4.1] in the radial case, since that Proposition has the hypothesis γ0

p0
− γ1

p1
≥ 0 when p0 < p1.

Proof (Theorem 11) It suffices to consider the case p0 < p1 and γ0
p0

− γ1
p1

< 0 since otherwise
the result is contained in [10, Proposition 4.1]. We consider separately p1 = ∞ and p1 < ∞.
Moreover, one can check that in order to have γ0

p0
− γ1

p1
< 0, necessarily γ1 ≥ γ0 and equality

can only hold if they are both negative. We will divide the proof into the following (possibly
overlapping) cases:

1. p1 = ∞,
2. p0 < p1 < ∞, 0 ≤ γ0 < γ1,
3. p0 < p1 < ∞, −n < γ0 < n(p0 − 1).

Case 1: p0 < ∞, p1 = ∞. Then, under our assumptions, 0 > γ0 > −(n − 1), so that that
there exists ε ∈ (0, 1) such that γ0 = −(n − 1)(1 − ε).

Assume first that f ∈ L∞(Rn) and let η ∈ S (Rn) be such that supp(̂η) ⊆ B2 and η̂ = 1
on B1. Then one has f = f ∗ η and, by Lemma 3,

| f (x)| ≤
∫

Rn

| f (y)||η(x − y)| dy

≤
∫

Rn

| f (y)||Tγ gx (y)| dy

≤
∫

Rn

| f (y)|1−p0/r | f (y)|p0/r |Tγ gx (y)| dy

≤ ‖ f ‖1−p0/r∞
∫

Rn

|Tγ ( f p0/r )(y)||gx (y)| dy

for a parameter r , such that p0 < r < ∞ to be chosen later. Then, using Hölder’s inequality,
the fact that for any q ∈ [1,∞], ‖gx‖q ′ < C and Theorem 7,

‖ f ‖L∞(Rn) ≤ ‖ f ‖1−p0/r∞ ‖Tγ ( f p0/r )‖q‖gx‖q ′

≤ C‖ f ‖1−p0/r∞ ‖| f |p0/r‖r;γ0/r

≤ C‖ f ‖1−p0/r∞ ‖ f ‖p0/r
p0;γ0/p0

provided that 1
q = 1

r + γ0/r+γ
n − 1, q ≥ r , 0 < γ < n, γ0

r < n
r ′ ,

γ0
r ≥ (n − 1)( 1

q − 1
r ).

At this point, we choose q and r such that p0 < r < q and ε = r
q , so that γ0 =

(n − 1)( r
q − 1).

Therefore, γ0
r = (n − 1)( 1

q − 1
r ) which proves condition γ0

r ≥ (n − 1)( 1
q − 1

r ).

Condition γ0
r < n

r ′ follows trivially from the fact that γ0 < 0.
From the scaling condition and the fact that γ0

r = (n−1)( 1
q − 1

r ), it follows that n−γ = 1
r −

1
q . Hence, n −γ > 0 follows from q > r and n −γ < n follows from 1

r − 1
q = 1

r (1−ε) < n.

Case 2: p0 < p1 < ∞, 0 ≤ γ0 < γ1. Then, by case 1,

‖ f ‖p1;γ1/p1 = ‖ f ‖p0/p1
p0;γ0/p0

‖| f |p1−p0 |x |γ1−γ0‖1/p1∞
≤ C‖ f ‖p0/p1

p0;γ0/p0
‖| f |p1−p0 |x |γ1−γ0‖1/qp1

q;γ
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with q = p0
p1−p0

and γ = γ0 − p0
p1−p0

(γ1 −γ0), provided γ ≥ −(n − 1), which follows from

the fact that γ0
p0

− γ1
p1

≥ (n − 1)( 1
p0

− 1
p1

). Hence, by the choice of q and γ ,

‖ f ‖p1;γ1/p1 ≤ C‖ f ‖p0/p1
p0;γ0/p0

‖ f ‖1/p0−1/p1
p0;γ0/p0

≤ C‖ f ‖p0;γ0/p0 (7)

where the last inequality follows from p0 < p1.

Case 3: p0 < p1 < ∞, −n < γ0 < n(p0 − 1). By Theorem 8 and Lemma 1 we have

‖ f ‖p1;γ1/p1 = ‖ f ∗ η‖p1;γ1/p1

≤ C‖|x |aη‖∞‖ f ‖p0;γ0/p0

≤ C‖ f ‖p0;γ0/p0

provided that 1
p1

= 1
p0

+ a+γ0/p0−γ1/p1
n − 1, −γ1 < n, γ0

p0
< n

p′
0
, 1

p1
≤ 1

p0
, 0 < a < n, and

γ0
p0

− γ1
p1

≥ (n−1)( 1
p1

− 1
p0

). All the conditions are trivially satisfied except 0 < a < n which,

because of the scaling condition, is equivalent to 0 <
n+γ1

p1
− n+γ0

p0
+ n < n. The RHS of the

inequality follows from the fact that, under our assumptions, n+γ0
p0

≥ n+γ1
p1

+ 1
p0

− 1
p1

>
n+γ1

p1
.

The LHS of the inequality follows from the fact that n+γ1
p1

> 0 and that n− n+γ0
p0

> 0 because
we are assuming γ0 < n(p0 − 1).

Corollary 1 Let 1 < p0, p1 ≤ ∞. Let γ0, γ1 > −n. Then, there exists C > 0 such that for
every radial function f : R

n → R satisfying supp( f̂ ) ⊆ Bt for some t > 0, there holds

‖ f ‖p1;γ1/p1 ≤ Ctδ‖ f ‖p0;γ0/p0

provided (5) or (6) hold, and

δ := n + γ0

p0
− n + γ1

p1
. (8)

Proof Note that if supp f̂ ⊂ Bt then ft (x) := t−n f (x/t) satisfies f̂t (ξ) = f̂ (tξ) and
supp f̂t ⊂ B1. Therefore, by Theorem 11,

‖ ft‖p1;γ1/p1 ≤ C‖ ft‖p0;γ0/p0

that is,

‖ f ‖p1;γ1/p1 ≤ Ctδ‖ f ‖p0;γ0/p0

Corollary 2 Let 1 < p0, p1 ≤ ∞ and γ0, γ1 > −n . Assume that

δ ≥ max

{
0,

1

p0
− 1

p1

}

and δ = 0, where δ is defined by (8). Then

Bs+δ
rad (p0, q, γ0/p0) ↪→ Bs

rad(p1, q, γ1/p1).

Proof Notice that since ϕ is taken to be radial, then the ϕk are also radial.
Let f ∈ Bs+δ

rad (p0, q, γ0/p0). By density, we can assume that f ∈ S and is radial, whence

f̂ ∗ ϕk = f̂ ϕ̂k and f ∗ ϕk are also radial.
Since supp f̂ ∗ ϕk ⊂ supp ϕ̂k ⊂ B(C2k), by Corollary 1 we have

‖ f ∗ ϕk‖p1;γ1/p1 ≤ C2kδ‖ f ∗ ϕk‖p0;γ0/p0
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and, therefore,

‖ f ‖q
Bs (p1,q,γ1/p1)

=
∑
k≥0

2qks‖ f ∗ ϕk‖q
p1;γ1/p1

≤ C
∑
k≥0

2qk(s+δ)‖ f ∗ ϕk‖q
p1;γ1/p1

= C‖ f ‖q
Bs+δ(p1,q,γ1/p1)

Theorem 12 Let 1 < p0, p1 ≤ ∞, s0, s1 ∈ R, and γ0, γ1 > −n. Then

Bs0
rad(p0, q0, γ0/p0) ↪→ Bs1

rad(p1, q1, γ1/p1)

provided that

δ ≥ max

{
0,

1

p0
− 1

p1

}
,

and

– either s0 − s1 > δ

– or s0 − s1 = δ and q1 ≥ q0

where δ is as in (8) and the case δ = 0 is only admissible if γ0 = γ1 and p0 = p1.

Proof In the case δ = 0, γ0 = γ1, p0 = p1, the result is true even in the non-radial case, and
is contained in [10, Theorem 1.1].

If s0 − s1 = δ and q1 ≥ q0, the theorem reduces to Corollary 2.
If s0 − s1 > δ, let ε > 0 satisfy s0 − s1 = δ + ε. By the previous case and Lemma 2, we

obtain the chain of continuous embeddings

Bs0+ε
rad (p0, q0, γ0/p0) ↪→ Bs0

rad(p0, q1, γ0/p0) ↪→ Bs1
rad(p1, q1, γ1/p1)

which concludes the proof.
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