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Automatic Shielding-Shimming Magnetic Field
Compensator for Excluded Volume Applications
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Abstract—We discuss the problem of automatic magnetic field
compensation within an excluded volume where the magnetic
field cannot be sensed in a direct way. Both magnetic field spatial
average (shielding) and first order orthogonal gradients (shim-
ming) are considered. The active shielding-shimming compensator
is based on a multiple-input multiple-output controller driving a
specifically designed coil-set. The magnetic field and its gradients
are calculated from the readings of ten hall sensors located outside
the exclusion volume.

Index Terms—Active shielding, active shimming, excluded
volume, fast field cycling nuclear magnetic resonance (FFC-NMR),
magnetic field compensation, multiple-input multiple-output
(MIMO) control.

I. INTRODUCTION

S ELECTED applications may require the cancellation of ex-
ternal time dependent magnetic fields within an exclusion

volume. A specific example can be found in fast-field-cycling
nuclear magnetic resonance (FFC-NMR), where for certain ex-
perimental protocols, external magnetic field contributions must
be compensated at the ultra low frequency (ULF) limit. The
experimental situation has already been described in an earlier
publication [1].

In this paper we refer as “active magnetic field compensa-
tion” to the more general idea of simultaneous cancellation of
the time dependent spatial average magnetic field and magnetic
field gradient across an excluded volume. The problem of a
combined shielding-shimming (SHISHI) active compensation
becomes more complex the higher the order required for the
shimming.

There appear to be no previous results concerning this ap-
proach. The use of active shielding in combination with shim-
ming is used in magnetic resonance imaging to decouple the
shimming fields from the main magnetic field. However, the
purpose of this work is to compensate magnetic field inhomo-
geneities while actively canceling time-dependent external con-
tributions within an exclusion volume of interest.
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Fig. 1. Hall sensors probe. Each sensor measures the magnetic field perpen-
dicular to the package face.

We will simplify the problem by considering first order gra-
dients along the Cartesian orthogonal components only. The ap-
proach, as considered, has the basic weakness that such an ele-
mental shimming can only be considered for specific low-reso-
lution NMR applications.

Different strategies have been used to deal with the problem
of active shielding control. Both analog [5] and digital [7]
controllers are feasible. In the present work, a two-step com-
pensator approach was used to solve the multivariable control
problem. First, a decoupler counteracts the interactions between
the controlled variables resulting in a more diagonal and easier
to control plant. Then, the weakly interacting plant was con-
trolled using standard methods like those used in single-input
single-output (SISO) systems. Simple proportional, integrative
and derivative (PID) circuits were used for each loop of the
multivariable diagonal controller.

Just to test the concept, the device under study operates at a
maximum frequency of about 150 Hz. The controlled variables
are the mean magnetic field components and the first order mag-
netic field gradients along the Cartesian axes across the sample.
Their respective values are obtained by combining the measure-
ments of 10 Hall sensors contained in a special probe (see Fig. 1)

(1)

(2)

are the mean magnetic field values calculated
at the center of the excluded volume, the mentioned gradi-
ents and are
the readings of the sensors.

As the references for the magnetic field components and gra-
dients are set to zero, the inputs for the control algorithm are di-
rectly the calculated feedback signals. The algorithm provides
the control signals for each actuator. Each manipulated vari-
able will drive the current of the corresponding compensating
coil, thus generating the desired compensating magnetic field.
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Fig. 2. Magnetic field gradient as a function of the position for (a) � � ���, (b) � � ���, (c) � � ���� and different values of �. Each column corresponds to
the gradient along a Cartesian direction.

For the sake of simplicity, the control system itself was devel-
oped within PC environment.

II. SIMPLIFIED SHISHI COIL-SET

A system composed by three coils was used to cancel the
components and . A pair of Saddle-type coils were
used for and while a Helmholtz-type for . The coil-set
was optimized to generate a homogeneous field within the ex-
cluded volume. The optimal geometry for the Saddle config-
uration was discussed in a previous work [2]. For a coil with
radius , height and aperture angle , the optimal homoge-
neous magnetic field is obtained for and . For
a Helmholtz coil, the optimal configuration is when
being in this case the gap between the two coils along the sym-
metry axis of the array.

The magnetic field gradient is a tensor defined by nine com-
ponents: . For the
sake of simplicity we will focus only in the main components

and . Moreover, we assume that the external gra-
dient is uniform within the excluded volume. These components
are related through the Gauss’s law for magnetism. That is, one
is determined by the two others.

Therefore, a system consisting of only two coils is enough to
cancel the external magnetic field gradients. As a consequence,
an antiSaddle configuration was selected. For the design of the
optimal coil-set we have to calculate the optimal values of the
geometrical parameters and that maximize the gradient
along the desired direction, while simultaneously considering

the spatial uniformity within the excluded volume. As a first
step, the Biot-Savart’s law and numerical simulations were used
to calculate the magnetic field in the space (using C++).

As external gradients are supposed to be constant around the
geometrical center of the excluded volume, the corresponding
compensating coils should also present a low spatial-depen-
dence around this point. The configuration was analyzed by
varying the three parameters and independently. The
magnetic field gradients and were de-
termined for three different aperture angles (
and ), and several values of (see Fig. 2(a), (b) and
(c)). The gradients were calculated for an electric current of 1 A
through a single-loop-coil. It can be observed in the figure that
for and between 13 cm and 14 cm, the magnetic field
gradient is almost constant along and simultaneously in a
region of about 5 cm.

Fig. 3 shows the magnetic field gradient on the plane
at position for the three different angles and
cm. It can be seen that the best configuration corresponds to the
case of Fig. 3(b). The complete coil-set is shown in Fig. 4.

III. CONTROL ALGORITHM

A two-step procedure was applied to design the controller
[11].

1) Design of a “pre-compensator” to deal with the interactions
in the plant.

2) Development of a diagonal controller based on a multi-
SISO approach.
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Fig. 3. Magnetic field gradient maps calculated for the (x, y) plane at � � � for (a) � � ���, (b) � � ��� and (c) � � ����, and � � ���� cm. Case (b)
corresponds to the optimal configuration where the gradient is uniform within a larger spatial region within the plane.

Fig. 4. Experimental setup diagram. 1—Helmholtz pair used to cancel � .
2—Saddle pair used to compensate � . 3—Saddle pair to compensate � .
4—Anti-Saddle pair used to shim � . 5—Anti-Saddle pair for � . 6—Hall
probe (see details in Fig. 1).

In this section we rename the controlled variables as follows:

(3)

A. Model of the Plant

As a first step we studied the steady-state effect of each con-
trol signal onto the different controlled variables signals. After a
tedious math or complex simulations it would be possible to an-
alytically determine the magnetic field produced by the coil-set
at any point in the space. However, the experimental evaluation
of the plant has the attractiveness of being much more realistic
(mainly due to mechanical imperfections that are difficult to

quantify). The resulting information is contained within the rela-
tive gain array (RGA) matrix [3], obtained from the steady-state
gain matrix (SSGM)

(4)

Here
• are the number of inputs and outputs of the plant (in our

case );
• and are the command signals for the current sources

driving the and coils respectively (with corre-
sponding feedback signals and );

• to are the command signals for the current sources
driving the and homogeneous magnetic field coils
respectively (feedback signals are to );

• is an integer number proportional to the current flowing
through the coils.

The RGA was calculated from

(5)

and its elements evaluated by measuring the response of each
control loop to a constant command signal (4)

(6)

As suggested by Bristol, the pairing of variables for each control
loop can be assigned from the position index of the RGA ma-
trix elements. Positive elements nearest to 1 are the best choice
[3]. These indexes define which input will control each output.
Consequently, we adopt a pairing scheme, .

The RGA clearly shows that the last three pairs of variables
are weakly coupled. Therefore, they can be considered as three
independent SISO subsystems in a good approximation. On the
contrary, the first two pairs are coupled, thus a 2 2 MIMO sub-
system will be associated to the shimming function. A frequency
response analysis of the RGA for this 2 2 MIMO subsystem
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Fig. 5. Block diagram of the 2� 2 MIMO control system and the decoupler. See text for details.

TABLE I
PARAMETERS OF THE CALCULATED TRANSFER FUNCTIONS

shows that their values remain constant over the entire bandwith
of the compensating system.

From the SSGM we know the relative gain between inputs
and outputs. However, to tune the system we still need to know
the involved dynamics [9]. Based on the knowledge of the
physics of the system, we proposed a second order transfer
function with delay for each pair

(7)

In the last equation, is the transfer function in the
Laplace domain (s) that relates the output with the input ,

is the gain as defined in the SSGM, is the delay time,
is the damping factor, and is the natural frequency.

For the SISO systems we may estimate the dynamics of the
transfer functions and , while for the
MIMO system it would be necessary to identify the dynamics
of the transfer functions from each input to each output. As the
dynamics of the magnetic field copies that of its driving cur-
rent, the estimated dynamics for one output can be generalized
to all other outputs generated by the same input (i.e., and

). For the gradients, we will just identify the main diagonal
of the transfer functions matrix (a matrix similar to the SSGM
but including the complete transfer functions). The estimated
parameters are listed in Table I. PIDs controllers were applied to
each control circuit and individually tuned using different well
known tuning methods. A decoupler was introduced between
the controllers and the plant.

B. Decoupler

This block acts as a feedforward controller where a known
disturbance (in this case the interaction between control circuits)
is compensated before it affects the controlled variable. Fig. 5

shows the scheme of the 2 2 MIMO system. We define the
associated transfer function matrix

(8)

where
• relates the output with the input;
• transfer functions of each row of the matrix have the

same dynamics (defined by the parameters of Table I);
• the gains of the transfer functions are defined by the SSGM

matrix.
The aim of the decoupler is that each input of the plant

modifies only one output. That is

(9)

where are the outputs of the PID controllers
and are the desired transfer functions for each
control circuit for the decoupled plant.

The decoupled plant (containing the decoupler ) has the
same dimension that the original plant

(10)

Multiplying both sides of the last equation by we obtain

(11)

The system has unknown parameters and only equa-
tions. Thus, degrees of freedom must be preset. We use as
design parameters the desired open-loop transfer functions for
each pair of controlled-manipulated variables . If we choose
for the diagonal of the same transfer functions appearing in
the diagonal of , each independently tuned PID controller
will be applied to each closed loop. That is

(12)

Then, the decoupler transfer functions can be obtained from
(11).

For a practical implementation of the transfer functions of the
decoupler, it turns convenient to have equal denominators for
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TABLE II
PID PARAMETERS

each row of . On the contrary, the elements of the decoupler
will not be causal [10]. After replacing the parameters of of
Table I in the solution of (10), we get

(13)

(14)

(15)

(16)

The exponential term of (15) is positive. This transfer func-
tion is not causal and we must add a delay term to
all the elements of the decoupler. In this way we add an extra
delay to the system that did not exist before, thus being a draw-
back of this control strategy. However, the addition of this delay
improves the general performance of the system, as clearly seen
in the simulations (Section IV-A).

C. Tuning of PID Controllers

All PID controllers were digitally implemented within PC en-
vironment in parallel configuration [13]

(17)

where ; is the -controller output; is
the reference signal for the circuit of ; are
the parameters of the -controller; and sets a pole to limit the
derivative effect at high frequency

The value of is usually chosen between 3 and 20. In the
present case it was set to 10. To compare, we tuned the PIDs
using the Sung’s method [12] and the internal model control
(IMC) design method [8]. The second method, has a tuning pa-
rameter which is used to favor the output performance (small

) or the robustness (large ). We used three different values of
and , being the time delay which include the

delay of the plant and the delay added by the decoupler (in the

Fig. 6. Multiplicative input uncertainty affecting the system.

case of the gradients), resulting in a value of . The
PID parameters obtained in each case are shown in Table II.

D. Stability and Robustness Analysis

Nominal Stability: Niederlinski theorem was used to verify
the stability of the selected controlled-manipulated variables
pairs [4]. Considering individually stable control loops, the
system with all their loops closed together will be unstable if
and only if

(18)

Since we have the system is stable. This the-
orem gives necessary and sufficient stability conditions only for
a 2 2 system. The system is stable independently whether the
decoupler is used or not. This is a consequence from the fact
that each loop was tuned using methods which ensures the indi-
vidual stability per se. Nevertheless, as it will be seen later, the
addition of a decoupler improves the performance.

Robust Stability: Each tuning method yields to different per-
formance and particular robustness properties. We focus the ro-
bustness analysis on the process multiplicative input uncertain-
ties because in this way, we can lump together sources of uncer-
tainties like high frequency neglected dynamics and sensor gain
model mismatch. In this way, we can compare the robustness of
the system for the different tuning methods used in this work.
Given a complex input multiplicative uncertainty (expressed as
the product of a diagonal normalized complex matrix and a
weight matrix W), to study the robust stability of the system we
express it in the general control configuration way (see Fig. 6)
[6]. Within this picture, the PID controllers are represented by

(19)

Then we consider the -structure, that is, the transfer func-
tion associated to the perturbation (output -input ). Con-
sidering a normalized model uncertainty, the system is robustly
stable if

(20)

(21)

When the uncertainties are complex (unstructured uncer-
tainty), we should consider the spectral radius function
which must satisfy

(22)
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The spectral radius of a matrix A is defined as their maximum
autovalue

(23)

If is allowed to be any complex transfer function matrix
satisfying , then the -structure is robustly stable
if and only if the maximum singular values of are

(24)

It is also possible to define the structured singular value
which provides of a generalization of the singular values

and the spectral radius. To calculate , we must find first
the smallest structured which makes the matrix
singular: . That is

(25)
where

(26)

(27)

Then, the necessary and enough condition for robust stability
for diagonal perturbations is

(28)

When transfer functions matrices are converted to their space
state representation, delays are included using the Pade approx-
imation (we use order 6 to get a reasonable approximation of
the time domain delay in compatibility with stability require-
ments). This approximation adds an inverse response due to the
zeros that it introduces in the right half plane, thus weakening
the whole system stability. However, if the approximated system
turns stable, the stability of the real system is guaranteed.

We propose a diagonal unitary weight matrix within the
whole frequency range, and then we calculate the -function for
our system using the D-K iteration algorithm [11] (see Fig. 7).
Depending on how far is the value of at each frequency from
1, we know how far is the system from the instability limit (if

), or how much must the uncertainty be reduced to became
the system stable (if ). We can observe that the PID tuned
with the Morari method is more robust when we select a bigger
value of . The PID tuned with the Sung method has better
robustness properties when a value of equal to the delay of
the plant is used.

IV. EXPERIMENTAL

Simulations were done using the Simulink tool of Matlab.
The real system was digitally implemented at 2 KHz of sample
frequency, with an anti aliasing filter fixed at 400 Hz.

A. Simulations

In Fig. 8 we can compare the system output performance
for different PID tuning parameters sets when a reference step
signal is applied. We observe that the PID tuned with the Morari

Fig. 7. �-function for the different PID tuning parameters sets.

Fig. 8. Bx system response for different PID tuning parameters sets.

method shows a relevant overshoot at fast response. On the op-
posite, a small overshoot results for a slower system, compared
with the system behavior when the PIDs are tuned with the Sung
method. Considering the robustness analysis of Section III-D
and the system output response, we conclude that controllers
tuned with the Sung’s method show a better compromise be-
tween robustness and output performance. Therefore, all fol-
lowing simulations and the real plant will be implemented using
this tuning algorithm.

When a step is introduced in the reference signal of the
loop, not only the value of becomes modified, but also

both and (due to the interaction between variables).
This phenomenon is the responsible for the dynamics perfor-
mance degradation of the system when all loops are closed and
no decoupler is used. The best results are obtained when the de-
coupler is used and the extra delay that it adds it is taken into
account to tune the PIDs (Fig. 9).

Fig. 10 shows the behavior of the system against a step per-
turbation in of amplitude 300 [a.u.] introduced at
ms. We show here the rejection performance only for the more
influenced variables, i.e., the gradients. It is important to note
that due to the magnetic Gauss’s law, the perturbation cannot be
introduced only in . Damping occurs in about 10 ms.

B. Experimental setup and Measurements

Fig. 11 shows a block diagram of the hardware. The mag-
netic field was measured with the aid of ten A1321 Allegro
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Fig. 9. Step response of � : (1) Reference signal. (2) � at closed loop
�� � ��� and � at open-loop �� � ����, (3) � and � at
closed loop without decoupler ��	
� � ���� and (4a)� and� at closed
loop with decoupler. (4b) Same as (4a), but with the PID tuned considering the
delay added by the decoupler.

Fig. 10. Rejection response for a step-perturbation with the complete system
(including decoupling) at closed-loop conditions.

Fig. 11. Block diagram of the experimental setup.

Hall effect sensors. Their output signals were conditioned by
means of instrumentation amplifiers designed using standard
low cost TL082 operational amplifiers. Signals are read by the
PC through a 14-bits resolution PCI726 Eagle data acquisi-
tion board. Control signals are applied to five current sources
through five 8-bits AD0808 D/A converters. Finally, the five
pairs of coils with their corresponding current sources generate
the compensating magnetic field.

Performance Tests: As a first experiment, a change in the
value of the command reference signal was applied to the

Fig. 12. Effect of the decoupler in the control system.

Fig. 13. Frequency response of the system (� channel) at different PID tuning
conditions.

gradient loop. It can be seen in Fig. 12 that the influence of
in is strongly dependent on whether the decoupler is used
or not.

The system frequency response was analyzed by introducing
a sine perturbation of constant magnitude at different fre-
quencies. The gain factor was calculated for each frequency
at three different tuning conditions of the PID regulators: a)
using the PID as it was tuned with the Sung method (weakly
underdamped), b) detuning PID of a) to make it overdamped
and c) detuning PID of a) to make it strongly underdamped. As
it can be seen in Fig. 13, for each tuning condition, the system
attenuates the perturbation up to a critical frequency where it
becomes amplified up to the limit fixed by the anti aliasing low
pass filter. Higher frequencies will be rejected and they will
not be affected by the active shielding (waterbed effect). For
operation at the low-frequency end, the best performance was
obtained with a weakly underdamped tuning.

Robustness Test: In Fig. 14 the system starts to cancel a gra-
dient at s when the plant is suddenly modified (model
uncertainty) at s. The system remains stable when the
model variation is below the limits imposed by Fig. 7 (50% of
gain variation and an addition of a pole at r/s). How-
ever, it turns unstable for a gain variation of 300% and the addi-
tion of the same pole.
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Fig. 14. Model uncertainty robustness test. The plant was modified at � � ����

s.

V. CONCLUSION

An elemental SHISHI compensating system was described.
The presented approach, while limited to a very first approxima-
tion of the problem as required to its practical implementation,
has the attractiveness of facilitating the test of different control
strategies in a very simple way.

For both shimming and shielding an attenuation better
than about 75% for external magnetic field components was
obtained within a bandwidth of 150 Hz. Due to the coupling
of the gradients a 2 2 MIMO subsystem was treated with
a decoupler. Variable controllers were tuned independently
with conventional methods as if they were all uncoupled SISO
systems. The subject is still under active study.
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