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Relative EP matrices

D.E. Ferreyra∗ and Saroj B. Malik†

Abstract

The purpose of the present work is to introduce the concept of relative EP matrix of
a rectangular matrix relative to a partial isometry (or, in short, T -EP matrix) hitherto
unknown. We extend various basic results on EP matrices and we study the relationship
between T -hermitian, T -normal and T -EP matrices. The main theorems of this paper
consist in providing canonical forms of relative EP matrices when matrices involved are
rectangular as well as square. We then use them to characterize the relative EP matrices
and show their properties. In fact, an interesting fact that has emerged is that A is T -EP
if and only if there is an EP matrix C such that A = CT and C = TT ∗C whatever be the
matrix, square or rectangular. We also give various necessary and sufficient conditions for
a matrix to be T -EP.

AMS Classification: 15A09; 15A27; 15B57.
Keywords: Moore-Penrose inverse, Partial isometry, EP matrix, T -EP matrix.

1 Introduction

One of the problems in Matrix Theory is to study and analyze the many classes of special type
matrices for their properties (algebraic as well as geometric). The class of EP (range-hermitian)
matrices is one such class. This class has attracted the attention of several authors since they
were first defined by H. Schwerdtfeger [16]. Amongst many references available some of them
are [1, 2, 3, 4, 12, 14]. One of the reasons for interest in this class is the fairly weaker condition
on the matrix, namely the equality of it’s range space and the range space of its conjugate
transpose. EP matrices include in them the wide classes of matrices as special cases such
as hermitian matrices, skew-hermitian matrices, unitary matrices, normal matrices, and also
nonsingular matrices.

The EP matrices have been generalized in many ways. The first such generalization known
as bi-EP matrices is given by Hartwig and Spindelböck in [7]. Since then on several of their
generalizations have appeared some of them being conjugate EP matrix [10], k-EP [11], weighted
EP matrices [17], m-EP [9], k-core EP [5], and k-DMP [5]. All these extensions have been
defined on the set of complex square matrices. Our aim here in this work is to extend the class
of EP matrices to a class of relative EP matrices when matrices are rectangular matrices.
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Argentina. E-mail: deferreyra@exa.unrc.edu.ar

†School of Liberal Studies, Ambedkar University, Kashmere Gate, Delhi, India. E-mail:
saroj.malik@gmail.com

1

http://arxiv.org/abs/2102.08106v1


We introduce in this paper the concept of relative EP matrix for a rectangular matrix
A, extending the notion of square EP matrices to rectangular matrices. We recall that the
concepts of relative hermitian and relative normal matrices were introduced by Hestenes in [8]
in order to develop a spectral theory for rectangular matrices. Motivated by these definitions,
we introduce in this paper the concept of relative EP matrix for a rectangular matrix A, (in
short T -EP matrices, where T is a fixed partial isometry). Like in classical case, the relative
EP matrices are a generalization of each of relative hermitian and relative normal matrices.
It is shown that every relative normal matrix is relative EP but not conversely. Several basic
properties of EP matrices extend to relative EP matrices.

The main theorems of this paper are the development of canonical forms of relative EP
matrices and using these canonical forms we give various characterizations of these matrices.

The paper is organized as follows. In Section 2, we introduce and characterize the concept of
relative EP matrix as a generalization of the concept of EP matrix to the rectangular matrices.
This new class of matrices is called the class of T -EP matrices and contains the class of relative
normal matrices and therefore the class of relative hermitian matrices defined in [8]. We also
obtain here some properties of these matrices. Section 3 consists of obtaining canonical forms
of a relative EP matrix where the matrix can be rectangular or square. The advantage of the
canonical form in either case is that they reveal the relationship of a T -EP matrix A to an
EP matrix necessarily other than A (when T is not the trivial partial isometry In). Using
these canonical forms we derive some characterizations of T -EP matrices. In particular, we
recover various well-known results for EP matrices obtained by Pearl in [14]. Section 4 gives
the interrelations between EP and T -EP matrices as well as some more characterizations of
T -EP matrices when T belongs to certain matrix class. The final Section 5 deals with the
problem of the sum of two relative EP matrices.

We denote the set of all m× n complex matrices by Cm×n. For A ∈ Cm×n, the symbols A∗,
rank(A), N (A), and R(A) will stand for the conjugate transpose, the rank, the null space, and
the range space of A, respectively. For A ∈ Cn×n, A−1 will denote the inverse of A and In will
refer to the n× n identity matrix.

The symbol A† denotes the Moore-Penrose inverse of a matrix A ∈ Cm×n, which is the
unique matrix satisfying the following four Penrose conditions [2]:

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

A matrix A ∈ Cn×n is an EP matrix if R(A) = R(A∗), or equivalently AA† = A†A, see,
e.g. [2, 14]. Recall that T ∈ Cm×n is a partial isometry if it verifies T = TT ∗T . Note that T is
a partial isometry if and only if T † = T ∗ [2, Theorem 4.2.1]. Throughout this work we will use
T ∈ C

m×n as a fixed partial isometry (We note that T can also be a square matrix, but then it
will be clear from the context of the usage).

2 T -EP matrices

In this section we introduce the concept of relative EP matrix for a matrix A ∈ Cm×n with
respect to a partial isometry T ∈ Cm×n. We present various equivalent characterizations of this
new class of matrices and we show that this class of matrices contains the following two classes
of matrices defined by Hestenes [8]:
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Definition 2.1. Let A, T ∈ Cm×n. Then A is called relative hermitian to T (or, in short,
T -hermitian) if A = TA∗T.

Definition 2.2. Let A, T ∈ Cm×n. We say that A is relative normal to T (or, in short, T -
normal) if A = TT ∗A = AT ∗T and AA∗T = TA∗A.

Like in classical case as is known that every hermitian matrix is normal, we show that every
T -normal matrix is T -hermitian.

Theorem 2.3. Let A, T ∈ C
m×n. If A is T -hermitian then A is T -normal.

Proof. Since A is T -hermitian, A = TA∗T. So,

AT ∗T = (TA∗T )T ∗T = TA∗(TT ∗T ) = TA∗T = A.

Similarly, TT ∗A = TT ∗(TA∗A) = A. Also,

AA∗T = (TA∗T )A∗T = TA∗(TA∗T ) = TA∗A.

Thus both (i) and (ii) in Definition 2.2 hold.

We now define the concept of relative EP matrix respect to a partial isometry T as follows:

Definition 2.4. Let A, T ∈ C
m×n. Then we say A is relative EP to T (or, in short, T -EP) if

R(A) = R(TA∗T ) and A = AT ∗T .

Remark 2.5. In particular, when the partial isometry T is the identity matrix above definition
reduces to R(A) = R(A∗), which implies that A is an EP matrix [14].

We next show that a T -normal matrix is a T -EP matrix.

Theorem 2.6. Let A, T ∈ C
m×n If A is T -normal then A is T -EP.

Proof. Let A be T -normal. Then A = AT ∗T = TT ∗A and AA∗T = TA∗A (or equivalently
T ∗AA∗ = A∗AT ∗). Clearly, A = AT ∗T . It remains to see that R(A) = R(TA∗T ). In fact,

R(A) = R(AA∗)

= R(TT ∗AA∗)

= R(TA∗AT ∗)

= R(TA∗TT ∗AT ∗)

= R(TA∗T (TA∗T )∗)

= R(TA∗T ).

We now give a few examples. Just as an observation, if the matrices involved are square
matrices, every EP matrix A ∈ Cn×n is relative EP, relative to trivial partial isometry In.

Example 2.7. A trivial example of a T -EP matrix is the partial isometry T itself because
T = TT ∗T .
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Example 2.8. Let T =





0 1 0
0 0 0
0 0 1



 , then T is a partial isometry and all T -hermitian matrices

are of the type A =





0 a z

0 0 0
0 z b



 , where a, b are real numbers and z ∈ C. Note that A is not

hermitian. Moreover, A is not EP.

Example 2.9. Let T be the partial isometry in Example 2.8. Let A =





0 1 1
0 0 0
0 1 1



 . By using

previous example, it is clear that A is T -hermitian. Therefore, by Theorems 2.3 and 2.6 we
have that A is T -normal and T -EP. However, note that A is not EP.

Our next example shows that the converse of Theorem 2.6 is false.

Example 2.10. Let T =





0 1 0
0 0 1
0 0 0



 . Then T is a partial isometry. Let A =





0 1 1
0 0 1
0 0 0



 . Then

A is T -EP, but not T -normal.

The following two lemmas are fundamental to developing the properties and characteriza-
tions of relative EP matrices. We also need to use the following important relation between the
null space of a matrix A ∈ Cm×n and the range space of its conjugate transpose A∗, namely

R(A) = N (A∗)⊥, (2.1)

where the superscript ⊥ denotes the orthogonal complement of N (A∗).

Lemma 2.11. Let A, T ∈ Cm×n. Then the following are equivalent:

(i) A = TT ∗A;

(ii) R(A) ⊆ R(T );

(iii) N (T ∗) ⊆ N (A∗);

(iv) A† = A†TT ∗.

Proof. (i)⇒ (ii). Easy.
(ii)⇒ (iii). Using (2.1) in R(A) ⊆ R(T ) implies N (A∗)⊥ ⊆ N (T ∗)⊥, which yields to N (T ∗) ⊆
N (A∗).
(iii)⇒ (iv). As N (A∗) = N (A†) we have N (T ∗) ⊆ N (A†) and is further equivalent to A† =
A†(T ∗)†T ∗. As T † = T ∗, we have A† = A†(T ∗)∗T ∗ = A†TT ∗.
(iv)⇒ (i). Pre-multiplying A† = A†TT ∗ by A∗A, we obtain A∗ = A∗TT ∗ and therefore,
A = TT ∗A by taking ∗ on both sides.

Similarly one can show the following:

Lemma 2.12. Let A, T ∈ Cm×n. Then the following are equivalent:
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(i) A = AT ∗T ;

(ii) N (T ) ⊆ N (A);

(iii) R(A∗) ⊆ R(T ∗);

(iv) A† = T ∗TA†.

We now use these lemmas to obtain some characterizations and properties of T -EP matrices.

Theorem 2.13. Let A, T ∈ Cm×n. Then the following are equivalent:

(i) A is T -EP (i.e., R(A) = R(TA∗T ) and A = AT ∗T );

(ii) R(A) = R(TA∗T ) and N (T ) ⊆ N (A);

(iii) N (A∗) = N (T ∗AT ∗) and R(A∗) ⊆ R(T ∗);

(iv) R(A) = R(TA∗) and N (T ) ⊆ N (A);

(v) R(A) = R(TA∗) and A = AT ∗T ;

(vi) N (A∗) = N (AT ∗) and R(A∗) ⊆ R(T ∗).

Proof. (i) ⇔ (ii). It follows from Definition 2.4 and Lemma 2.11.
(ii) ⇔ (iii). It is a direct consequence of (2.1).
(ii) ⇒ (iv). We only need to prove that R(A) = R(TA∗). Since R(A) = R(TA∗T ) we
obtain R(TA∗T ) ⊆ R(TA∗) and rank(A) = rank(TA∗T ). Moreover, rank(TA∗) ≤ rank(A∗) =
rank(A) = rank(TA∗T ). Therefore, R(A) = R(TA∗).
(iv) ⇒ (ii). Suppose R(A) = R(TA∗) and N (T ) ⊆ N (A). Only we need to show that
R(A) = R(TA∗T ). In fact, clearly R(TA∗T ) ⊆ R(A). Also, as R(A) ⊆ R(T ) implies
TT ∗A = A by Lemma 2.11 (i). So, rank(A) = rank(TA∗) = rank(TA∗TT ∗) ≤ rank(TA∗T ),
whence R(A) = R(TA∗T ).
(iv) ⇔ (v) By Lemma 2.12.
(v) ⇔ (vi) Follows from (2.1) and Lemma 2.12.

Theorem 2.14. Let A ∈ Cm×n be a T -EP matrix, then the following hold:

(i) A = TT ∗A.

(ii) rank(A) = rank(TA∗T ) = rank(TA∗) = rank(A∗T );

(iii) (T ∗A)† = A†T ;

(iv) (AT ∗)† = TA†;

(v) (T ∗AT ∗)† = TA†T .

Proof. (i) As A is T -EP, we have R(A) = R(TA∗T ), and so R(A) ⊆ R(T ). Now, Lemma 2.11
implies A = TT ∗A.
(ii) By definition of T -EP matrix it is clear that rank(A) = rank(TA∗T ). Thus,

rank(A) = rank(TA∗T ) ≤ rank(TA∗) ≤ rank(A) = rank(TA∗T ) ≤ rank(A∗T ) ≤ rank(A),
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whence rank(A) = rank(TA∗T ) = rank(TA∗) = rank(A∗T ).
(iii) We check this by direct verification. Let X := A†T . By definition of T -EP matrix and
part (i) we have A = AT ∗T and A = TT ∗A, respectively. Thus,

T ∗AXT ∗A = T ∗AA†TT ∗A = T ∗AA†A = T ∗A,

XT ∗AX = A†TT ∗AA†T = A†AA†T ∗ = A†T ∗ = X,

(T ∗AX)∗ = (T ∗AA†T )∗ = T ∗(AA†)∗T = T ∗AA†T = T ∗AX,

(XT ∗A)∗ = (A†TT ∗A)∗ = (A†A)∗ = A†A = A†TT ∗A = XT ∗A.

By uniqueness of the Moore-Penrose inverse we have X = (T ∗A)†.
Items (iv) and (v) can be proved along lines of (iii).

3 Canonical forms of T -EP matrices and consequences

In this section we exhibit the main results of this paper namely, canonical forms of a T -EP
matrix A. We first derive a canonical form of a T -EP matrix, when the matrix is rectangular.
The tool we use is the Singular Value Decomposition (SVD). As a special case we have a
canonical form of a square matrix. However, we provide another canonical form of a square
matrix by using the Hartwig-Spindelböck decomposition of a square matrix, which by itself was
derived by using SVD. The reason to include this is that it has its own merits. We then discuss
immediate consequences of both the canonical forms. We also give some characterizations of
T -EP matrices.

Theorem 3.1. (SVD) Let A ∈ Cm×n a nonnull matrix of rank r > 0 and let σ1 ≥ σ2 ≥ · · · ≥
σr > 0 be the singular values of A. Then there exist unitary matrices U ∈ Cm×m and V ∈ Cn×n

such that A = U

[

Σ 0
0 0

]

V ∗, where Σ = diag(σ1, σ2, . . . , σr). In particular, the Moore-Penrose

inverse of A is given by

A† = V

[

Σ−1 0
0 0

]

U∗. (3.1)

Theorem 3.2. Let A, T ∈ Cm×n be such that rank(A) = r. Then the following are equivalent.

(i) A is T -EP;

(ii) There exists nonsingular matrix D of order r and a unitary matrix U such that

A = U

[

D 0
0 0

]

U∗T and T = U

[

T1 0
0 T4

]

V ∗, (3.2)

where T1 and T4 are matrices satisfying T1T
∗
1 = Ir and T4T

∗
4 T4 = T4.

(iii) There exists an EP matrix E ∈ Cm×m such that A = ET and TT ∗E = E.

Proof. (i) ⇒ (ii). Let A be T -EP. By Theorem 3.1, there exist unitary matrices U ∈ Cm×m and

V ∈ C
n×n, and a nonsingular matrix Σ such that A = U

[

Σ 0
0 0

]

V ∗. Since A is T -EP, Theorem
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2.13 (v) implies R(A) = R(TA∗) and A = AT ∗T . Let T be partitioned as T = U

[

T1 T2

T3 T4

]

V ∗,

such that the product TA∗ and AT ∗ are defined. Clearly, A = AT ∗T is equivalent to

[

Σ 0
0 0

]

=

[

Σ 0
0 0

] [

T ∗
1 T1 + T ∗

3 T3 T ∗
1 T2 + T ∗

3 T4

T ∗
2 T1 + T ∗

4 T3 T ∗
2 T2 + T ∗

4 T4

]

,

equivalently,
T ∗
1 T1 + T ∗

3 T3 = Ir, (3.3)

T ∗
1 T2 + T ∗

3 T4 = 0. (3.4)

Since T is a partial isometry, i.e., T = TT ∗T , using (3.3) and (3.4) we obtain

[

T1 T2

T3 T4

]

=

[

T1 T2

T3 T4

] [

Ir 0
0 T ∗

2 T2 + T ∗
4 T4

]

,

whence
T2 = T2T

∗
2 T2 + T2T

∗
4 T4, (3.5)

T4 = T4T
∗
2 T2 + T4T

∗
4 T4. (3.6)

Also, as R(A) = R(TA∗) we get AA†TA∗ = TA∗. By using (3.1), after simple matrix compu-
tations we obtain

[

T1Σ
∗ 0

0 0

]

=

[

T1Σ
∗ 0

T3Σ
∗ 0

]

,

whence T3 = 0 because Σ is nonsingular. In consequence, from (3.3) we obtain T ∗
1 T1 = Ir or

equivalently T1T
∗
1 = Ir as T1 is a square matrix of order r. Therefore, (3.4) implies T2 = 0. So,

from (3.6) we get T4 = T4T
∗
4 T4 i.e., T4 is a partial isometry.

Finally, once again from A = AT ∗T we have

A = U

[

ΣT ∗
1 0

0 0

]

U∗T = U

[

D 0
0 0

]

U∗T,

where D is the matrix ΣT ∗
1 which clearly is nonsingular.

(ii) ⇒ (iii). Write E = U

[

D 0
0 0

]

U∗, where D is nonsingular. Clearly E is EP and A = ET .

Also, since T1T
∗
1 = Ir, it follows that

TT ∗E = U

[

Ir 0
0 T4T

∗
4

] [

D 0
0 0

]

U∗ = U

[

D 0
0 0

]

U∗ = E.

(iii) ⇒ (i). We assume A = ET and TT ∗E = E. As E is EP then R(E) = R(E∗). Thus,

R(TA∗) = R(TT ∗E∗) = TT ∗R(E∗) = TT ∗R(E) = R(TT ∗E) = R(E),

whence R(A) = R(ET ) ⊆ R(E) = R(TA∗).
Moreover, rank(AT ∗) ≤ rank(A). Thus, R(A) = R(TA∗). Also, as A = ET we get N (T ) ⊆
N (ET ) = N (A). Thus, by Theorem 2.14 (iv) A is T -EP.

Remark 3.3. Note that under any one of equivalent conditions (i)-(iii) in Theorem 3.2 we
have ETT ∗ = E.
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Theorem 3.2 (iii) enables us to obtain the following formula for the Moore-Penrose inverse
of a matrix.

Theorem 3.4. Let A, T , and E be as in Theorem 3.2. Then the Moore-Penrose inverse of A
is given by

A† = T ∗E†. (3.7)

Proof. We check this by direct verification. Let X := T ∗E†. As is T -EP, Theorem 3.2 and
Remark 3.3 imply A = ET and E = TT ∗E = ETT ∗. Therefore,

AXA = ET (T ∗E†)ET = (ETT ∗)E†ET = ET = A,

XAX = T ∗E†(ETT ∗)E† = T ∗E†EE† = T ∗E† = X.

Also we have AX = (ETT ∗)E† = EE† and XA = T ∗E†ET . Clearly, AX and XA are
hermitian matrices. So, by uniqueness of the Moore-Penrose inverse we have X = A†.

Some important consequences of Theorem 3.2 are the following:

Corollary 3.5. Let A, T , D, and U be as in Theorem 3.2. Then the Moore-Penrose inverse
of A is given by

A† = T ∗U

[

D−1 0
0 0

]

U∗. (3.8)

Proof. It directly follows from (3.7) by using the fact that E = U

[

D 0
0 0

]

U∗.

Corollary 3.6. Let A, T ∈ C
m×n be such that rank(A) = r. If A is T -EP, then there exists a

partial isometry R ∈ Cn×n and a nonsingular matrix D of order r such that

T ∗A = R

[

D 0
0 0

]

R∗. (3.9)

Proof. Let A be T -EP. By Theorem 3.2, there exists a nonsingular matrix D of order r and a

unitary matrix U such that A = U

[

D 0
0 0

]

U∗T . Pre-multiplying the previous equality by T ∗

and by taking R := T ∗U we obtain (3.9). Clearly, R is a partial isometry.

Theorem 3.7. Let A, T ∈ Cm×n. Then A is T -EP if and only if TA†A = AA†T and A =
AT ∗T .

Proof. In order to prove the necessity of the condition it is enough to show that TA†A = AA†T

because clearly A = AT ∗T holds by definition of T -EP matrix. Thus, by Theorem 3.2 and
Remark 3.3, there exists an EP matrix E such that A = ET and E = TT ∗E = ETT ∗.
Moreover, (3.7) implies A† = T ∗E†. Consequently, as EE† = E†E we obtain

AA†T = ETT ∗E†T = EE†T = TT ∗EE†T = TT ∗E†ET = TA†A.

Conversely, we assume that TA†A = AA†T and A = AT ∗T hold. Consider TA†A = AA†T.

Multiplying on right by A∗, we have TA∗ = AA†TA∗. This implies R(TA∗) ⊆ R(A). Since
rank(A) = rank(AT ∗T ) ≤ rank(AT ∗) = rank((AT ∗)∗) = rank(TA∗), we get R(A) = R(TA∗).
Now, from Theorem 2.13 (v) it follows that A is T -EP.
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Corollary 3.8. Let A, T ∈ Cm×n. Then A is T -EP if and only if TA†A = AA†T and any one
of equivalent conditions (i)-(iv) in Lemma 2.12 hold.

Theorem 3.9. Let A, T ∈ Cm×n. Then the following are equivalent:

(i) A is T -EP;

(ii) A∗ is T ∗-EP;

(iii) A† is T ∗-EP.

Proof. (i)⇒(ii). By Theorem 3.7, it is enough to establish T ∗(A∗)†A∗ = A∗(A∗)†T ∗ and A∗ =
A∗(T ∗)∗T ∗ = A∗TT ∗. As A is T -EP, from Theorem 3.7 we have AA†T = TA†A and A = AT ∗T .
Moreover, Theorem 2.14 (i) implies A = TT ∗A, and by taking ∗ on both sides we have A∗ =
A∗TT ∗. It remains to prove that T ∗(A∗)†A∗ = A∗(A∗)†T ∗ but this equality is true if and only
if AA†T = TA†A. This shows (ii).
(ii)⇒(i). It is similar to the previous proof by interchanging the roles of A and A∗.
(i)⇒(iii). By Theorem 3.7, we know that A is T -EP implies AA†T = TA†A and A = AT ∗T .
Moreover, Theorem 2.14 (i) implies A = TT ∗A, which is equivalent to A† = A†TT ∗ by Lemma
2.11. As TA†A = AA†T, taking ∗ on both sides, we have A†AT ∗ = T ∗AA†. Using A = (A†)†

we have A†(A†)†T ∗ = T ∗(A†)†A†. So, once again Theorem 3.7 implies that A† is T ∗-EP.
(iii)⇒(i). Along lines of (ii)⇒(i).

Theorem 3.10. Let A, T ∈ Cm×n. Then the following are equivalent:

(i) A is T -EP;

(ii) AT ∗ is EP and A = AT ∗T ;

(iii) TA∗ is EP and A = AT ∗T ;

(iv) TA† is EP and A = AT ∗T .

Proof. (i)⇒(ii). We assume A is T -EP. Then by Theorem 3.2 and Remark 3.3, there exists an
EP matrix E such that A = ET and E = ETT ∗ = TT ∗E. Therefore AT ∗ = ETT ∗ = E, that
is, AT ∗ is EP. Clearly, A = AT ∗T by definition of T -EP matrix.
(ii) ⇒ (i). We consider AT ∗ is EP and A = AT ∗T . Taking E = AT ∗, from A = AT ∗T

we have A = ET , where E is clearly an EP matrix. Moreover, as R(E) = R(E∗) we have
R(E) ⊆ R(T ), which is equivalent to TT ∗E = E. Now, by using Theorem 3.2 it follows that
A is T -EP.
(ii) ⇔ (iii). It is a direct consequence of the fact that a square complex matrix B is EP if and
only if B∗ is EP.
(i) ⇒ (iv). We assume A is T -EP. By Theorem 3.11 (v) we have (AT ∗)† = TA†. Since a matrix
B is EP if and only B† is EP, we have the equivalence.

Some more properties of T -EP matrices are established in the following theorem:

Theorem 3.11. Let A ∈ C
m×n be a T -EP matrix, then the following hold:

(i) (TA∗)† = (A∗)†T ∗;

(ii) (A∗T )† = T ∗(A∗)†;
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(iii) (TA∗T )† = T ∗(A∗)†T ∗;

(iv) (TA†)† = AT ∗;

(v) (A†T )† = T ∗A;

(vi) (TA†T )† = T ∗AT ∗.

Proof. It is a direct consequence from Theorem 2.14 and Theorem 3.9.

We note that for square matrices we can obtain a canonical form from Theorem 3.2 by
simply taking m = n. However, we present another canonical form a square matrix A for which
we use the famous Hartwig-Spindelböck decomposition [7](which it self was derived from SVD
of A). For this , we assume all matrices are square from now onwards and for the next section
of this paper. To give this canonical form we need the following two results.

Theorem 3.12. [7, Hartwig-Spindelböck decomposition] Let A ∈ Cn×n of rank r > 0. Then
there exists a unitary matrix U ∈ Cn×n such that

A = U

[

ΣK ΣL
0 0

]

U∗, (3.10)

where Σ = diag(σ1Ir1, σ2Ir2 , . . . , σtIrt) is the diagonal matrix of singular values of A, σ1 > σ2 >

· · · > σt > 0, r1 + r2 + · · ·+ rt = r, and K ∈ Cr×r, L ∈ Cr×(n−r) satisfy KK∗ + LL∗ = Ir.

Theorem 3.13. [1] Let A ∈ Cn×n be a matrix written as in (3.10). Then

A† = U

[

K∗Σ−1 0
L∗Σ−1 0

]

U∗, AA† = U

[

Ir 0
0 0

]

U∗.

Theorem 3.14. Let A, T ∈ Cn×n, T a partial isometry, and r = rank(A). Then the following
are equivalent.

(i) A is T -EP;

(ii) There exists nonsingular matrix D of order r and a unitary matrix U such that

A = U

[

D 0
0 0

]

U∗T ;

where T = U

[

T1 T2

T3 T4

]

U∗ with T1T
∗
1 + T2T

∗
2 = Ir and T3T

∗
1 + T4T

∗
2 = 0.

(iii) There exists an EP matrix C such that A = CT and TT ∗C = C.

In particular, under any one of equivalent conditions (i)-(iii) we have CTT ∗ = C.

Proof. We show (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
(i) ⇒ (ii). Let A be T -EP. By Theorem 2.13 (v)R(A) = R(TA∗) and A = AT ∗T.We write A as

in (3.10). Let T be partitioned in conformation with the partition of A as T = U

[

T1 T2

T3 T4

]

U∗.

Then A = AT ∗T is equivalent to
[

ΣK ΣL
0 0

]

=

[

ΣK ΣL
0 0

] [

T ∗
1 T1 + T ∗

3 T3 T ∗
1 T2 + T ∗

3 T4

T ∗
2 T1 + T ∗

4 T3 T ∗
2 T2 + T ∗

4 T4

]

,
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or equivalently
ΣK = ΣK(T ∗

1 T1 + T ∗
3 T3) + ΣL(T ∗

2 T1 + T ∗
4 T3), (3.11)

ΣL = ΣK(T ∗
1 T2 + T ∗

3 T4) + ΣL(T ∗
2 T2 + T ∗

4 T4). (3.12)

Also, by Theorem 2.14 (i) we have that A = TT ∗A, which in turn is equivalent to

ΣK = (T1T
∗
1 + T2T

∗
2 )ΣK (3.13)

ΣL = (T1T
∗
1 + T2T

∗
2 )ΣL (3.14)

0 = (T3T
∗
1 + T4T

∗
2 )ΣK (3.15)

0 = (T3T
∗
1 + T4T

∗
2 )ΣL (3.16)

Multiplying (3.13) by K∗ on right and (3.14) by L∗ on right, adding and by using the identity
KK∗ + LL∗ = Ir we obtain

T1T
∗
1 + T2T

∗
2 = Ir. (3.17)

Similarly, multiplying (3.15) on right by K∗ and (3.16) by L∗ on right and adding we have

T3T
∗
1 + T4T

∗
2 = 0. (3.18)

Since R(A) = R(TA∗) implies AA†TA∗ = TA∗, from Theorem 3.13 we obtain

AA†TA∗ = TA∗ ⇔

[

T1(ΣK)∗ + T2(ΣL)
∗ 0

0 0

]

=

[

T1(ΣK)∗ + T2(ΣL)
∗ 0

T3(ΣK)∗ + T4(ΣL)
∗ 0

]

,

whence
ΣKT ∗

3 + ΣLT ∗
4 = 0. (3.19)

Note that (3.11) can be rewritten as

ΣK = ΣK(T ∗
1 T1 + T ∗

3 T3) + ΣL(T ∗
2 T1 + T ∗

4 T3)

= ΣKT ∗
1 T1 + ΣKT ∗

3 T3 + ΣLT ∗
2 T1 + ΣLT ∗

4 T3

= (ΣKT ∗
3 T3 + ΣLT ∗

4 )T3 + (ΣKT ∗
1 T1 + ΣLT ∗

2 T1).

Thus, by (3.19) we have
ΣK = ΣKT ∗

1 T1 + ΣLT ∗
2 T1. (3.20)

Similarly, from (3.11) and (3.19), we have

ΣL = ΣKT ∗
1 T2 + ΣLT ∗

2 T2. (3.21)

Multiplying (3.20) by K∗ on right and (3.21) by L∗ and adding and rearranging, we have

Ir = (KT ∗
1 + LT ∗

2 )(T1K
∗ + T2L

∗), (3.22)

because Σ is nonsingular and KK∗ + LL∗ = Ir.
Now, we define the matrix D := ΣKT ∗

1 + ΣLT ∗
2 , which is nonsingular by (3.22) and the

nonsingularity of Σ. By using (3.19), we have

AT ∗ = U

[

D 0
0 0

]

U∗. (3.23)
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Since A = AT ∗T from (3.17), (3.18) and (3.23), we have

A = U

[

D 0
0 0

]

U∗T,

where T = U

[

T1 T2

T3 T4

]

U∗ such that T1T
∗
1 + T2T

∗
2 = Ir and T3T

∗
1 + T4T

∗
2 = 0 hold.

The proofs of (ii) ⇒ (iii) and (iii) ⇒ (i) are similar to (ii) ⇒ (iii) and (iii) ⇒ (i) of Theorem
3.2. Finally, we suppose that any one of equivalent conditions (i)-(iii) holds. Then,

CTT ∗ = U

[

D 0
0 0

] [

Ir 0
0 Z

]

U∗ = U

[

D 0
0 0

]

U∗ = C.

This completes the proof.

Remark 3.15. Note that the matrix TT ∗ in (ii) ⇒ (iii) takes the form TT ∗ = U

[

Ir 0
0 Z

]

U∗,

where Z = T3T
∗
3 + T4T

∗
4 is actually a hermitian matrix.

The following theorem was proved by Pearl [14] and can be deduced from Theorem 3.14
when T = In.

Corollary 3.16. Let A ∈ Cn×n and rank(A) = r. Then A is EP if and only if there exists a
unitary matrix U ∈ Cn×n, and a nonsingular matrix D of order r such that

A = U

[

D 0
0 0

]

U∗.

4 More properties of square T -EP matrices

As said earlier, for this section again we take all matrices as square matrices. We obtain
several characterization of T -EP matrices when the partial isometry T satisfies some additional
conditions. More precisely, when T is either an orthogonal projector or a unitary matrix or a
normal matrix.

We have seen in Example 2.9 that a EP matrix is always relative EP respect to the identity
matrix of same order. This motivates the following question: When can an EP matrix be a
T -EP matrix with respect to a nontrivial partial isometry T ?

The following results show the relationship between EP and T -EP matrices.

Theorem 4.1. Let A, T ∈ Cn×n. If A is EP and AA∗ is T -EP. Then A is T -EP.

Proof. Since AA∗ is T -EP, by definition we have R(AA∗) = R(T (AA∗)∗T ) = R(TAA∗T ) and
N (T ) ⊆ N (AA∗). Thus,

N (T ) ⊆ N (AA∗) = N (A∗) = N (A), (4.1)

where the last equality is due the fact that A is EP. Also, note that

R(A) = R(AA∗) = R(TAA∗T ) ⊆ R(TA) = TR(A) = TR(A∗) = R(TA∗),

and rank(TA∗) ≤ rank(A∗) = rank(A). Therefore, R(A) = R(TA∗). In consequence, from
(4.1) and Theorem 2.13 (iv) we have A is T -EP.
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Remark 4.2. Notice that the condition AA∗ is T -EP in above theorem can be replaced by
AA† is T -EP. In fact, N (AA∗) = N (AA†) = N (A†) = N (A∗).

Since every unitary matrix is also a partial isometry we have the following:

Theorem 4.3. Let A, T ∈ Cn×n. Suppose T is an unitary matrix. Then the following are
equivalent:

(i) A is T -EP;

(ii) R(A) = R(TA∗);

(iii) N (A∗) = N (AT ∗);

(iv) AT ∗ is EP;

(v) TA∗ is EP;

(vi) TA† is EP;

(vii) TA†A = AA†T .

In particular, under any one of equivalent conditions (i)-(vii) we have

(a) (AT )† = T ∗A†, (b) (TA)† = A†T ∗, and (c) (TAT )† = T ∗A†T ∗. (4.2)

Proof. As T is unitary, the first three equivalences follow from Theorem 2.13. Similarly, equiv-
alences (i)⇔(vi)⇔(vii)⇔(viii) follow from Theorem 3.10. Also, by Theorem 3.7 it is clear
(i)⇔(vii) holds. Finally, the expressions in (4.2) can be easily proved by mean a direct
verification of the definition of Moore-Penrose inverse and by applying again the fact that
TT ∗ = T ∗T = In.

Recall that an involutory matrix is a nonsingular matrix that is its own inverse. Next,
we present interesting characterizations of T -EP matrices when T is an involutory hermitian
matrix, that is, T−1 = T = T ∗.

Theorem 4.4. Let A, T ∈ Cn×n. Suppose T is an involutory hermitian matrix. Then the
following are equivalent:

(i) A is T -EP;

(ii) R(A) = R(TA∗);

(iii) N (A∗) = N (AT );

(iv) AT is EP;

(v) TA∗ is EP;

(vi) TA† is EP;

(vii) TA†A = AA†T ;

(viii) R(A∗) = R(TA);
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(ix) N (A) = N (A∗T );

(x) A∗T is EP;

(xi) TA is EP;

(xii) A†T is EP;

(xiii) A†AT = TAA†.

Proof. As T satisfies T−1 = T = T ∗, equivalences (i) to (xii) follow from Theorems 3.9 and 4.3.
(iv)⇔(xiii). It is clear that (AT )† = TA† because T−1 = T = T ∗. Moreover, T 2 = In. Thus,
AT is EP if and only if

AT (AT )† = (AT )†AT

ATTA† = TA†AT

AA† = TA†AT

TAA† = A†AT.

Theorem 4.5. Let A, T ∈ Cn×n. Suppose T is an orthogonal projector. Then the following are
equivalent:

(i) A is T -EP;

(ii) A is EP and A = AT ;

(iii) A∗ is EP and A = AT ;

(iv) A† is EP and A = AT .

In particular, under any one of equivalent conditions (i)-(iv) we have that AT , TA, and also
TAT are all EP and T -EP.

Proof. Note that if T is an orthogonal projector, A = AT ∗T if and only if A = AT . Now, all
equivalences follow as a direct application of Theorem 3.10.
In order to prove the last affirmation we suppose (ii) holds. Clearly, A = AT . On the other
hand, by Theorem 2.14 (i) we know that A = TT ∗A or equivalently A = TA, as T is an
orthogonal projector. Consequently, A = AT = TA and so A = TAT . Therefore, part (ii)
implies A is T -EP and therefore AT , TA, and also TAT are all EP and T -EP.

Lemma 4.6. Let A, T ∈ Cn×n. Let T be a normal partial isometry. Then the following hold:

(i) If A = TT ∗A then (TA)† = A†T ∗. In particular, A† = (TA)†T .

(ii) If A = AT ∗T then (AT )† = T ∗A†. In particular, A† = T (AT )†.
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Proof. (i) We check this by direct verification. Let X := A†T ∗. Since A = TT ∗A and T is
normal (i.e., TT ∗ = T ∗T ) we have,

TAXTA = TAA†T ∗TA = TAA†TT ∗A = TAA†A = TA,

XTAX = A†T ∗TAA†T ∗ = A†TT ∗AA†T ∗ = A†AA†T ∗ = A†T ∗ = X,

(TAX)∗ = (TAA†T ∗)∗ = T (AA†)∗T ∗ = TAA†T ∗ = TAX,

(XTA)∗ = (A†T ∗TA)∗ = (A†TT ∗A)∗ = (A†A)∗ = A†A = A†TT ∗A = A†T ∗TA = XTA.

By uniqueness of the Moore-Penrose inverse we have X = (TA)†.
It remains to show the last affirmation of part (i). In fact, from Lemma 2.12 (i) and the fact
that T is normal we obtain A† = A†TT ∗ = A†T ∗T = (TA)†T .
(ii) Can be proved similarly.

Theorem 4.7. Let A, T ∈ Cn×n. Let T be a normal partial isometry. If A is T -EP then the
Moore-Penrose inverse of A is given by

A† = (TA)†T = T (AT )†.

Proof. As A is T -EP we know that A = AT ∗T by definition. Also, from Theorem 2.14 (i) we
have A = TT ∗A. Now, the expression of A† follows from Lemma 4.6.

Theorem 4.8. Let A, T ∈ Cn×n. Let T be an hermitian partial isometry. Then A is T -EP if
and only if TA is EP and A = AT 2 = T 2A.

Proof. Let A be T -EP. Then by definition of T -EP matrix and Theorem 2.14 (i), respectively,
we have A = AT ∗T and A = TT ∗A which are equivalent to A = AT 2 = T 2A as T is hermitian.
In order to show that TA is EP is equivalent we will use the well-known characterization
TA(TA)† = (TA)†TA. In fact, first we note that T is a normal partial isometry. Thus, as
A = TT ∗A, Lemma 4.6 (i) implies (TA)† = A†T ∗ = A†T . Moreover, (TA)†TA = A†A. Also,
Lemma 2.11 (iv) and Theorem 3.7 imply A† = T ∗TA† = T 2A† and AA†T = TA†A, respectively.
Therefore,

TA(TA)† = TAA†T

= TTA†A

= A†A

= (TA)†TA.

Conversely, let TA be EP and A = T 2A = AT 2. Clearly, A = TT ∗A and T is a normal partial
isometry. Thus, by Lemma 4.6 (i) we have (TA)† = A†T ∗ = A†T . Therefore, TA(TA)† =
(TA)†TA is equivalent to TAA†T = A†T 2A = A†A. Multiplying on left this equality, by T

and using A = AT ∗T = T 2A = AT 2 implies AA†T = TA†A. Thus, Theorem 3.7 completes the
proof.

Theorem 4.9. Let A, T ∈ Cn×n, and T a partial isometry such that A and T ∗ commute. Then
A is T -EP if and only if A is EP and A = AT ∗T.
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Proof. Suppose A and T ∗ commute and A is T -EP. By definition, R(A) = R(TA∗T ). Since
A and T ∗ commute, A∗ and T commute. Therefore R(A) = R(A∗T 2) ⊆ R(A∗). However,
rank(A) = rank(A∗) implies R(A) = R(A∗). Thus A is EP.
Conversely, let A be EP and A = AT ∗T. As A is EP, R(A) = R(A∗). Thus,

R(TA∗) = R(AT ∗) ⊆ R(A∗) = R(A).

As A = AT ∗T, we obtain rank(A) = rank(AT ∗T ) ≤ rank(AT ∗) = rank(TA∗). So, R(TA∗) =
R(A). Now, by Theorem 2.13 (v), A is T -EP.

5 Sums of T -EP matrices

We now study the problem: When is sum of two T -EP matrices a T -EP matrix? This problem
is not completely resolved even in case of EP matrices and we intend to explore it for T -EP
matrices in this final section.

Theorem 5.1. Let A,B ∈ Cm×n be T -EP such that A∗B +B∗A = 0. Then A+B is T -EP.

Proof. Let A and B be T -EP. As A∗B +B∗A = 0 we have TA∗BT ∗ + TB∗AT ∗ = 0, and so

(AT ∗ +BT ∗)∗(AT ∗ +BT ∗) = (TA∗ + TB∗)(AT ∗ +BT ∗)

= TA∗AT ∗ + TA∗BT ∗ + TB∗AT ∗ + TB∗BT ∗

= TA∗AT ∗ + TB∗BT ∗.

Thus,

N (AT ∗ +BT ∗) = N ((AT ∗ +BT ∗)∗(AT ∗ +BT ∗))

= N (TA∗AT ∗ + TB∗BT ∗)

= N

([

AT ∗

BT ∗

]∗ [

AT ∗

BT ∗

])

= N

[

AT ∗

BT ∗

]

= N (AT ∗) ∩ N (BT ∗).

From Theorem 3.10 we know that AT ∗ is EP and A = AT ∗T , and also BT ∗ is EP and
B = BT ∗T . Therefore,

N (AT ∗ +BT ∗) = N (AT ∗) ∩ N (BT ∗)

= N (TA∗) ∩ N (TB∗)

⊆ N (TA∗ + TB∗)

= N (T (A+B)∗)

= N ((AT ∗ +BT ∗)∗),

whence N (AT ∗ + BT ∗) = N ((AT ∗ + BT ∗)∗). Thus, (A + B)T ∗ is EP. Also, it is clear that
A +B = (A+B)T ∗T . Now, the result follows from Theorem 3.10.

Corollary 5.2. Let A,B ∈ Cm×n be T -EP such that A∗B = 0. Then, A+ B is T -EP.
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Proof. It is a direct consequence from Theorem 5.1.

Corollary 5.3. Let A,B ∈ Cm×n be T -EP such that BA∗ = 0. Then, A+ B is T -EP.

Proof. Firstly note that BA∗ = 0 can be written as (B∗)∗A∗ = 0. Also, by Theorem 3.9 we
know that A∗ and B∗ are T ∗-EP. Thus, from Corollary 5.2 we have that B∗ + A∗ is T ∗-EP.
Thus, by applying again Theorem 3.9 we get A+B is T -EP.

An interesting consequence of previous corollaries is the following theorem. Before we need
tot define the concept of ∗-orthogonality [8] of two matrices.

Definition 5.4. Let A, B ∈ Cm×n. We say A and B are ∗-orthogonal in case A∗B = 0 and
BA∗ = 0.

It is easy to see that A and B are ∗-orthogonal if and only if A∗ and B∗ are ∗-orthogonal.
Moreover, if A and B are both T -EP, then (i) A and B are ∗-orthogonal implies AT ∗ and BT ∗

are ∗-orthogonal and (ii) TA∗ and TB∗ are ∗-orthogonal.

Theorem 5.5. Let A,B ∈ Cm×n be T -EP. If A and B are ∗-orthogonal, then A+B is T -EP.

Proof. Follows by Definition 5.4 and Corollary 5.2.

In the following two results we present another sufficient conditions for a sum of two T -EP
matrices to be T -EP.

Theorem 5.6. Let A,B ∈ Cm×n be T -EP such that R(A) ∩ R(B) = {0}. Then, A + B is
T -EP.

Proof. Since A and B are T -EP, by Theorem 3.10 we have AT ∗ is EP and A = AT ∗T , and also
BT ∗ is EP and B = BT ∗T. We will show that (A + B)T ∗ is EP and (A + B) = (A + B)T ∗T .
Clearly, the second condition is true. On the other hand, note that

N

([

AT ∗

BT ∗

])

= N (AT ∗) ∩ N (BT ∗) ⊆ N (AT ∗ +BT ∗). (5.1)

Also, we have R(AT ∗)∩R(BT ∗) ⊆ R(A)∩R(B) = {0}. In consequence, as AT ∗ and BT ∗ are
EP, also we have R(TA∗) ∩R(TB∗) = {0}. Thus,

rank(AT ∗ +BT ∗) = rank(AT ∗) + rank(BT ∗) = rank

[

AT ∗

BT ∗

]

. (5.2)

Therefore, from (5.1) and (5.2) we obtain N (AT ∗+BT ∗) = N ((AT ∗+BT ∗)∗), i.e., (A+B)T ∗

is EP. Once again by Theorem 3.10, A+B is T -EP.

Theorem 5.7. Let A,B ∈ Cm×n be T -EP such that R(A∗) ∩ R(B∗) = {0}. Then, A + B is
T -EP.

Proof. Let A and B be T -EP. From Theorem 3.9 we know that A∗ and B∗ are T ∗-EP. Thus,
Theorem 5.6 implies A∗ + B∗ is T ∗-EP. Once again Theorem 3.9 we obtain that A + B is
T -EP.

We end this section with yet another sufficient conditions for a sum of two T -EP matrices
to be T -EP.
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Theorem 5.8. Let A,B ∈ Cm×n be T -EP such that rank(T (A + B)∗T ) = rank(A + B) and
R(A +B) = R(A) +R(B). Then A+B is T -EP.

Proof. As A and B are T -EP, by definition we have R(A) = R(TA∗T ) and A = AT ∗T , and
also R(B) = R(TB∗T ) and B = BT ∗T . In consequence, from R(A + B) = R(A) +R(B) we
obtain

R(T (A+B)∗T ) ⊆ R(TA∗T ) +R(TB∗T ) = R(A) +R(B) = R(A+B).

Thus, rank(T (A+B)∗T ) = rank(A+B) implies R(T (A+B)∗T ) = R(A+B). Moreover, it is
easy to see (A+B) = (A +B)T ∗T. Hence A+B is T -EP.

Remark 5.9. Note that if A and B are T -EP and ∗-orthogonal then (i) rank(T (A+B)∗T ) =
rank(A+B) and (ii) R(A+B) = R(A) +R(B). In fact, (i) it follows from Corollary 5.5 and
Theorem 2.14 (ii).
(ii) It is a consequence of the fact that A∗B = 0 and BA∗ = 0 imply R(A) ∩ R(B) = {0} and
R(A∗) ∩ R(B∗) = {0}, respectively. Thus, rank(A + B) = rank(A) + rank(B) and therefore
R(A +B) = R(A) +R(B).
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