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1. Introduction

M.G. Krein introduced the concept of entire operators in the search of a unified treatment of several classical problems in
analysis [8–10,12]; a review book on this matter is [3]. In general, it may be difficult to determine whether a given operator
is entire due to the lack of criteria not based on finding the entire gauge. In this work we present necessary and sufficient
conditions for an operator to be entire for the case of deficiency indices (1,1). These conditions are based exclusively on
the distribution of the spectra of two von Neumann selfadjoint extensions of the operator. More concretely (the precise
statement is Theorem 4.5):

Let A be a simple, regular, closed symmetric operator with deficiency indices (1,1). Consider two of its selfadjoint extensions A0
and Aγ . Then A is entire if and only if Spec(A0) and Spec(Aγ ) = {xn} obey the following conditions:

• The limit

lim
r→∞

∑
0<|xn|�r

1

xn

exists;

• lim
n→∞

n

x+
n

= lim
n→∞

n

x−
n

< ∞;
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• Assuming that Spec(Aβ) = {bn}, define

hβ(z) :=
{

limr→∞
∏

|bn|�r(1 − z
bn

) if 0 /∈ Spec(Aβ),

z limr→∞
∏

0<|bn|�r(1 − z
bn

) otherwise.

The series
∑

n∈N
| 1

h0(xn)h′
γ (xn)

| is convergent.

Here {x+
n } and {x−

n } are, respectively, the sequences of positive and negative elements of Spec(Aγ ).

Our spectral characterization was motivated by a result, due to Woracek [19], which gives necessary and sufficient
conditions for a de Branges space to have 1 as an associated function (Theorem 3.1). These conditions are formulated in
terms of the spectra of two particular selfadjoint extensions of the multiplication operator in the de Branges space. On
the basis of a simple result (Lemma 3.4) we reformulate the necessary and sufficient conditions in terms of two arbitrary
selfadjoint extensions (Proposition 3.5). These results are then combined with spectral theory and de Branges spaces theory
to obtain necessary and sufficient conditions for 1 to be in the de Branges space (Proposition 3.9).

A recent general result [20] gives, as a particular case, necessary and sufficient conditions for a de Branges space to
contain the function 1. The present work presents an alternative approach to this question and, by means of Lemma 3.4,
provides a way for reformulating the necessary and sufficient conditions of [20] in more general terms.

Having obtained the results mentioned above on de Branges spaces, we establish the spectral characterization of entire
operators (Theorem 4.5) on the basis of the representation of any regular, simple, symmetric operator, with deficiency
indices (1,1), as the multiplication operator in a certain de Branges space (Section 4). The realization of this representation
parallels the construction by Krein, even though the latter yields a de Branges space only when the operator is entire.
We ought to mention that an alternative representation theory was developed recently in [13], although based on a quite
different approach.

Besides the necessary and sufficient conditions for the spectra of two selfadjoint extensions of an entire operator, we also
provide the spectral characterization for operators that are entire in the generalized sense (Theorem 5.4). The key ingredient
of this characterization (Proposition 5.1) is the representation developed in Section 4.

In the process of deriving the results of this work, we touch upon the treatment of some two-spectra inverse problems
involving selfadjoint extensions of the symmetric operators considered here (Corollary 3.2). This matter will be consider in a
forthcoming paper. It is worth remarking that the theory of de Branges spaces has been already applied to inverse spectral
problems for Schrödinger operators [14,15].

A short review on entire operators with deficiency indices (1,1) is given in Section 2. As a by-product, we provide a
proof of a result by Krein related to the properties of gauges (Proposition 2.2). Section 3 starts with a brief account of some
facts on de Branges spaces.

2. Review on entire operators

Let Sym(1,1)
R (H) denote the class of simple, regular, closed symmetric operators densely defined on a Hilbert space H,

whose deficiency indices are (1,1). It is known, and easily verifiable, that because of the simplicity this class is not empty
only when H is separable [12, Section 2]. The selfadjoint extensions of a given operator A ∈ Sym(1,1)

R (H) shall be denoted
by Aβ with β ∈ [0,π) (other parametrizations may be chosen as well). The spectra of such selfadjoint extensions are always
discrete and of multiplicity one. Also, the spectra of any two selfadjoint extensions interlace and, moreover, every point of
the real line belongs to the spectrum of a unique selfadjoint extension.

Sym(1,1)
R (H) as a set is invariant under similarity transformations: If V : H → H′ is one-to-one and onto, then

Sym(1,1)
R (H′) = V Sym(1,1)

R (H)V −1 (where the domains of operators are transformed accordingly).
In what follows, the inner product will be assumed anti-linear in the first argument.
Given A ∈ Sym(1,1)

R (H), a vector μ ∈ H is called a gauge for A if

H = Ran(A − z0 I)+̇Span{μ}, (2.1)

for some z0 ∈ C. Once a gauge has been chosen, we look for the set of complex numbers for which (2.1) fails to hold:

Sμ = C \ {
z ∈ C: H = Ran(A − zI) +̇ Span{μ}}.

That is, w ∈ Sμ if and only if μ ⊥ Ker(A∗ − w I). Likewise, for every selfadjoint extension Aβ ⊃ A we define

S(β)
μ = {

z ∈ C \ Spec(Aβ):
〈
μ,ψ(β)(z)

〉 = 0
}
,

where

ψ(β)(z) := (Aβ − z0 I)(Aβ − zI)−1ψ0 (2.2)
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is the generalized Cayley transform of ψ0 ∈ Ker(A∗ − z0 I). Since ψ(β)(z) ∈ Ker(A∗ − zI) for every z ∈ C \ Spec(Aβ) (see [3]),
we conclude that

S(β)
μ ⊂ Sμ ⊂ S(β)

μ ∪ Spec(Aβ).

It follows that Sμ is at most a countable set with no finite accumulation points. Also, it is easy to verify that

Sμ =
⋃
β

S(β)
μ .

For symmetric operators of the class considered here, one can easily give a gauge such that the exceptional set Sμ lies
entirely on the real line.

Lemma 2.1. Let A ∈ Sym(1,1)
R (H). Take an eigenvector μ0 of some selfadjoint extension Aβ as a gauge for A. Then Sμ0 = Spec(Aβ) \

{x0}, where x0 is the eigenvalue associated to μ0 .

Proof. The inclusion Spec(Aβ) \ {x0} ⊂ Sμ0 is straightforward, thus we shall only deal with the converse inclusion. Since
necessarily x0 /∈ Sμ0 , it suffices to show that Sμ0 is contained in Spec(Aβ). Suppose that v ∈ C \ Spec(Aβ). For such a v ,
ψ(β)(v) = (Aβ − z0 I)(Aβ − v I)−1ψ0 is well defined, where we have chosen z0 non-real such that ψ0 ∈ Ker(A∗ − z0 I) is not
orthogonal to μ0. Then,〈

μ0,ψ
(β)(v)

〉 = 〈
(Aβ − v I)−1(Aβ − z0 I)μ0,ψ0

〉 = x0 − z0

x0 − v
〈μ0,ψ0〉 
= 0,

thus implying v /∈ Sμ0 . �
This result allows us to prove the following assertion first formulated by Krein without proof in [9, Theorem 8].

Theorem 2.2 (Krein). For every A ∈ Sym(1,1)
R (H), there exists a gauge μ such that Sμ ∩ R = ∅.

Proof. Choose μ1 and μ2 among the eigenstates of two different selfadjoint extensions, say, Aβμ1 = x1μ1 and Aβ ′μ2 =
x2μ2 (x1 
= x2). By Lemma 2.1 we have Sμ1 = Spec(Aβ) \ {x1} and Sμ2 = Spec(Aβ ′) \ {x2}, therefore

Sμ1 ∩ Sμ2 = ∅, (2.3)

due to the disjointness property mentioned above.
Next, we show that for every x ∈ R \ Sμ2 there exists a unique g(x) ∈ C such that (μ1 + g(x)μ2) ⊥ Ker(A∗ − xI):

The uniqueness follows from the fact that x /∈ Sμ2 . As for the existence, choose some selfadjoint extension Aβ ′′ such that
x /∈ Spec(Aβ ′′) and set

g(x) = −〈ψ(β ′′)(x),μ1〉
〈ψ(β ′′)(x),μ2〉 .

Finally, choose some g̃ ∈ G := C \ {g = g(x): x ∈ R \ Sμ2 }. The set G is non-empty since g(x) is differentiable in any
closed interval of R \ Sμ2 and it cannot produce a space filling curve [17, Section 5.4]. Then μ = μ1 + g̃μ2 satisfies the
claimed property as a result of (2.3). �
Remark. Lemma 2.1 implies that eigenstates of two different selfadjoint extensions, of an operator in Sym(1,1)

R (H), are never
orthogonal to one another. This is of course expected.

By Theorem 2.2, for operators of the class considered here it is always possible to find a gauge (indeed an uncountable
number of them) such that the exceptional set Sμ lies outside the real line. A distinguished class of operators is the
following one.

Definition 2.3. An operator A ∈ Sym(1,1)
R (H) is called entire if there exists a gauge μ ∈ H such that Sμ = ∅, in which case μ

is said to be an entire gauge.

In order to decide whether an operator is entire, the notion of universal directing functional is sometimes useful. The
following statement is classical [3, Chapter 2].
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Proposition 2.4. Suppose A ∈ Sym(1,1)
R (H) admits a universal directing functional Φ(·, z) such that, for some μ ∈ H,

Φ(μ, z) 
= 0 for all z ∈ C. (2.4)

Then A is entire and μ is an entire gauge for A. Conversely, associated to an entire operator with entire gauge μ, there is a universal
directing functional that satisfies (2.4).

We note that the determination of a universal directing functional may not be easier than to find an entire gauge by
brute force. One of the aims of the present work is to provide alternative criteria for determining when an operator in
Sym(1,1)

R (H) is entire. As we already have mentioned, these criteria will rely upon the distribution of elements of the
spectra of selfadjoint extensions, thus not requiring the searching of gauges with particular properties. However, we should
mention that the spectral characterization discussed in the present work may not necessarily be easier to use in practice.

3. Some known and new results on de Branges spaces

Let B denote a non-trivial linear manifold of entire functions that is complete with respect to the norm generated by a
given inner product 〈·,·〉B . We say that B is an (axiomatic) de Branges space if, for every f (z) in that space, the following
conditions holds:

(A1) For every w: Im w 
= 0, the linear functional f (·) �→ f (w) is continuous;
(A2) for every non-real zero w of f (z), the function f (z)(z − w)(z − w)−1 belongs to B and has the same norm as f (z);
(A3) the function f #(z) := f (z) also belongs to B and has the same norm as f (z).

By the Riesz lemma, (A1) is equivalent to the existence of a reproducing kernel k(z, w) that belongs to B for every non-
real w and has the property 〈k(·, w), f (·)〉B = f (w) for every f (z) ∈ B. Moreover, k(w, w) = 〈k(·, w),k(·, w)〉B � 0 where,
as a consequence of (A2), the positivity is strict for every non-real w unless B ∼= C; see the proof of Theorem 23 in [2].
Notice that k(z, w) = 〈k(·, z),k(·, w)〉B whenever z and w are both non-real, therefore k(w, z) = k(z, w). Finally, due to (A3)
it can be shown that k(z, w) = k(z, w) for every non-real w; we refer again to the proof of Theorem 23 in [2].

Remark. By construction k(z, w) is entire with respect to its first argument and, by (A3), it is anti-entire with respect to
the second one (once k(z, w), as a function of its second argument, has been extended to the whole complex plane [2,
Problem 52]).

There is another way of defining a de Branges space. One starts by considering an entire function e(z) of the Hermite–
Biehler class, that is, an entire function without zeros in the upper half-plane C

+ that satisfies the inequality |e(z)| > |e#(z)|
for z ∈ C

+ . Then, the (canonical) de Branges space B(e) associated to e(z) is the linear manifold of all entire functions f (z)
such that both f (z)/e(z) and f #(z)/e(z) belong to the Hardy space H2(C+), and equipped with the inner product

〈
f (·), g(·)〉B(e) :=

∞∫
−∞

f (x)g(x)

|e(x)|2 dx.

B(e) is indeed a Hilbert space. Both definitions of de Branges spaces are equivalent in the following sense: Every canonical
de Branges space obeys (A1)–(A3); conversely, given an axiomatic de Branges space B there exists an Hermite–Biehler
function e(z) such that B coincides with B(e) as sets and the respective norms satisfies the equality ‖ f (·)‖B = ‖ f (·)‖B(e)
[2, Chapter 2]. The function e(z) is not unique; a choice for it is

e(z) = −i

√
π

k(w0, w0) Im(w0)
(z − w0)k(z, w0), (3.1)

where w0 is some fixed complex number with Im(w0) > 0. It is customary and often useful to decompose e(z) into its real
and imaginary parts. Define

a(z) := e(z) + e#(z)

2
, b(z) := i

e(z) − e#(z)

2

then e(z) = a(z) − ib(z). Both a(z) and b(z) are real entire functions in the sense that they obey the identity f #(z) = f (z).
The reproducing kernel can be expressed in terms of the function e(z) (see for instance [5, Section 5]) as follows

k(z, w) =
⎧⎨⎩

e#(z)e(w)−e(z)e#(w)
2π i(z−w)

, z 
= w,

i [e#′
(z)e(z) − e′(z)e#(z)], z = w.
2π
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Notice that

k(z, z) = |e(z)|2 − |e#(z)|2
4π Im(z)

> 0, z ∈ C
+,

whereby it follows that e(z) given in (3.1) is indeed a Hermite–Biehler function. From (3.1) we also conclude that k(z, w) is
always different from zero whenever z, w ∈ C

+ .
An entire function g(z) is said to be associated to a de Branges space B if for every f (z) ∈ B and w ∈ C,

g(z) f (w) − g(w) f (z)

z − w
∈ B.

The set of associated functions is denoted Assoc B. It is well known that

Assoc B = B + zB;
see [2, Theorem 25] and [5, Lemma 4.5] for alternative characterizations. In passing, let us note that e(z) ∈ Assoc B(e)\ B(e);
this fact follows easily from [2, Theorem 25]. Let us also recall that Assoc B(e) contains an important family of entire
functions. They are given by

sβ(z) := i

2

[
eiβe(z) − e−iβe#(z)

] = −a(z) sin β + b(z) cosβ, β ∈ [0,π). (3.2)

These real entire functions determine the selfadjoint extensions of the multiplication operator; see below. Notice that a(z) =
−sπ/2(z) and b(z) = s0(z). Also, every sβ(z) has only real zeros of multiplicity one and the (sets of) zeros of any pair sβ(z)
and sβ ′ (z) are always interlaced.

Some of the results obtained in this paper are related to the problem of telling when a de Branges space contains the
function 1. In connection with this, there is a result [19, Theorem 1.1], which was recently generalized in various directions
[20], that characterizes de Branges spaces for which 1 is an associated function. This result is of interest to us because it
relies on the distribution of the zero-sets of the functions sβ(z). The aforementioned theorem may be stated as follows.

Theorem 3.1 (Woracek). Assume e(x) 
= 0 for x ∈ R and e(0) = 1. Let {xn}n∈N be the sequence of zeros of the function sπ/2(z). Also, let
{x+

n }n∈N and {x−
n }n∈N be the sequences of positive, respectively negative, zeros of sπ/2(z), arranged according to increasing modulus.

Then an everywhere non-zero, real function belongs to Assoc B(e) if and only if the following conditions hold true:

(C1) The limit

lim
r→∞

∑
0<|xn|�r

1

xn

exists;

(C2) lim
n→∞

n

x+
n

= lim
n→∞

n

x−
n

< ∞;

(C3) Assuming that {bn}n∈N are the zeros of sβ(z), define

hβ(z) :=
{

limr→∞
∏

|bn|�r(1 − z
bn

) if 0 is not a root of sβ(z),

z limr→∞
∏

0<|bn|�r(1 − z
bn

) otherwise.

The series
∑

n∈N
| 1

x2
nh0(xn)h′

π/2(xn)
| is convergent.

Furthermore, sπ/2(z)/hπ/2(z) ∈ Assoc B(e).

Remark.

1. We warn the reader about the precise meaning of condition (C2), which has been formulated under the implicit as-
sumption that {xn}n∈N is not semibounded. If the sequence is semibounded, say from below, then (C2) means

lim
n→∞

n

x+
n

= 0.

(The other limit is meaningless.)
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2. The assumption that e(z) has no real zeros amounts to no loss of generality (see Lemma 2.4 of [7]); by the same token,
it has been assumed that e(0) = 1. The latter was done to ensure that 0 is not a root of sπ/2(z) = −a(z), otherwise the
proof of the theorem in [19] would have been more complicated.

3. Due to the interlacing property mentioned above, sβ(0) = 0 for only one value of β .

Theorem 3.1 has the following consequence.

Corollary 3.2. Let {x(1)
n }n∈N and {x(2)

n }n∈N be two unbounded interlaced sequences of real numbers, with no finite accumulation points.
There exists a de Branges space B(e) such that these sequences are the zero sets of sπ/2(z) and s0(z), respectively, and 1 ∈ Assoc B if

and only if {x(1)
n }n∈N and {x(2)

n }n∈N satisfy

(C0) min{x(2)
n } < min{x(1)

n } if the sequences are semibounded from below, and max{x(1)
n } > max{x(2)

n } if the sequences are semi-
bounded from above,

along with conditions (C1), (C2) and (C3) of Theorem 3.1, where in (C3) one substitutes the zeros of sπ/2(z) by {x(1)
n } and the zeros of

s0(z) by {x(2)
n }.

Proof. In view of Theorem 3.1, one direction of the statement has already been established. Note that by [4, Chapter VII,
Theorem 1] the zero sets of sπ/2(z) and s0(z) should satisfy (C0) when the sequences are semibounded. In order to prove

the other direction, we assume w.l.o.g. that the sequences have been arranged so that x(2)

k < x(1)

k < x(2)

k+1. Let us define

e(z) := −h1(z) − ih2(z),

where hi(z) is the function defined in (C3) by means of {x(i)
n }. It will suffice to show that e(z) is Hermite–Biehler which, in

our case, reduces to showing that

Im

[
−h2(z)

h1(z)

]
> 0, z ∈ C

+.

This follows directly from [4, Chapter VII, Theorem 1] taking into account (C0) if the sequences are semibounded. Noting
that a(z) = −h1(z) and b(z) = h2(z), and recalling Theorem 3.1, the assertion follows. �
Remark.

1. It is clear that, in Corollary 3.2, the phrase “1 ∈ Assoc B” can be replaced by “Assoc B contains a zero-free real entire
function”. See [7, Lemma 2.4].

2. The proof above also tells us that conditions (C1) and (C2) are sufficient for the existence of a de Branges space B(e),
having the two sequences as zero sets of the associated functions s0(z) and sπ/2(z). However, we cannot assure in this
case that Assoc B(e) contains a zero-free real entire function. Indeed, if (C3) is not satisfied then necessarily Assoc B(e)
does not contain such kind of entire functions.

3. Corollary 3.2 together with the results of the next section suggest a method for dealing with two-spectra inverse
problems. This matter will be treated in a forthcoming paper.

In view of the interlacing property, it seems reasonable to believe that the zero-sets of essentially any pair sβ(z) and
sβ ′(z) bear similar properties as those of s0(z) and sπ/2(z). Thus, one may expect that Theorem 3.1 can be refined accord-
ingly. This refinement is the aim of the following results.

Lemma 3.3. Suppose e(z) belongs to the Hermite–Biehler class having no real zeros. For γ ∈ (0,π), let ĕ(z) = −sγ (z) − is0(z). Then
ĕ(z) also belongs to the Hermite–Biehler class and has no real zeros. Moreover, s̆0(z) = s0(z) and s̆π/2(z) = sγ (z).

Proof. A short computation leads to the last assertion. Also, it is obvious that ĕ(z) is not constant and has no real zeros. By
the properties of the functions sβ(z), it follows that the quotient

− ă(z)

b̆(z)
= s̆0(z)

s̆γ (z)

is real and analytic in C \ R. Moreover,

− Im

[
ă(z)

b̆(z)

]
= −(sinγ ) Im

[
a(z)

b(z)

]
> 0

for z ∈ C
+ . Thus, by a standard criterion for Hermite–Biehler functions [4, Chapter VII], the first assertion follows. �
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Lemma 3.4. As sets, B(ĕ) = B(e), therefore Assoc B(ĕ) = Assoc B(e).

Proof. It suffices to show the two-sided estimate

r1
∣∣e(x + iy)

∣∣ �
∣∣ĕ(x + iy)

∣∣ � r2
∣∣e(x + iy)

∣∣
for all y � 0 and some positive constants r1 and r2.

A short computation leads to the identity

ĕ(z) = e(z)

[
1 − ei(γ + π

2 )

2

][
1 − 1 − e−i(γ − π

2 )

1 − ei(γ + π
2 )

e#(z)

e(z)

]
.

The second factor on the r.h.s. is a (γ -dependent) constant whose absolute value lies in (
√

2/2,1) because γ ∈ (0,π).
Similarly,∣∣∣∣1 − e−i(γ − π

2 )

1 − ei(γ + π
2 )

∣∣∣∣ ∈ [0,1).

Finally, |e(x + iy)| � |e#(x + iy)| whenever y � 0. The required inequalities now follows easily. �
Proposition 3.5. Suppose e(x) 
= 0 for x ∈ R and e(0) = (sinγ )−1 for some fixed γ ∈ (0,π). Let {xn}n∈N be the sequence of zeros of
the function sγ (z). Also, let {x+

n }n∈N and {x−
n }n∈N be the sequences of positive, respectively negative, zeros of sγ (z), arranged according

to increasing modulus. Then a zero-free, real entire function belongs to Assoc B(e) if and only if (C1) and (C2) of Theorem 3.1 hold true
along with the additional condition:

(C3�) For hβ(z) defined as in (C3), assume∑
n∈N

∣∣∣∣ 1

x2
nh0(xn)h′

γ (xn)

∣∣∣∣ < ∞.

Also, sγ (z)/hγ (z) ∈ Assoc B(e).

Proof. Combine Lemma 3.3, Lemma 3.4 and Theorem 3.1. �
Obviously, multiplication of a Hermite–Biehler function by a (non-zero) complex number induces both a unitary trans-

formation between de Branges spaces and a bijection between the respective sets of associated functions.

Corollary 3.6. Proposition 3.5 remains valid if one replaces 0 and γ by β and β ′ such that 0 � β < β ′ < π and assumes that e(z) has
no real zeros.

Proof. Apply Proposition 3.5 to e̊(z) = [e(0) sinγ ]−1e(z) with γ = β ′ − β . �
Remark. The statement of Lemma 3.4 readily generalizes to the sets of N-associated functions introduced in [20]. Conse-
quently, Theorem 3.2 of [20] can be accordingly refined (at least for the case of de Branges Hilbert spaces). We will not
discuss this matter further here; nonetheless, see the remark at the end of Section 5.

The operator of multiplication in B is defined by

Dom(S) := {
f (z) ∈ B: zf (z) ∈ B

}
, (S f )(z) = zf (z). (3.3)

This operator is symmetric, simple, regular and has deficiency indices (1,1), although it is not necessarily densely defined;
see [5, Proposition 4.2, Corollaries 4.3 and 4.7]. The following characterization of the domain is useful; see [2, Theorem 29]
and [5, Corollary 6.3].

Theorem 3.7. Dom(S) 
= B if and only if there exists γ ∈ [0,π) such that sγ (z) ∈ B. Furthermore, Dom(S)⊥ = Span{sγ (z)}.

In this paper we shall deal only with cases where S has domain dense in B. In passing we note that this assumption is
fulfilled, for instance, when the polynomials are dense in B. Conditions for this to happen have been studied in [1,6].

There exists an explicit relation between the selfadjoint extensions of S and the entire functions sβ(z) defined by (3.2);
see [5, Propositions 4.6 and 6.1].
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Proposition 3.8. The selfadjoint extensions of S are in one-to-one correspondence with the set of entire functions sβ(z), β ∈ [0,π).
They are given by

Dom(Sβ) =
{

g(z) =
f (z) − sβ (z)

sβ (z0)
f (z0)

z − z0
, f (z) ∈ B, z0: sβ(z0) 
= 0

}
,

(Sβ g)(z) = zg(z) + sβ(z)

sβ(z0)
f (z0). (3.4)

Moreover, Spec(Sβ) = {x(β)
n ∈ R: sβ(x(β)

n ) = 0}. The associated eigenfunctions (up to normalization) are g(β)
n (z) := sβ (z)

z−x(β)
n

.

Remark. The derivation of the expression for the selfadjoint extensions discussed in [5] is done in the broader context of
selfadjoint relations (so it is valid even when the codimension of Dom(S) is one). However, it might be beneficial to see
the connection between the characterization of selfadjoint extensions given by Proposition 3.8 and the standard way à la
von Neumann. We first note that

n(z, w0) := k(z, w0)√
k(w0, w0)

∈ Ker
(

S∗ − w0 I
)
, Im(w0) > 0.

The choice on the phase of w0 is related to the one made on (3.1) so it is not an actual restriction. Also, ‖n(·, w0)‖ = 1.
Since S has deficiency indices (1,1), by the standard theory its selfadjoint extensions are given by

Dom(Sβ) = {
g(z) = h(z) + pe−iβn(z, w0) + peiβn(z, w0), h(z) ∈ Dom(S), p ∈ C

}
,

(Sβ g)(z) = zh(z) + pe−iβ w0n(z, w0) + peiβ w0n(z, w0),

where β ∈ [0,π). Due to (A3), n(z, w0) = n(z, w0), so, by (3.1), doing some rearrangement and then using (3.2), we obtain

Dom(Sβ) =
{

g(z)=h(z) − ire−iβ e#(z)

z − w0
+ ireiβ e(z)

z − w0
, h(z) ∈ Dom(S), r ∈ C

}
,

(Sβ g)(z) = zh(z) − ire−iβ w0
e#(z)

z − w0
+ ireiβ w0

e(z)

z − w0
= zg(z) − 2rsβ(z). (3.5)

Finally, define

f (z) := (z − w0)h(z) + 2r Im(w0)eiβ e(z)

z − w0
.

The function f (z) is entire as long as either is h(z); notice that e(w0) = 0 so the last term above is entire. It is not difficult
to verify that f (z) ∈ B(e) if and only if h(z) ∈ Dom(S). Moreover, f (w0) = −2rsβ(w0). We obtain (3.4) after substituting
h(z) by f (z) in (3.5).

In passing, and for the sake of completeness, we note that a computation in a similar vein yields the following description
of the adjoint operator:

Dom
(

S∗) =
{

g(z) = f (z) − e(z)
e(z0)

f (z0)

z − z0
+

h(z) − e#(z)
e#(z0)

h(z0)

z − z0
: f (z),h(z) ∈ B, Im(z0) > 0

}
,

(
S∗g

)
(z) = zg(z) + e(z)

e(z0)
f (z0) + e#(z)

e#(z0)
h(z0).

For the selfadjoint extension Sβ of S , the spectral measure is given by

mβ(x) =
∑

xn∈Spec(Sβ)

xn�x

∥∥k(·, xn)
∥∥−2

. (3.6)

These spectral measures allow us to compute the inner product of B in different ways. We note that {k(z, xn)‖k(·, xn)‖−1}
is an orthonormal basis of B when {xn} = Spec(Sβ) thus one readily obtain

〈
f (·), g(·)〉B =

∞∫
f (x)g(x)dmβ(x). (3.7)
−∞
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Notice that∥∥k(·, xn)
∥∥2 = k(xn, xn) = − 1

π
sγ + π

2
(xn)s′

γ (xn), (3.8)

for xn ∈ Spec(Sγ ) and γ ,γ + π
2 ∈ R/[0,π), where the second equality comes from a standard expression for k(z, w)

[7, Equation 2.1].

Remark.

1. A straightforward consequence of (3.7) is that a function in B restricted to the real line is in L2(mβ). Moreover, from
the simplicity of Sβ it follows that B fills L2(mβ) (see [2, Problem 69]) in the sense that, given ϕ(x) ∈ L2(mβ), there
exists f (z) ∈ B such that ‖ϕ(·) − f (·)‖L2(mβ ) = 0.

2. Also, by [2, Problem 69], if g(z) ∈ Assoc B satisfies ‖g(·)‖L2(mβ ) = 0 then g(z) is a constant multiple of sβ(z) (the
converse statement is obvious).

The following result is analogous to Theorem 3.1, although it provides necessary and sufficient conditions for a subclass
of the spaces considered in that theorem.

Proposition 3.9. Let B(e) be a de Branges space such that S is densely defined. Then a real entire zero-free function lies in B(e) if and
only if condition (C1) and (C2) of Theorem 3.1 hold along with

(C3	)
∑

xn∈Spec(Sγ )

∣∣∣∣ 1

h0(xn)h′
γ (xn)

∣∣∣∣ < ∞, γ ∈ (0,π),

where hβ(z) is defined in (C3) of the theorem already mentioned.

Proof. We will prove the proposition for γ = π/2; by an argumentation like the one used in Lemma 3.3, the proof extends
to arbitrary γ .

Suppose that a real entire zero-free function g(z) is in B(e). Then 1 ∈ B(ĕ), where ĕ(z) = e(z)/g(z). Consider the operator
of multiplication S̆ in B(ĕ). Clearly, S̆ is densely defined together with S , so one has

‖1‖2
B(ĕ) = −π

∑
xn∈Spec(S π

2
)

1

s̆0(xn)s̆′
π
2
(xn)

< ∞, (3.9)

where (3.8) has been used together with the fact that Spec(Sγ ) = Spec( S̆γ ). Since 1 ∈ Assoc B(ĕ), then s̆ π
2
(z) is of bounded

type in the upper half-plane by [19, Lemma 2.1]. Thus, from [19, Proposition 2.2] we obtain that (C1), (C2), and the identities

s̆0(z) = ch0(z), s̆ π
2
(z) = −h π

2
(z), (3.10)

with c > 0, hold. These expressions for s̆0 and s̆ π
2

, in conjunction with (3.9), imply (C3	).
Note that Proposition 2.2 of [19] is based on [11, Theorem 3] (see also [16, Theorem 6.17]) and [4, Chapter 5 Theorem 11],

and, by the latter, one would have obtained a factor eikz (k ∈ R) on the r.h.s of each equality in (3.10). Due to the fact that
the entire functions s̆0(z) and s̆ π

2
(z) are real, k must be zero.

Now, assume that (C1), (C2), and (C3	) are fulfilled. Then, h0(z) and h π
2
(z) are well defined. Set

ẽ(z) := −h π
2
(z) − ic̃h0(z)

for c̃ > 0 to be chosen later. As in the proof of Corollary 3.2, one establishes that ẽ(z) is Hermite–Biehler. By an appropriate
choice of c̃, this Hermite–Biehler function and the function e(z) = −s π

2
(z) − is0(z) satisfies ẽ(z) = j(z)e(z), where j(z) is a

real entire and zero-free function. Hence, in view of Lemma 2.4 of [7], the operator of multiplication S̃ is densely defined
in B(ẽ), thus s̃ π

2
(z) = h π

2
(z) ∈ Assoc B(ẽ) \ B(ẽ).

On the basis of (3.6), (3.7), (3.8) and condition (C3	), it follows that

‖1‖2
L2(m̃ π

2
)
= −π

c̃

∑
xn∈Spec(S π

2
)

1

h0(xn)h′
π
2
(xn)

< ∞.

By the first item of the last remark above, there exists f (z) ∈ B(ẽ) such that the L2(m̃ π
2
)-norm of g(z) := 1 − f (z) equals

zero. By the second item of the same remark, and noting that necessarily g(z) ∈ Assoc B(ẽ), it turns out that g(z) = ws̃ π
2
(z)

for some w ∈ C. Recalling (3.2), a computation yields
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1 + ws̃ π
2
(x)

ẽ(x)
= 1

|ẽ(x)| − w cosϕ(x), x ∈ R,

where ϕ(x) is the phase function associated to ẽ(z) given by the identity ẽ(x) = e−iϕ(x)|ẽ(x)|, x ∈ R. By [2, Problem 48],
ϕ(x) is a continuous (indeed, differentiable) strictly increasing function; note that the zeros of s̃ π

2
(z) satisfies the identity

ϕ(xn) = π/2 mod π . Since f (z) ∈ B(ẽ), it follows that

1

|ẽ(x)| − w cosϕ(x) → 0 as |x| → ∞. (3.11)

This implies that necessarily w ∈ R. Furthermore, since the zero-set of s̃β(z) is unbounded, ϕ(x) is unbounded so there
exists an unbounded set {yn}n∈N such that, for all n ∈ N,

w cosϕ(yn) = −|w|.
But this condition collides with (3.11) unless w = 0. We therefore conclude that f (z) ≡ 1, in other words, 1 ∈ B(ẽ). Finally,
recalling the relation between ẽ(z) and e(z), we obtain that j(z)−1 ∈ B(e). �
Remark. After we submitted the present paper for publication, we learned of [20] which gives necessary and sufficient
conditions for a real zero-free function to be N-associated to a de Branges Pontryagin space. This result contains as a
particular case Theorem 3.1 and, in conjunction with Lemma 3.3, it also contains Proposition 3.9. Our alternative approach
to this proposition provides a simpler proof than the one of the more general case treated in [20], in part due to the fact
that we are dealing with Hilbert spaces (rather than Pontryagin spaces), but also because of the techniques of spectral
theory we used.

Concluding this section, we note that if one substitutes (C3) by (C3	) in Corollary 3.2, one obtains necessary and sufficient
conditions for two sequences to generate a de Branges space containing a real entire zero-free function.

4. Representation by symmetric and entire operators

It is known that every entire operator A generates a representation of H as a de Branges space in which A becomes
the operator of multiplication by the independent variable [3, Chapter 2]. This assertion is in fact true for any operator in
Sym(1,1)

R (H). Moreover, recent results [13] show that for every regular, closed, simple symmetric operator A (not necessarily
densely defined) with deficiency indices (1,1), there exists a de Branges space such that the operator of multiplication in it
is unitarily equivalent to A.

The representation proposed here not only provides an alternative approach, for the case of densely defined operators,
to the theory developed in [13] but also allows to construct explicitly the isometry that associates every element of H with
the corresponding entire function in the de Branges space. Furthermore, this representation reduces to the one derived from
Krein’s work for the case of entire operators and, for that reason, it is suitable for the purpose of the present work. It is also
worth remarking that our representation makes possible the treatment of generalized entire operators in a straightforward
way (see Section 5).

The representation proposed here is realized by associating to the operator A a certain nowhere-zero, vector-valued
entire function

C � z �→ ξ(z) ∈ Ker
(

A∗ − zI
)
.

Fix an operator A ∈ Sym(1,1)
R (H) and one of its selfadjoint extensions Aγ , with γ ∈ [0,π). Let g(γ )(z) be a real entire

function such that its zero-set coincides with Spec(Aγ ). Since Spec(Aγ ) has no finite accumulation points, there always
exists such an entire function.

Consider the function ψ(γ )(z) introduced at the beginning of Section 2 (see (2.2)). By [3, Section 2, Theorem 7.1], there
is a complex conjugation C that commutes with A, hence with all its selfadjoint extensions. Therefore,

Cψ(γ )(z) = ψ(γ )(z). (4.1)

Define

ξ (γ )(z) := g(γ )(z)ψ(γ )(z). (4.2)

Lemma 4.1. ξ (γ )(z) is entire, everywhere non-zero and has image in Ker(A∗ − zI) for every z ∈ C. Moreover,

Cξ (γ )(z) = ξ (γ )(z).
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Proof. The function ξ (γ )(z) is entire and everywhere non-zero by rather obvious reasons. Also, we already know that
ξ (γ )(z) ∈ Ker(A∗ − zI) for z /∈ Spec(Aγ ) so we must verify the assertion only for z = xn ∈ Spec(Aγ ). In a neighborhood of xn ,

ψ(γ )(z) = (z − xn)
−1κn + a function analytic at xn,

where the residue κn can be shown to lie in Ker(A∗ − xn I) (see the proof of Proposition 2 in [18]).
The second part of the assertion directly follows from (4.1) and the fact that g(γ )(z) is real. �

Remark. Note that, although the zero-set of g(γ )(z) is determined by the choice of the selfadjoint extension, one has still
the freedom of multiplying it by an arbitrary zero-free, real entire function. This implies that ξ (γ ′)(z) = j(z)ξ (γ )(z), where
j(z) is a zero-free real entire function. That is, up to multiplication by a zero-free real entire function, ξ (γ )(z) does not
depends on the parameter γ . In view of this, the function ξ (γ )(z) will be denoted just as ξ(z).

Now define

(Φϕ)(z) := 〈
ξ(z),ϕ

〉
, ϕ ∈ H, (4.3)

Φ maps H onto a certain linear manifold Ĥ of entire functions. Since A is simple, it follows that Φ is injective. A generic
element of Ĥ will be often denoted by ϕ̂(z), as a reminder of the fact that it is the image under Φ of a unique element
ϕ ∈ H.

The linear space Ĥ is turned into a Hilbert space by defining〈
η̂(·), ϕ̂(·)〉 := 〈η,ϕ〉.

Clearly, Φ is an isometry from H onto Ĥ.

Proposition 4.2. Ĥ is an axiomatic de Branges space.

Proof. We shall verify (A1)–(A3) in that order.
(1) Define k(z, w) := 〈ξ(z), ξ(w)〉. Then, for every ϕ̂ ∈ Ĥ,〈

k(·, w), ϕ̂(·)〉 = 〈
ξ(w),ϕ

〉 = ϕ̂(w).

(2) Assume now that ϕ̂(z) has a non-real zero w ∈ C. That is, 〈ξ(w),ϕ〉 = 0 which implies that ϕ ∈ Ran(A − w I). Thus,
it makes sense to set η = (A − w I)(A − w I)−1ϕ , with image η̂(z) ∈ Ĥ under Φ . Furthermore, a rather straightforward
computation [18] shows that

η̂(z) = z − w

z − w
ϕ̂(z).

Since η and ϕ are related by a Cayley transform, it follows that ‖η̂(·)‖ = ‖ϕ̂(·)‖.
(3) Given any ϕ̂(z) ∈ Ĥ, consider the entire function

ϕ̂ #(z) := ϕ̂(z).

Since by Lemma 4.1 we have

ϕ̂(z) = 〈
ξ(z),ϕ

〉 = 〈
Cξ(z), Cϕ

〉 = 〈
ξ(z), Cϕ

〉
,

it follows that ϕ̂#(z) also belongs to Ĥ and has the same norm as ϕ̂(z). �
The reproducing kernel in Ĥ is given by

k(z, w) = g(γ )(z)g(γ )(w)
〈
ψ(γ )(z),ψ(γ )(w)

〉
.

Although the choice of z0 and ψ0 ∈ Ker(A∗ − z0 I) that enters in the definition of ψ(γ )(z) (see (2.2)) is arbitrary, w.l.o.g. we
can conveniently assume that Im(z0) > 0 and ‖ψ0‖ = 1. In that case, a computation yields

k(z, z0) = g(γ )(z)g(γ )(z0)
[
1 + (z − z0)

〈
ψ0, (Aγ − zI)−1ψ0

〉]
.

Therefore, recalling (3.1),

e(z) = −i

[
π

Im(z0)

] 1
2 g(γ )(z0)

|g(γ )(z0)| g(γ )(z)(z − z0)
[
1 + (z − z0)

〈
ψ0, (Aγ − zI)−1ψ0

〉]
.

It is known that the growth of B(e) coincides with the growth of e(z); see [7]. The last expression shows that the growth
of e(z), hence of Ĥ, is governed by the growth of g(γ )(z).

The next statement can easily be proved (cf. [3, Chapter 1, Theorem 2.2]). We leave the details to the reader.
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Proposition 4.3. Let S be the multiplication operator on Ĥ given by (3.3). Then,

1. S = Φ AΦ−1 and Dom(S) := Φ Dom(A) (thus S is densely defined);
2. the selfadjoint extensions of S are in one-to-one correspondence with the selfadjoint extensions of A.

The following assertions give explicit characterizations of when an operator is entire. We emphasize that Theorem 4.5
rests entirely upon conditions on the spectra of selfadjoint extensions.

Proposition 4.4. A ∈ Sym(1,1)
R (H) is entire if and only if Ĥ contains a real zero-free entire function.

Proof. Let g(z) ∈ Ĥ be the function whose existence is assumed. Clearly there exists (a unique) μ ∈ H such that g(z) ≡
〈ξ1(z),μ〉. Therefore, μ is never orthogonal to Ker(A∗ − zI) for all z ∈ C. That is, μ is an entire gauge for the operator A.

The necessity is established by noting that the image of the entire gauge under Φ is a zero-free function. �
Theorem 4.5. For A ∈ Sym(1,1)

R (H), consider the selfadjoint extensions A0 and Aγ , with 0 < γ < π . Then A is entire if and only if
Spec(A0) and Spec(Aγ ) obey conditions (C1), (C2) and (C3	) of Proposition 3.9.

Proof. Apply Proposition 3.9 along with Proposition 4.4. �
Proposition 4.6. Assume 1 ∈ Ĥ. Then there exists μ ∈ H such that

g(γ )(z) = 1

〈ψ(γ )(z),μ〉
and Cμ = μ. Moreover, μ is the unique entire gauge of A modulo a real scalar factor.

Proof. Necessarily, 1 ≡ 〈ξ(z),μ〉 for some μ ∈ H. By (4.2), and taking into account the occurrence of C , one obtains the
stated expression for g(γ )(z). By the same token, the reality of μ is shown.

Suppose that there are two real entire gauges μ and μ′ . The discussion in Paragraph 5.2 of [3] shows that (Φμμ′)(z) =
aeibz with a ∈ C and b ∈ R. Due to the assumed reality, one concludes that b = 0 and a ∈ R. �
Remark. Proposition 4.6 shows that Krein’s theory of representation by entire operators is a particular case of the represen-
tation proposed here.

5. Operators entire in the generalized sense

In this section we give a spectral characterization of operators in Sym(1,1)
R (H) that are entire with respect to a generalized

gauge [3, Chapter 3, Section 9]. This section was added as a result of a suggestion of the reviewer.
Given A ∈ Sym(1,1)

R (H), let H+ be the set Dom(A∗) equipped with the graph norm

‖ϕ‖2+ := ‖ϕ‖2 + ∥∥A∗ϕ
∥∥2

, ϕ ∈ Dom
(

A∗).
Let H− be the completion of H under the norm

‖η‖− := sup
ϕ∈H+

|〈η,ϕ〉|
‖ϕ‖+

, η ∈ H;

the elements of H− are the continuous linear functionals on H+ . In this way one obtains the scale of Hilbert spaces
H+ ⊂ H ⊂ H− associated to A∗ , where the embeddings are dense and continuous. Sticking to the standard notation, for
η ∈ H− and ϕ ∈ H+ we define 〈η,ϕ〉 := η(ϕ) so accordingly 〈ϕ,η〉 := η(ϕ).

Given a selfadjoint extension Aβ of A and z /∈ Spec(Aβ), let R(β)
z be the extension of (Aβ − zI)−1 from H to H− . This

operator satisfies the identity〈
R(β)

z η,ϕ
〉 = 〈

η, (Aβ − zI)−1ϕ
〉
, η ∈ H−, ϕ ∈ H.

It is straightforward to verify that R(β)
z maps H− into H. It also satisfies the extended resolvent identity

R(β)
z − R(β)

w = (z − w)(Aβ − zI)−1 R(β)
w = (z − w)(Aβ − w I)−1 R(β)

z .
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A complex conjugation on H is extended to H− by defining

〈Cη,ϕ〉 := 〈η, Cϕ〉, η ∈ H−, ϕ ∈ H+.

We say that η ∈ H− is real if Cη = η.
Let ξ(z) be the entire vector-valued function defined by (4.2). Let us recall that ξ(z) ∈ Ker(A∗ − zI) ⊂ Dom(A∗), therefore

the linear map Φ defined by (4.3) on H can be extended to H− in the obvious manner.

Proposition 5.1. Assoc Ĥ = ΦH− := {η̂(z) = 〈ξ(z), η〉: η ∈ H−}.

Proof. Given some arbitrary w ∈ C, choose a selfadjoint extension Aβ such that w /∈ Spec(Aβ). Let us recall that

ξ(z) = g(β)(z)ψ(β)(z),

where ψ(β)(z) is given by (2.2). By assumption g(β)(w) 
= 0 (and also g(β)(w) 
= 0—this fact is used below). A computation
involving the first resolvent identity yields the equality

ξ(z) − ξ(w)

z − w
= (Aβ − w I)−1ξ(z) + g(β)(z) − g(β)(w)

(z − w)g(β)(w)
ξ(w). (5.1)

Now consider η̂(z) = 〈ξ(z), η〉 with η ∈ H− and ϕ̂(z) = 〈ξ(z),ϕ〉 with ϕ ∈ H. Then η̂(w)ϕ − ϕ̂(w)η ∈ H− . Moreover,

η̂(w)ϕ̂(z) − η̂(z)ϕ̂(w)

z − w
= 1

z − w

〈
ξ(z), η̂(w)ϕ − ϕ̂(w)η

〉
=

〈
ξ(z) − ξ(w)

z − w
, η̂(w)ϕ − ϕ̂(w)η

〉
= 〈

(Aβ − w)−1ξ(z), η̂(w)ϕ − ϕ̂(w)η
〉

= 〈
ξ(z), τ

〉
,

where τ := R(β)
w [η̂(w)ϕ − ϕ̂(w)η] ∈ H. In the last computation we have used (5.1) and the fact that 〈ξ(w), η̂(w)ϕ −

ϕ̂(w)η〉 = 0. It follows that ΦH− ⊂ Assoc Ĥ.
Next, consider g(z) ∈ Assoc Ĥ. Then there exist two functions f (z),h(z) ∈ Ĥ such that g(z) = f (z) + zh(z). Since the

multiplication operator S is densely defined, there exists a sequence {hn(z)}n∈N ⊂ Dom(S) that is Ĥ-norm convergent to
h(z). Moreover, f (z) + zhn(z) converges to g(z) uniformly on compact subsets. For every n ∈ N we have hn(z) = 〈ξ(z), ηn〉
for some unique ηn ∈ Dom(A), and also f (z) = 〈ξ(z),ψ〉 for ψ ∈ H. Set τn = ψ + Aηn . Since

‖τm − τn‖− = sup
ϕ∈H+

|〈(ηm − ηn), A∗ϕ〉|
‖ϕ‖+

� sup
ϕ∈H+

‖ηm − ηn‖‖A∗ϕ‖
‖ϕ‖+

� ‖ηm − ηn‖,

it follows that the sequence {τn}n∈N converges to some τ ∈ H− which in turn satisfies g(z) = 〈ξ(z), τ 〉. Therefore, Assoc Ĥ ⊂
ΦH− . �
Definition 5.2. An operator A ∈ Sym(1,1)

R (H) is said to be entire with respect to a generalized gauge, or just entire in the gener-
alized sense, if there exists μ ∈ H− such that 〈ξ(z),μ〉 
= 0 for all z ∈ C.

Note that this definition becomes equivalent to Definition 2.3 when the linear functional μ can be identified with an
element in H. The following assertion is an obvious consequence of Proposition 5.1.

Proposition 5.3. An operator A ∈ Sym(1,1)
R (H) is entire in the generalized sense if and only if Assoc Ĥ contains a real zero-free entire

function.

Finally, we have:

Theorem 5.4. For A ∈ Sym(1,1)
R (H), consider the selfadjoint extensions A0 and Aγ , with 0 < γ < π . Then A is entire in the generalized

sense if and only if Spec(A0) and Spec(Aγ ) obey conditions (C1), (C2) and (C3�).

A statement analogous to Proposition 4.6 can also be formulated for generalized entire operators. We leave the details to
the reader.
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Remark. The generalized notion of entire operator discussed above may be extended to a notion of an operator having
a generalized entire gauge in a suitable defined Hilbert space H−N , expected to be the space of linear functionals of an
appropriate Gelfand triplet associated with H. Since such space is likely to be related with the set of functions N-associated
to the de Branges space Ĥ, Theorem 3.2 of [20] should provide a spectral characterization of such kind of operators. This
matter will be treated elsewhere.
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