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Abstract The aim of this work is to present the calcula-
tion of the topological derivative for the total poten-
tial energy associated to the steady-state orthotropic
heat diffusion problem, when a circular inclusion is
introduced at an arbitrary point of the domain. By a
simple change of variables and using the first order
Pólya-Szegö polarization tensor, we obtain a closed
formula for the topological sensitivity. For the sake of
completeness, the analytical expression for the topolog-
ical derivative is checked numerically using the stan-
dard Finite Element Method. Finally, we present two
numerical experiments showing the influency of the
orthotropy in the topological derivative field and also
one example concerning the optimal design of a heat
conductor.
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1 Introduction

The topological sensitivity analysis gives the topologi-
cal asymptotic expansion of a shape functional with re-
spect to an infinitesimal singular domain perturbation,
like the insertion of holes, inclusions, source-term or
cracks. The main term of this expansion, called topo-
logical derivative (Eschenauer et al. 1994; Sokołowski
and Żochowski 1999; Céa et al. 2000), is now of com-
mon use in numerical procedures of resolution for
topology optimization (Amstutz and Andrä 2006; Lee
and Kwak 2008), image processing (Hintermüller 2005;
Auroux et al. 2007; Larrabide et al. 2008) and inverse
problems (Feijóo 2004; Amstutz et al. 2005; Bonnet
2006). Concerning the theoretical development of the
topological asymptotic analysis, the reader may refer to
Nazarov and Sokołowski (2003), for instance. We refer
the reader to Allaire et al. (2005); Norato et al. (2007);
Fulmanski et al. (2007) and Fulmanski et al. (2008),
for the numerical methods of shape and topology op-
timization which include the topological derivatives in
the numerical procedure of the levelset type.

In order to introduce these concepts, let us consider
an open bounded domain Ω ⊂ R

2, which is submitted
to a non-smooth perturbation in a small region ωε( x̂ ) =
εω of size ε with center at an arbitrary point x̂ ∈ Ω .
Thus, we assume that a given shape functional ψ admits
the following topological asymptotic expansion

ψ(Ωε) = ψ(Ω) + f (ε)DT( x̂ ) + o( f (ε)) , (1)

where Ωε is the topologically perturbed domain and
f (ε) is a positive function that decreases monotonically
such that f (ε) → 0 when ε → 0. Then, the term DT( x̂ )
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is defined as the topological derivative of ψ . Therefore,
this derivative can be seen as a first order correction on
ψ(Ω) to estimate ψ(Ωε). In addition, from (1), we have
that the classical definition of the topological derivative
is given by

DT( x̂ ) = lim
ε→0

ψ(Ωε) − ψ(Ω)

f (ε)
. (2)

On the other hand, in the work of Sokołowski and
Żochowski (1999), the topological sensitivity associated
to the nucleation of a hole in a domain characterized
by an orthotropic material was calculated. In order
to simplify the analysis, the domain was perturbed
introducing an elliptical hole oriented in the directions
of the orthotropy and with semi-axis proportional to
the material properties coefficients in each orthogonal
direction. In this paper, we extend the above result
considering as perturbation a small circular inclusion
of size ε of the same nature as the bulk material (see
Fig. 1), instead of an elliptical hole. In summary, we
present the calculation of the topological derivative
for the total potential energy associated to the steady-
state orthotropic heat diffusion problem, considering
the nucleation of a small circular inclusion.

This paper is organized as follows. Section 2 de-
scribes the model associated to the steady-state or-
thotropic heat diffusion problem. The topological
sensitivity analysis of the total potential energy associ-
ated to the problem under consideration is developed
in Section 3, where we present the main result of the

Fig. 1 Topological derivative concept

paper: a closed formula for the topological derivative.
In addition, a simple finite element-based numerical ex-
ample is also provided for the numerical verification of
the analytically derived topological derivative formula.
In Section 4 are presented two numerical experiments
showing the behavior of the topological sensitivity field
for different values of the orthotropic thermal conduc-
tivities and also one example concerning the optimal
design of heat conductors. The paper ends in Section 5
where concluding remarks are presented.

2 Formulation of the problem

As mentioned in the previous section, the topological
asymptotic analysis of the total potential energy as-
sociated to the steady-state orthotropic heat diffusion
problem is calculated. Thus, the unperturbed shape
functional is defined as:

ψ(Ω) := JΩ(u) = 1

2

∫

Ω

K∇u · ∇u −
∫

Ω

bu +
∫

ΓN

q̄u ,

(3)

where K is a symmetric second order thermal conduc-
tivity tensor with eigenvalues k1 and k2, respectively
associated to the orthogonal directions e1 and e2, b is a
heat source in Ω and u is solution of the following vari-
ational problem: find the temperature field u ∈ U(Ω),
such that

∫

Ω

K∇u · ∇η −
∫

Ω

bη +
∫

ΓN

q̄η = 0 ∀η ∈ V(Ω) .

(4)

In the variational problem (4) the set of admissible
temperature fields, U(Ω), and the space of admissible
virtual temperature fields, V(Ω), are given by

U(Ω) : = {

u ∈ H1(Ω) : u|ΓD = ū
}

, (5)

V(Ω) : = {

η ∈ H1(Ω) : η|ΓD = 0
}

. (6)

In addition, ∂Ω = ΓN ∪ ΓD with ΓN ∩ ΓD = ∅, where
ΓN and ΓD are Neumann and Dirichlet boundaries,
respectively. Thus, ū is a Dirichlet data on ΓD and q̄
is a Neumann data on ΓN , both assumed to be smooth
enough, see Fig. 2.

In our particular case, we consider a perturbation on
the domain given by the nucleation of a small circular
inclusion with thermal conductivity property γ K and
heat source δb , where K is the thermal conductivity
and b is the heat source, both associated to the bulk
material, and parameters γ ∈ [0, ∞), δ ∈ [−c, c] with c
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b

Fig. 2 Formulation of the problem

limited, represent the contrasts in the material property
and in the heat source, respectively. We assume that
there is a small inclusion Bε(x̂) in the region Ω , which
leads to the perturbed domain denoted as Ωε. If the
inclusion becomes a cavity, it is denoted by ωε = Bε(x̂).
The cavity can be obtained from the inclusion by the
limit passage γ → 0. In the case of inclusion, the region
Ωε is decomposed into two disjoint parts Ω \ Bε(x̂)

and Bε(x̂) with different material properties and heat
sources, namely K, γ K and b , δb , respectively. The
other limit passage with the contrast γ → ∞ results in
the ideal thermal conductor inclusion ωε = Bε(x̂).

Now, tacking into account the definition of the per-
turbed domain Ωε and considering an inclusion of the
same nature as the bulk material but with contrasts γ

and δ, the perturbed shape functional can be written as:

ψ(Ωε) := JΩε
(uε) = 1

2

∫

Ωε

γεK∇uε · ∇uε −
∫

Ωε

δεbuε

+
∫

ΓN

q̄uε , (7)

where parameters γε and δε are defined as

γε : =
{

1 if x ∈ Ω \ Bε(x̂)

γ if x ∈ Bε(x̂)
, (8)

δε : =
{

1 if x ∈ Ω \ Bε(x̂)

δ if x ∈ Bε(x̂)
. (9)

In addition, in (7) the function uε is solution of the fol-
lowing variational problem: find the temperature field
uε ∈ U(Ωε), such that

∫

Ωε

γεK∇uε · ∇ηε −
∫

Ωε

δεbηε

+
∫

ΓN

q̄ηε = 0 ∀ηε ∈ V(Ωε) , (10)

and the set U(Ωε) and the space V(Ωε) are defined as

U(Ωε) : = {

uε ∈ H1(Ωε) : uε|ΓD = ū
}

, (11)

V(Ωε) : = {

ηε ∈ H1(Ωε) : ηε|ΓD = 0
}

. (12)

Finally, the Euler-Lagrange equation associated to var-
iational problem (10) reads: find field uε, such that
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−div (γεK∇uε) = δεb in Ωε

uε = ū on ΓD

−K∇uε · n = q̄ on ΓN

�uε� = 0 on ∂Bε

−�γεK∇uε� · n = 0 on ∂Bε

. (13)

In the above expression, we use �(·)� to denotes the
jump of function (·) across the boundary ∂Bε:

[[(·)]] := (·)|m − (·)|i , (14)

with subscripts m and i associated, respectively, with
quantity values on the matrix (Ω \ Bε(x̂)) and inclusion
(Bε(x̂)) sides of the interface.

3 Topological sensitivity analysis

Let us state the following result, leading to a con-
structive method for computing the topological deriva-
tives, Sokołowski and Żochowski (2001), Novotny et al.
(2003):

DT
(

x̂
) = lim

ε→0

1

f ′ (ε)
d
dε

JΩε
(uε) , (15)

where f ′ (ε) is the derivative of the function f (ε) with
respect to the parameter ε and the derivative of the
perturbed cost functional d

dε
JΩε

(uε) may be seen as
the classical sensitivity analysis to the change in shape
produced by an uniform expansion of the inclusion.

In fact, considering a direct analogy with the contin-
uum mechanics, see Gurtin (1981), we have that the
shape derivative of the cost function JΩε

(uε) can be
written as

d
dε

JΩε
(uε) =

∫

Ωε

�ε · ∇v , (16)

where v is the shape change velocity field and
tensor �ε can be interpreted as a generalization of the
Eshelby energy-momentum tensor, see Eshelby (1975)
and Gurtin (2000), which is given in our particular
case by

�ε = 1

2
(γεK∇uε · ∇uε − 2δεbuε) I

−γεK∇uε ⊗ ∇uε . (17)
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Since uε is solution of the state equation (13), it is
straightforward to verify that, in this particular case,
the Eshelby tensor �ε is a divergence-free field, i.e.,
div�ε = 0 in Ωε. Integrating (16) by parts and applying
the divergence theorem, the shape derivative of the cost
function JΩε

(uε) becomes an integral defined on the
boundaries ∂Ω and ∂Bε, that is

d
dε

JΩε
(uε) =

∫

∂Ω

�εn · v+
∫

∂Bε

��ε�n · v , (18)

where the normal vector field satisfies n := n|m = −n|i
on ∂Bε. As a consequence, since the velocity field v is
smooth enough in the domain Ωε, then the shape sensi-
tivity of the problem only depends on the definition of
this field on the boundaries ∂Ω and ∂Bε. However, in
our particular case, we observe that only the boundary
of the inclusion ∂Bε, is submitted to a perturbation (an
uniform expansion). Therefore, remembering that n is
the outward normal unit vector (see Fig. 1), the velocity
v assumes the following values on the boundaries ∂Bε

and ∂Ω
{

v = −n on ∂Bε

v = 0 on ∂Ω
. (19)

From this last remark and result (15), the topological
derivative becomes an integral only defined on the
boundary of the circular inclusion ∂Bε, that is

DT( x̂ ) = −lim
ε→0

1

f ′ (ε)

∫

∂Bε

��ε�n · n . (20)

3.1 Asymptotic analysis

The problem given by (13), even though linear, it is
not so easy to expand in power of ε. Initially, consider
a local coordinate system centered at x̂ and oriented
along the eigenvectors of tensor K. Therefore, let us
make the following change of variables

xi =
√

ki yi for i = 1, 2 ⇒ x = K
1
2 y, (21)

where x = (x1, x2) and y = (y1, y2) are points defined
over the domain Ωε and transformed domain Ω̃ε, re-
spectively. Thus, the circular inclusion Bε(x̂) is mapped
into an ellipse B̃ε( ŷ ) = Eε( ŷ ) with semi-major axis
α = 1/

√
k1, semi-minor axis β = 1/

√
k2 and centered

at point ŷ, as can be seen in Fig. 3. The above map-
ping allows us to rewrite the Euler–Lagrange equation
(13) as
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−div (γε∇uε) = δεb in Ω̃ε

uε = ū on Γ̃D

− ∂uε

∂n = q̄ on Γ̃N

�uε� = 0 on ∂B̃ε

−�γε
∂uε

∂n � = 0 on ∂B̃ε

, (22)

Fig. 3 Change of variables

where for the sake of simplicity we are using the same
notation for field uε, heat source b and boundary con-
ditions q̄ and ū. Then, the following asymptotic expan-
sion of solution uε(y) in Ω̃ε holds (Cedio-Fengya et al.
1998; Brühl 2003; Ammari and Kang 2004; Nazarov and
Sokołowski 2006),

uε(y)
∣

∣

Ω̃\Eε(ŷ)
= u(y) + ε

‖ζ‖2 P∇u( ŷ ) · ζ + O(ε2), (23)

uε(y)
∣

∣

Eε(ŷ)
= u(y) + εP∇u( ŷ ) · ζ + O(ε2), (24)

where ζ = (y − ŷ)/ε, u(y) is the solution of the problem
in the unperturbed domain Ω̃ , ∇u( ŷ ) is the corre-
sponding gradient evaluated at point ŷ (the centre of
the ellipse) and P is given by

P = 1

2
(1 − γ )αβ

(

α+β

α+γβ
0

0 α+β

β+γα

)

, (25)

which has been derivated from the polarization tensor
for an elliptical inclusion, Pólya and Szegö (1951).

Considering the inverse mapping y = Jx in (23, 24),
where J := K− 1

2 , we have that the asymptotic expansion
for uε(x) in Ωε is given by

uε(x)|
Ω\Bε(x̂)

= u(x) + ε

‖Jξ‖2 P∇u( x̂ ) · ξ + O(ε2), (26)

uε(x)|Bε(x̂) = u(x) + εP∇u( x̂ ) · ξ + O(ε2), (27)
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(a) Domain.

(b) Finite element mesh.

Fig. 4 Numerical verification. Domain and finite elements mesh
(a, b)

where ξ = ( x − x̂ )/ε. It is well known that the asymp-
totic expansions can be differentiated term by term
(Maz’ya et al. 1981; Mazja et al. 1991). Thus, by assum-
ing a sufficient regularity of u(x) in Ω and performing
its Taylor series expansion around point x̂, we obtain
the following expansion for ∇uε(x) in Ωε,

∇uε(x)|
Ω\Bε(x̂)

=∇u( x̂ ) + 1

‖Jξ‖2 SP∇u( x̂ ) + O(ε), (28)

∇uε(x)|Bε(x̂) =∇u( x̂ ) + P∇u( x̂ ) + O(ε), (29)

�Fig. 5 Numerical verification. Convergence of numerical topo-
logical derivative to analytical value for γ = 1/2 (a–d)
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� Fig. 6 Numerical verification. Convergence of numerical topo-
logical derivative to analytical value for γ = 2 (a–d)

with

S := I − 2

‖Jξ‖2 J2ξ ⊗ ξ . (30)

3.2 Topological derivative calculation

From expansions (26–29), and using symbolic calculus
to solve the integral (20) (choosing the function f (ε) as
the size of the perturbation, i.e., f (ε) = πε2) we have
that the final expression of the topological derivative
becomes a scalar function that depends on the solu-
tion u associated to the original domain Ω (without
inclusion), that is (see also Amstutz 2006):

DT( x̂ ) = −√
det K KP∇u( x̂ ) · ∇u( x̂ )

+ (1 − δ)bu( x̂ ) ∀̂x ∈ Ω . (31)

Remark 1 From the final expression of the topological
derivative for the steady-state orthotropic heat diffu-
sion problem (31), we can analyze the limits cases of
the parameter γ , which are:

– ideal thermal insulator (γ → 0):

DT( x̂ ) = −1

2

K√
det K

(√
det K I + K

)

∇u( x̂ ) · ∇u( x̂ )

+(1 − δ)bu( x̂ ) ∀̂x ∈ Ω , (32)

– ideal thermal conductor (γ → ∞):

DT( x̂ ) = 1

2

(√
det K I + K

)

∇u( x̂ ) · ∇u( x̂ )

+(1 − δ)bu( x̂ ) ∀̂x ∈ Ω . (33)

Remark 2 It is interesting to observe that for isotropic
material, we have k1 = k2 = k and the final expression
for the topological derivative (31) degenerates to the
classical one given by Amstutz (2006),

DT( x̂ ) = − k
1 − γ

1 + γ
∇u( x̂ ) · ∇u( x̂ )

+(1 − δ)bu( x̂ ) ∀̂x ∈ Ω . (34)

3.3 Numerical verification

In direct analogy with classical finite difference-
based methods for the numerical approximation of the
derivative of a generic function, a first order topological
finite difference formula based on (2) to approximate
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numerically the value of DT( x̂ ) at the unperturbed
domain can be defined as

dTJ := JΩε
(uε) − JΩ(u)

f (ε)
, (35)

with finite ε. The above satisfies

lim
ε→0

dTJ = DT( x̂ ) . (36)

If for a given domain we calculate JΩ(u) and its
perturbed counterpart JΩε

(uε) for a sequence of de-
creasing (sufficiently small) inclusion radii ε, the use of
formula (35) will provide an asymptotic approximation
to the analytical value of DT( x̂ ) given by (31). Here
such a procedure is used to provide a numerical vali-
dation of result (31). The required values of function
JΩ and JΩε

are computed numerically by means of
the standard Finite Element Method for steady-state
orthotropic heat diffusion problems.

For this instance, we have a unit square body without
heat source (b = 0) and submitted to a temperature
ū = 0 on ΓD1 and ΓD2 , a heat flux q1 = 1.0 on ΓN1 and
q2 = 2.0 on ΓN2 , as shown in Fig. 4a, where a = 0.2. In
addition, the remainder part of the boundary remains
insulated. For the computation of the values of JΩε

(uε),
a sequence of finite element analyses are carried out
for perturbed domains obtained by introducing circular
inclusions of radii

ε ∈ {0.16, 0.08, 0.04, 0.02, 0.01}, (37)

centred at x̂ = (0.5, 0.5). The finite element mesh used
to discretise the domain Ωε was built so that each
boundary of radius ε has 120 six-noded (quadratic)
triangular isoparametric elements. The obtained mesh
contains 50781 nodes and 25322 elements, as can be see
in Fig. 4b.

For this numerical verification two cases for the
parameter γ are studied: (i) γ = 1/2; and (ii) γ = 2.

(a) Domain. (b) Mesh.

Fig. 7 Example 1, Experiment 1. Domain and finite elements
mesh (a, b)

The results of the analyses are plotted in Fig. 5 and
Fig. 6, respectively, which shows the analytical topo-
logical derivative and the numerical approximations for
each value of ε for values of parameters k1 and k2

between 1/16 and 16.

Field: GradTop-CaseA
Max.: -6.455541E-001
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(c) Case C.

Fig. 8 Example 1, Experiment 1. Topological derivative value for
γ → 0 (a–c)



60 S.M. Giusti et al.

The convergence of the numerical topological deriv-
atives to their corresponding analytical values with
decreasing ε is obvious in all cases and confirm the
correctness of formula (31).
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(c) Case C.

Fig. 9 Example 1, Experiment 1. Topological derivative value for
γ → ∞ (a–c)

(a) Domain. (b) Mesh.

Fig. 10 Example 1, Experiment 2. Domain and finite elements
mesh (a, b)

4 Numerical examples

In this section we present two examples considering dif-
ferent values of the orthotropic thermal conductivities
parameters k1 and k2, namely:

– Case A: k1 = k2 = 2 (isotropic behavior),
– Case B: k1 = 3 and k2 = 1,
– Case C: k1 = 1 and k2 = 3.

The first one concerns two numerical experiments
showing the behavior of the topological sensitivity field
taking into account the limit cases γ → 0 and γ → ∞.
In the second example, the topological derivative is
used in the optimal design of heat conductors. In all
examples we consider a set D = (0, 10) × (0, 10) such
that the domain Ω ⊆ D, whose boundary is given by
∂Ω = ΓD ∪ ΓN with ΓN ∩ ΓD = ∅.

4.1 Example 1

For this example we consider a domain Ω without heat
source (b = 0) and the Dirichlet boundary ΓD is such
that: ΓD = ΓD1 ∪ ΓD2 with meas(ΓD1) = meas(ΓD2) =
4. We study the behavior of the limits cases given by
(32) and (33).

Experiment 1 In this first experiment Ω = D and the
boundary condition are given by: on ΓN we have that
q̄ = 0 and on ΓD1 and ΓD2 are prescribed the temper-
atures ū1 = 0 and ū2 = 100, respectively. Due to the
symmetry of the problem, only half of the domain is
discretized. For discretization we use an uniform mesh
with 1822 tree-noded (linear) triangular elements with
a total of 972 nodes. The domain Ω and the finite
element mesh are shown in Fig. 7a and 7b, respectively.

The topological derivative field obtained for the
ideal thermal insulator case (γ → 0) is shown in Fig. 8
and, for the ideal thermal conductor case (γ → ∞) in
Fig. 9.
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Experiment 2 In Fig. 10a we show the disposition of
boundaries ΓD1 , ΓD2 , ΓN and the domain Ω = D\BR,
where BR denote a ball with radius R = 2.0 and cen-
tered at point x = (5.0, 5.0). In this case, the boundary
conditions are the same that for the previous experi-
ment. Due to the symmetry of the problem, only half of
the domain is discretized. For discretization we use an
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(c) Case C.

Fig. 11 Example 1, Experiment 2. Topological derivative value
for γ → 0 (a–c)
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(c) Case C.

Fig. 12 Example 1, Experiment 2. Topological derivative value
for γ → ∞ (a–c)

uniform mesh with 1583 tree-noded (linear) triangular
elements with a total of 857 nodes. In Fig. 10b is shown
the finite element mesh used in this experiment.

In Fig. 11 is shown the topological derivative field for
the ideal thermal insulator case (γ → 0) and in Fig. 12
for the ideal thermal conductor case (γ → ∞).



62 S.M. Giusti et al.

These experiments, although academic, shows that
the topological derivative can be used to determine
where the holes (or inclusion) must be positioned
(points x̂ in which DT( x̂ ) assumes the value closer to
zero) in order to minimize (or maximize) the shape
functional, in this case, the total potential energy
associated to the steady-state orthotropic heat diffusion
problem. In particular, in both examples the region
in which the topological derivative assume the value
closer to zero is almost the same for the three cases.
But in Case C this region is bigger than in the others
two cases, due to, in part, to the fact that the direction
of the heat flux corresponds with the direction of higher
coefficient of the thermal conductivity tensor.

4.2 Example 2

In this second example we use the topological deriv-
ative field (31) to perform the optimal design of heat
conductors. To this ends we use the topology optimiza-
tion algorithm developed in Giusti et al. (2008). In
Fig. 14a is presented the design domain Ω = D, whose
boundary remain isolated except for a region ΓD of size
meas(ΓD) = 2, positioned in the middle of the left side
in which the temperature is prescribed as ū = 0. We
also consider an uniform heat generation b = 1 over
all the domain Ω (δ = 1). For this example, we have
two materials: a good conductor characterized by the
thermal conductivities previously mentioned (Case A,
B or C) and a bad conductor (or insulator) charac-
terized by the parameter γ = 0.001. For all cases, the
initial configuration is the previously described domain
(shown in Fig. 14a) composed by 100% of good ther-
mal conductor. Finally, the volume constraint is chosen
to be 40% of good conductor material. Due to the

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

Case A

Case C
Case B

Iterations

Fig. 13 Example 2. Total potential energy

symmetry of the problem, only half of the domain is
discretized. For discretization we use an uniform mesh
with 46212 tree-noded (linear) triangular elements with
a total of 23407 nodes.

The value of the shape functional ψ(Ωε) through-
out the optimization procedure previously referred is
presented in Fig. 13. In Fig. 14 we shown the obtained
topologies for the three studied cases for the different

Fig. 14 Example 2. Model
and obtained topologies (a–d)

(a) Model.

(b) Case A.

(c) Case B.

(d) Case C.
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values of the thermal conductivities. In the figures, the
black material represents the good thermal conductor.

In this final example, we show how the topologi-
cal derivative field can be used in the topological
design of heat conductors. As expected, the obtained
result, Fig. 14, show how the good conductor drains
energy from all parts of the domain. Similar results,
for the isotropic case, can be found in the literature, see
Bendsøe and Sigmund (2003) for instance.

5 Final remarks

An analytical expression for the topological derivative
associated to the total potential energy in steady-state
orthotropic heat diffusion problem, when a circular
inclusion of the same nature as the bulk material is
introduced at an arbitrary point of the domain, has been
proposed in this paper. The final formula was obtained
using a simple changing of variable and the first order
Pólya-Szegö polarization tensor. Thus, besides to ex-
tend the result presented in Sokołowski and Żochowski
(1999), we have shown that the approach here adopted
(Novotny et al. 2003) can be in fact applied to arbitrary
shaped holes or inclusions (an elliptical inclusion in
this case), contrary to the comment by Amstutz and
Dominguez (2008). In order to verify the proposed
analytical expression, we have developed a numerical
validation showing the convergence of the numerical
topological derivative to their corresponding analytical
value. The obtained result was used to devise two
numerical examples. The first one shows the behavior
of the topological derivative field for different values
of the orthotropic thermal conductivity. For the second
numerical example, the topological derivative formula
is used in the design of heat conductors. Finally, we
remark that this information can be potentially used, as
shown in the numerical examples, in a number of appli-
cations of practical interest such as, for instance: image
restoration algorithm, optimization of mechanical or
electronic pieces, design of an orthotropic material to
achieve a specified thermal behavior.
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