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Abstract

Background: Crocodilians are ectothermic animals. For this reason, the environmental temperature has substantial
effects on their physiology and behavior. The thermoregulatory behavior of these animals involves the selective use
of different types of environments. This behavior enables them to reach the temperature level for their metabolic
activities. This study aimed to determine the influence of sex, body size, and reproductive stage on the body
temperature (Tb) of adult broad-snouted caiman (Caiman latirostris) in captivity. Thermal sensors were surgically
implanted in the peritoneal cavity of 16 adult females and 4 adult males and programmed to register Tb hourly
during 6 months.

Results: The diel Tb pattern of the broad-snouted caiman reflected the variation among the microenvironmental
temperatures used by the species (water surface, pool bottom, and ground). The sex of the animals had influence
on their Tb, but body size did not. Reproductive females had higher Tb than non-reproductive females during
October to early November. It is possible that this difference is a result of the ovulation period of the species.
Sick animals appeared to show behavioral fever.

Conclusions: The results of the present study suggest that several factors can affect the Tb of adult broad-snouted
caiman in captivity. Future studies should focus on the possible effect of thermoregulatory behavior on individuals'
growth rate and reproductive performance.
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Background
Crocodilians are ectothermic animals. For this reason,
environmental temperature has substantial effects on
their physiology and behavior (Pough et al. 2003). In
crocodilians, the main source of heat is solar radiation,
but heat conduction from the substrate may also play a
fundamental role in behavior (Sajdak and Molina 1992).
Body temperature (Tb) depends on three basic compo-
nents: behavioral (physical movement to increase or
decrease exposure to thermal environmental energy),
physiological (organic variations, for example, changes
in blood flow), and genetic (medium- and long-term
changes, for example, changes in hormone level) (Silva
2000).
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The thermoregulatory behavior of these animals in-
volves different uses of the available environments
(Asa et al. 1998; Fincatti and Verdade 2002; Fish and
Cosgrove 1987; Seebacher et al. 1999; Verdade et al.
2006). This behavior enables them to reach a Tb for their
metabolic activities (Seebacher and Franklin 2005; Smith
et al. 1978). In this context, the aquatic environment is ex-
tremely important (Brandt and Mazzotti 1990). Caimans
(Caiman spp.) are able to maintain their Tb up to 4°C
above water temperature with only their backs out of the
water (Diefenbach 1975a; Fincatti and Verdade 2002). The
presence of osteoderms (dense bony plates derived from
the skin) in the crocodilians facilitates this process because
small holes filled with arterioles can absorb heat and carry
it to other parts of the body (Seidel 1979).
Tb can influence diverse ecophysiological aspects of

crocodilians (Lang 1987), including growth rate. Food
consumption and growth rate were higher in American
alligators (Alligator mississippiensis) maintained at 32°C
than in animals kept at 28°C (Staton et al. 1992). Broad-
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Table 1 Composition of experimental groups

Enclosure M/F Individuals

ARN1 1:4 USP 123 (F)

USP 124 (M)

USP 126 (F)

USP 127 (F)

USP 128 (F)

ARN2 1:4 USP 113 (F)

USP 114 (M)

USP 116 (F)

USP 117 (F)

USP 121 (F)

ARN3 1:4 USP 115 (F)

USP 118 (F)

USP 119 (F)

USP 120 (M)

USP 122 (F)

ARN4 1:4 USP 125 (M)

USP 129 (F)

USP 130 (F)

USP 131 (F)

USP 132 (F)

F, females; M, males.
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snouted caiman (Caiman latirostris) hatchlings when
maintained at 34°C showed relatively high values of
growth rate and weight gain (Vianna 1995). Pantanal cai-
man (Caiman crocodilus yacare) hatchlings kept at 32°C
showed higher growth rates than individuals maintained
at 28°C (Miranda et al. 1999).
Environmental temperature can also affect food con-

sumption in broad-snouted caiman (Larriera et al. 1990;
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Figure 1 Mean temperature variation of broad-snouted caiman and d
Verdade 1992a, b). Seasonal variations in temperature
can act directly to change the food consumption in
American alligators (Coulson and Hernandez 1983). Fur-
thermore, in crocodilians, the rate of food digestion
in the gastrointestinal tract depends on Tb (Diefenbach
1975a, b; Vianna et al. 1995).
Social behavior in crocodilians can directly influence

thermoregulatory behavior. Social dominance can be re-
lated to habitat use and to the resources available in the
habitat (Alcock 1993; Krebs 1985; Krebs and Davis
1991). Sajdak and Molina (1992) report that the pres-
ence of dominant animals in one location may make
other individuals occupy locations that are less adequate
from a thermoregulatory standpoint perspective. A var-
iety of evidence shows that territorial behavior in croco-
dilians is expressed on the margins of a water body and
not necessarily in its interior (Lang 1987, 1989; Verdade
1992b; Verdade et al. 2006). The margins are the area
where animals primarily sunbathe (Ayarzaguena 1983;
Molina and Sajdak 1993) and spend time during the day
(Verdade et al. 2006).
The present study aimed to determine the pattern of

Tb variation in adult broad-snouted caiman in captivity
and its relationship with sex, body size, and reproductive
status. Such information is important for the manage-
ment of individuals in breeding farms, as well as for the
understanding of reproduction in wild individuals.

Methods
Data were collected in the captive colony of the broad-
snouted caiman at the Laboratório de Ecologia Animal
of the Universidade de São Paulo (Brazil) between
August 2000 and January 2001. The facilities consisted
of four 9 × 10 m modules, each containing a 4 × 6 m
pool (1 m deep) and five 2 × 2 m nesting areas. The
:24 19:12 0:00

C. latirostris

water surface

pool bottom

ground

r:min)

ifferent microhabitats of the animals' facilities.



Table 2 Statistical values of the relationship between body temperature and body size in captive adult broad-snouted caiman

Mean temperature Minimum temperature Maximum temperature

SVL Body mass SVL Body mass SVL Body mass

Aug. 10 to 20, 2000 p = 0.325; S = 1.1; r2 = 6.5% p = 0.232; S = 1.1; r2 = 9.4% p = 0.427; S = 1.2; r2 = 4.3% p = 0.427; S = 1.2; r2 = 4.3% p = 0.271; S = 1; r2 = 8% p = 0.271; S = 1; r2 = 8%

Aug. 21 to 31, 2000 p = 0.247; S = 0.7; r2 = 8.8% p = 0.460; S = 0.7; r2 = 3.7% p = 0.193; S = 1.1; r2 = 11% p = 0.193; S = 1.1; r2 = 11% p = 0.544; S = 0.7; r2 = 2.5% p = 0.544; S = 0.7; r2 = 2.5%

Sept. 1 to 10, 2000 p = 0.789; S = 0.8; r2 = 0.5% p = 0.995; S = 0.8; r2 = 0% p = 0.299; S = 0.2; r2 = 7.2% p = 0.299; S = 0.2; r2 = 7.2% p = 0.140; S = 0.6; r2 = 13.9% p = 0.140; S = 0.6; r2 = 13%

Sept. 11 to 20, 2000 p = 0.373; S = 0.6; r2 = 5.3% p = 0.325; S = 1.1; r2 = 6.5% p = 0.536; S = 0.4; r2 = 2.6% p = 0.536; S = 0.4; r2 = 2.6% p = 0.714; S = 0.7; r2 = 0.9% p = 0.714; S = 0.7; r2 = 0.9%

Sept. 21 to 30, 2000 p = 0.264; S = 0.6; r2 = 8.2% p = 0.247; S = 0.7; r2 = 8.8% p = 0.858; S = 0.4; r2 = 0.2% p = 0.858; S = 0.4; r2 = 0.2% p = 0.580; S = 0.9; r2 = 2.1% p = 0.580; S = 0.9; r2 = 2.1%

Oct. 1 to 10, 2000 p = 0.539; S = 0.6; r2 = 2.6% p = 0.789; S = 0.8; r2 = 0.5% p = 0.363; S = 0.5; r2 = 5.5% p = 0.544; S = 0.5; r2 = 5.5% p = 0.473; S = 0.9; r2 = 3.5% p = 0.473; S = 0.9; r2 = 3.5%

Oct. 11 to 20, 2000 p = 0.278; S = 0.6; r2 = 7.8% p = 0.373; S = 0.6; r2 = 5.3% p = 0.903; S = 0.8; r2 = 0.1% p = 0.903; S = 0.8; r2 = 0.1% p = 0.911; S = 1; r2 = 0.1% p = 0.911; S = 1; r2 = 0.1%

Oct. 21 to 31, 2000 p = 0.195; S = 0.7; r2 = 10.9% p = 0.264; S = 0.6; r2 = 8.2% p = 0.316; S = 0.7; r2 = 6.7% p = 0.316; S = 0.7; r2 = 6.7% p = 0.059; S = 0.8; r2 = 21.8% p = 0.059; S = 0.8; r2 = 21%

Nov. 1 to 10, 2000 p = 0.192; S = 0.9; r2 = 11.1% p = 0.539; S = 0.6; r2 = 2.6% p = 0.225; S = 0.9; r2 = 9.6% p = 0.225; S = 0.9; r2 = 9.6% p = 0.295; S = 1.1; r2 = 7.3% p = 0.295; S = 1.1; r2 = 7.3%

Nov. 11 to 20, 2000 p = 0.211; S = 1; r2 = 10.2% p = 0.278; S = 0.6; r2 = 7.8% p = 0.858; S = 1.1; r2 = 0.2% p = 0.858; S = 1.1; r2 = 0.2% p = 0.230; S = 1.2; r2 = 9.5% p = 0.230; S = 1.2; r2 = 9.5%

Nov. 21 to 30, 2000 p = 0.225; S = 1; r2 = 9.7% p = 0.195; S = 0.7; r2 = 10.9% p = 0.625; S = 1.1; r2 = 1.6% p = 0.625; S = 1.1; r2 = 1.6% p = 0.265; S = 1.4; r2 = 8.2% p = 0.265; S = 1.4; r2 = 8.2%

Dec. 1 to 10, 2000 p = 0.245; S = 1.1; r2 = 8.9% p = 0.192; S = 0.9; r2 = 11.1% p = 0.284; S = 1.2; r2 = 7.6% p = 0.284; S = 1.2; r2 = 7.6% p = 0.333; S = 1.4; r2 = 6.2% p = 0.333; S = 1.4; r2 = 6.2%

Dec. 11 to 20, 2000 p = 0.251; S = 1.2; r2 = 8.7% p = 0.211; S = 1; r2 = 10.2% p = 0.437; S = 1.2; r2 = 4.1% p = 0.437; S = 1.2; r2 = 4.1% p = 0.471; S = 1.2; r2 = 3.5% p = 0.471; S = 1.2; r2 = 3.5%

Dec. 21 to 31, 2000 p = 0.258; S = 1.3; r2 = 8.5% p = 0.225; S = 1; r2 = 9.7% p = 0.631; S = 1.5; r2 = 1.6% p = 0.631; S = 1.5; r2 = 1.6% p = 0.999; S = 1.9; r2 = 0% p = 0.999; S = 1.9; r2 = 0%

Jan. 1 to 10, 2001 p = 0.239; S = 1.4; r2 = 9.1% p = 0.245; S = 1.1; r2 = 8.9% p = 0.441; S = 1.8; r2 = 4% p = 0.441; S = 1.8; r2 = 4% p = 0.817; S = 1.6; r2 = 0.4% p = 0.817; S = 1.6; r2 = 0.4%

Jan. 11 to 20, 2001 p = 0.263; S = 1.5; r2 = 8.3% p = 0.251; S = 1.2; r2 = 8.7% p = 0.241; S = 1.7; r2 = 9% p = 0.241; S = 1.7; r2 = 9% p = 0.719; S = 1.4; r2 = 0.9% p = 0.719; S = 1.4; r2 = 0.9%

Jan. 21 to 31, 2001 p = 0.266; S = 1.8; r2 = 8.2% p = 0.258; S = 1.3; r2 = 8.5% p = 0.300; S = 2.1; r2 = 7.1% p = 0.300; S = 2.1; r2 = 7.1% p = 0.332; S = 2; r2 = 6.3% p = 0.332; S = 2; r2 = 6.3%
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Figure 2 Pattern of body temperature variation between sexes in captive adult broad-snouted caiman. 1 - Aug. 10 to 20, 2000;
2 - Aug. 21 to 31, 2000; 3 - Sept. 1 to 10, 2000; 4 - Sept. 11 to 20, 2000; 5 - Sept. 21 to 30, 2000; 6 - Oct. 1 to 10, 2000; 7 - Oct. 11 to 20, 2000;
8 - Oct. 21 to 31, 2000; 9 - Nov. 1 to 10, 2000; 10 - Nov. 11 to 20, 2000; 11 - Nov. 21 to 30, 2000; 12 - Dec. 1 to 10, 2000; 13 - Dec. 11 to 20, 2000;
14 - Dec. 21 to 31, 2000; 15 - Jan. 1 to 10, 2001; 16 - Jan. 11 to 20, 2001; 17 - Jan. 21 to 31, 2001.
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designs of the nesting areas for crocodilians were initially
proposed by Bustard (1975) and adapted by Verdade et al.
(1993) for the broad-snouted caiman.
The experimental groups were composed of the

founding individuals of the captive colony at the Labora-
tório de Ecologia Animal, registered in the Regional
Studbook for this species in Brazil (Verdade and
Kassouf-Perina 1993) and totaling 20 animals (16 fe-
males and 4 males; see Table 1). The animals were mea-
sured, weighed, marked with interdigital tags, and sexed
by visual inspection of the gonads with the help of a hu-
man nasal speculum (Allstead and Lang 1995). The ani-
mals' diet was maintained at a constant level during the
entire experimental period. The diet consisted of a mix-
ture of ground chicken, pork, and fish in equal propor-
tions. The diet was supplied weekly at a level of 7% of
the live mass of the animals (Sarkis-Gonçalves 2000).
Nesting females were identified by their parental behav-
ior, namely the construction and protection of the nest
(Bustard 1980; Hunt 1987; Widholzer et al. 1986).
Thermal sensors HOBO TBI32-20+50 (Onset Com-

puter Corporation, Bourne, MA, USA) were implanted
in the animals. The sensors were covered with non-toxic
plastic. They measured 3 cm in basal diameter and
1.5 cm in height. They were programmed to record the
Tb each hour (precision ±0.1°C) for a period of 180 days.
After that period, infiltration could occur, resulting in
error in data collection. The thermal sensor was inserted
in the body coelomic cavity below the peritoneum as de-
scribed by Troiano (1991), between the jejunum and
ileum, which are of equal size on both the left and right
Table 3 Statistical values of comparison of body temperature

Mean temperature

1 - Aug. 10 to 20, 2000 t1,16 = 0.4; p = 0.681

2 - Aug. 21 to 31, 2000 t1,16 = 3.3; p = 0.009

3 - Sept. 1 to 10, 2000 t1,16 = 0.6; p = 0.800

4 - Sept. 11 to 20, 2000 t1,16 = 2.2; p = 0.089

5 - Sept. 21 to 30, 2000 t1,16 = 2.8; p = 0.038

6 - Oct. 1 to 10, 2000 t1,16 = 1.9; p = 0.114

7 - Oct. 11 to 20, 2000 t1,16 = 1.5; p = 0.163

8 - Oct. 21 to 31, 2000 t1,16 = 2.3; p = 0.037

9 - Nov. 1 to 10, 2000 t1,16 = 0.04; p = 0.044

10 - Nov. 11 to 20, 2000 t1,16 = 1.8; p = 0.097

11 - Nov. 21 to 30, 2000 t1,16 = 1.2; p = 0.247

12 - Dec. 1 to 10, 2000 t1,16 = 0.6; p = 0.562

13 - Dec. 11 to 20, 2000 t1,16 = 0.5; p = 0.609

14 - Dec. 21 to 31, 2000 t1,16 = 0.3; p = 0.720

15 - Jan. 1 to 10, 2001 t1,16 = 0.5; p = 0.623

16 - Jan. 11 to 20, 2001 t1,16 = 0.4; p = 0.664

17 - Jan. 21 to 31, 2001 t1,16 = 0.4; p = 0.671
sides of the peritoneal cavity, as described by Merwe and
Kotze (1993) for Crocodylus niloticus. Local anesthesia
was applied with lidocaine (Eurofarma Laboratórios
Ltda, São Paulo, Brazil) (diethylaminoaceto-alpha-2,6-
xylidide) at a concentration of 2 g/100 ml per regional
block. The skin suture was performed with a black nylon
monofilament (size 0) accompanied by the use of a top-
ical antibiotic with a chloramphenicol base to prevent
bacterial growth. After surgery, the animals were main-
tained for 24 h in a dry and cold location. Thermal sen-
sors were also placed in three environments in the
crocodilians' facilities: the water surface (4), pool bottom
(4), and ground (4). This study was carried out in compli-
ance with the guidelines of the Brazilian Association of
Wildlife Veterinary Medicine (ABRAVAS). The methods
herein used were previously approved by the Ethics Com-
mission of the University of São Paulo at Piracicaba.
The individuals' mean, maximum, and minimal daily

temperatures, at 10-day intervals from August 10 to
January 31, 2001, were treated as independent variables
and compared among the animals. Sex, size, body mass,
reproductive status, and health condition were treated as
dependent variables. Student's t test was used to verify
possible differences in Tb (mean, maximum, and mini-
mum temperatures) between the sexes and health condi-
tion (healthy and sick). Linear regression was applied to
verify the relationship between Tb (mean, maximum,
and minimum temperatures) and snout-vent length
(SVL) and body mass. Analysis of variance (ANOVA)
was used to analyze differences in Tb between females
(n, non-reproductive female; sf, female laying fertile eggs;
between sexes in captive adult broad-snouted caiman

Minimum temperature Maximum temperature

t1,16 = 0.4; p = 0.704 t1,16 = −2; p = 0.129

t1,16 = 0.7; p = 0.527 t1,16 = −0.4; p = 0.673

t1,16 = 1.8; p = 0.092 t1,16 = 0.5; p = 0.624

t1,16 = 1.8; p = 0.094 t1,16 = −0.5; p = 0.604

t1,16 = 1.8; p = 0.124 t1,16 = 0.6; p = 0.570

t1,16 = 2.5; p = 0.034 t1,16 = 0.7; p = 0.512

t1,16 = 0.1; p = 0.878 t1,16 = 0.1; p = 0.882

t1,16 = 2.4; p = 0.029 t1,16 = 0.8; p = 0.437

t1,16 = 2.5; p = 0.025 t1,16 = 0.8; p = 0.415

t1,16 = 1; p = 0.321 t1,16 = 0.7; p = 0.465

t1,16 = 0.4; p = 0.681 t1,16 = 1.2; p = 0.250

t1,16 = 0.3; p = 0.746 t1,16 = −0.2; p = 0.818

t1,16 = 0.1; p = 0.907 t1,16 = 0.2; p = 0.843

t1,16 = −0.3; p = 0.774 t1,16 = −0.08; p = 0.943

t1,16 = −0.4; p = 0.670 t1,16 = 0.6; p = 0.585

t1,16 = 0.2; p = 0.818 t1,16 = −0.3; p = 0.740

t1,16 = 0.2; p = 0.826 t1,16 = 0.6; p = 0.545
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Figure 3 Comparison of body temperature among female captive adult broad-snouted caimans. n, non-reproductive female; sf, female
laying fertile eggs; si, female laying infertile eggs. 1 - Aug. 10 to 20, 2000; 2 - Aug. 21 to 31, 2000; 3 - Sept. 1 to 10, 2000; 4 - Sept. 11 to 20, 2000;
5 - Sept. 21 to 30, 2000; 6 - Oct. 1 to 10, 2000; 7 - Oct. 11 to 20, 2000; 8 - Oct. 21 to 31, 2000; 9 - Nov. 1 to 10, 2000; 10 - Nov. 11 to 20, 2000;
11 - Nov. 21 to 30, 2000; 12 - Dec. 1 to 10, 2000; 13 - Dec. 11 to 20, 2000; 14 - Dec. 21 to 31, 2000; 15 - Jan. 1 to 10, 2001; 16 - Jan. 11 to 20, 2001;
17 - Jan. 21 to 31, 2001.
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si, female laying infertile eggs). A Tukey HSD test was
used to verify possible differences between these treat-
ments. All the analyses were performed in MINITAB 13
(Minitab 2000).

Results
The animals showed a clear diel variation in Tb during the
study period (August 2000 through January 2001), with a
minimum temperature of 17°C to 23°C in the morning
(0900 to 1000 hours) and a maximum temperature of %
32°C to 35°C in the afternoon (1400 to 1700 hours). This
pattern coincides with temperature variation among the
different microhabitats of the animals' facilities (water sur-
face, pool bottom, and ground) selectively used by the ani-
mals during the day (Figure 1). The water temperature
varied from approximately 21°C at 09:00 hours to 29°C at
14:30 hours at the surface and from 22.5°C at 08:30 hours
to 30°C at 16:00 hours at a depth of 100 cm. The air
temperature varied from 17°C at 07:00 hours to 38°C at
14:00 hours at the ground level by the pool margin.
No relationship was found between body mass and snout-

vent length (body mass 23.9 to 64.8 kg, snout-vent length 85
to 123 cm; Table 2) and Tb (mean, minimum, and max-
imum temperatures) of broad-snouted caiman. However, fe-
males presented a higher minimum temperature than males
from October to early November (Figure 2; Table 3). In
addition, reproductive females (i.e., those that laid fertile
eggs) had higher Tb than those that laid infertile eggs in the
same period (Figure 3; Table 4).
Two females died during the sampling period. These an-

imals presented symptoms of infection and had relatively
Table 4 Statistical values of comparison of body temperature

Mean temperature

1 - Aug. 10 to 20, 2000 F2,16 = 0.8; p = 0.477

2 - Aug. 21 to 31, 2000 F2,16 = 1.9; p = 0.171

3 - Sept. 1 to 10, 2000 F2,16 = 1.9; p = 0.900

4 - Sept. 11 to 20, 2000 F2,16 = 2; p = 0.158

5 - Sept. 21 to 30, 2000 F2,16 = 3; p = 0.069

6 - Oct. 1 to 10, 2000 F2,16 = 2.1; p = 0.145

7 - Oct. 11 to 20, 2000 F2,16 = 3.8; p = 0.037

8 - Oct. 21 to 31, 2000 F2,16 = 4.7; p = 0.020

9 - Nov. 1 to 10, 2000 F2,16 = 3.4; p = 0.048

10 - Nov. 11 to 20, 2000 F2,16 = 1.9; p = 0.170

11 - Nov. 21 to 30, 2000 F2,16 = 1.8; p = 0.185

12 - Dec. 1 to 10, 2000 F2,16 = 1.8; p = 0.181

13 - Dec. 11 to 20, 2000 F2,16 = 1.2; p = 0.348

14 - Dec. 21 to 31, 2000 F2,16 = 0.7; p = 0.551

15 - Jan. 1 to 10, 2001 F2,16 = 0.7; p = 0.529

16 - Jan. 11 to 20, 2001 F2,16 = 1.2; p = 0.321

17 - Jan. 21 to 31, 2001 F2,16 = 1.1; p = 0.366
higher minimum Tb than healthy animals (minimum
temperature - healthy: 24.2°C ± 1.8°C, sick: 27.4°C ± 0.6°C,
t1,18 = 5.1; p = 0.014; mean temperature - healthy: 28.1°C ±
1.4°C, sick: 30.1°C ± 0.6°C, t1,18 = 3.2; p = 0.082; maximum
temperature- healthy: 32.4°C ± 1.6°C, sick: 33.4°C ± 1.2°C,
t1,18 = 1; p = 0.473). Both died before the end of the study.

Discussion
The diel Tb variation of the broad-snouted caiman re-
flects the thermal variation in the environment used by
the species (the water surface, pool bottom, and ground).
The ground showed a wide temperature range in com-
parison to the other environments, followed by the water
surface and the pool bottom (Figure 1). These observa-
tions show that the available environments provided a
wide spectrum of temperatures to be exploited by the ani-
mals to thermoregulate. Broad-snouted caiman hatchlings
in greenhouses move through the environment during the
day, choosing the most suitable temperatures available in
the different environments (Verdade et al. 1994). A similar
pattern has been described for the American alligator
(Lang 1987).
Most of the animals were found in the pool during the

morning, but moved out of the water to sunbathe during
the hottest hours of the day. This behavioral thermo-
regulation by moving in and out of the water is consist-
ent with the previous studies for the same species
(Molina and Sajdak 1993; Verdade et al. 2006) and for
the Nile crocodile (C. niloticus) (Downs et al. 2008).
In nature, female crocodilians can be more sedentary

than males (Goodwin and Marion 1979) and, consequently,
among female captive adult broad-snouted caimans

Minimum temperature Maximum temperature

F2,16 = 1.9; p = 0.172 F2,16 = 4.3; p = 0.025

F2,16 = 1.1; p = 0.382 F2,16 = 0.7; p = 0.561

F2,16 = 1.3; p = 0.300 F2,16 = 0.6; p = 0.625

F2,16 = 2.9; p = 0.074 F2,16 = 0.3; p = 0.827

F2,16 = 2.1; p = 0.149 F2,16 = 0.6; p = 0.604

F2,16 = 3.4; p = 0.050 F2,16 = 1.7; p = 0.203

F2,16 = 1.9; p = 0.172 F2,16 = 1.1; p = 0.364

F2,16 = 4.2; p = 0.026 F2,16 = 1.4; p = 0.279

F2,16 = 2.9; p = 0.074 F2,16 = 1.1; p = 0.365

F2,16 = 0.6; p = 0.588 F2,16 = 0.79; p = 0.519

F2,16 = 0.6; p = 0.588 F2,16 = 0.9; p = 0.431

F2,16 = 1.3; p = 0.293 F2,16 = 1.4; p = 0.274

F2,16 = 1; p = 0.413 F2,16 = 0.4; p = 0.735

F2,16 = 1.6; p = 0.223 F2,16 = 0.1; p = 0.946

F2,16 = 1; p = 0.407 F2,16 = 0.2; p = 0.881

F2,16 = 2.5; p = 0.143 F2,16 = 0.6; p = 0.609

F2,16 = 0.7; p = 0.546 F2,16 = 0.8; p = 0.514
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show different Tb than males. However, Verdade et al.
(2006) have reported a consistent individual variation of
space use by the broad-snouted caiman in captivity, pos-
sibly due to the lack of intermale competition for territories
as those captive groups had single males. Nevertheless, the
difference in Tb between males and females in this study
may be due to their distinct reproductive biology. In
addition, in this study, we found no relationship between
body mass and snout-vent length and Tb. Similar patterns
have been previously described for crocodilians (Diefenbach
1975a; Downs et al. 2008; Smith 1979). However, future
studies should include a broader range of body sizes, as well
as different periods of the year.
The period during which the Tb of the fertile females

(i.e., those that laid fertile eggs) was higher than that of
the non-fertile ones (i.e., those that laid infertile eggs) ap-
parently coincided with the ovulation period. Changes in
Tb due to the reproductive condition of females are
relatively well documented in reptiles (Blazquez 1995;
Charland 1995; Daut and Andrews 1993; Rock et al. 2000;
Rosen 1991; Tu and Hutchison 1994). It is likely that the
temperature increase during gestation results in an in-
crease of the rate of embryonic development (Shine 1983).
Social behavior significantly affects crocodilians' ther-

moregulation (Seebacher et al. 1999). The social hier-
archy of females may have influenced the results of the
present study because it directly affects reproductive
success (Joanen and McNease 1989; Lang 1987, 1989;
Verdade 1992b). Social dominance can be related to the
use of habitat and available resources (Alcock 1993;
Krebs 1985; Krebs and Davis 1991; Verdade 1992b).
Cardeilhac (1989, 1990) states that competition for areas
suitable for sunbathing during the pre-ovulation period
can affect the gonadal development of females with a
low hierarchical position, preventing them from entering
ovulation or even achieving the minimum follicular de-
velopment required for ovulation.
The behavioral change associated with nesting and

nest protection by the reproductive females may have in-
fluenced the present results, because possible disputes
over nesting sites may affect the thermoregulatory be-
havior of the subordinate animals. These animals could
be excluded from the best nesting habitats, which could
also restrict their basking sites, thus affecting their
thermoregulatory behavior (Verdade 1992b). Agonistic
displays by adults, especially during the reproductive
period, are common in crocodilians (Ayarzaguena 1983;
Garrick and Lang 1977; Lang 1987; Verdade 1992b,
1999; Vliet 1989). Agonistic interactions among females
involving thermoregulatory behavior were also observed
during this study.
The animals that died from bite wounds (possibly asso-

ciated with infectious diseases) presented a higher mini-
mum Tb than healthy animals during a certain period.
Behavioral fever resulting from infections has been previ-
ously reported for diverse ectothermic taxa, including
turtles (do Amaral et al. 2002), lizards (Firth et al. 1980;
Merchant et al. 2008; Ortega et al. 1991), and crocodilians
(Lang 1987; Merchant et al. 2007). American alligators
in controlled experiments exhibited 2 days of fever after
inoculation with an infectious agent. The increase in Tb

relative to that of a control group was 2.6°C on the first
day and 3.5°C on the second day (Merchant et al. 2007).
Fever is a component of the physiological defense of the
host against invading agents (microbial or non-microbial)
recognized as foreign bodies by the host's immune system
(Zeisberger 1999). In the present study, the individuals
suffering from infections appeared to seek hotter areas for
sunbathing.

Conclusions
The results of this study show that sex, reproductive sta-
tus, and health condition can affect the Tb of adult broad-
snouted caiman in captivity. Crocodilians are intensively
managed for sustainable use of their meat and leather. Fu-
ture studies should focus on the relationships between
thermoregulatory behavior and management both in cap-
tivity (e.g., the design of the captive facilities; see Verdade
and Piña 2006) and in the wild (e.g., the influence of hunt-
ing pressure on social behavior; see Verdade 1996), as
environmental anthropic pressures can affect individuals'
growth rate and reproductive performance.
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