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This article presents a new model for the short-term scheduling of multistage batch
plants with a single unit per stage, mixed storage policies, and multiple shared resour-
ces for moving orders between stages. Automated wet-etching stations for wafer fabri-
cation in semiconductor plants provide the industrial context. The uncommon feature
of the continuous-time model is that it relies on time grids, as well as on global prece-
dence sequencing variables, to find the optimal solution to the problem. Through the
solution of a few test cases taken from the literature, we show that new model per-
forms significantly better than a pure sequencing formulation and better than a closely
related hybrid model with slightly different sequencing variables. We also propose a
new efficient heuristic procedure for extending the range of problems that can effec-
tively be solved, which essentially solves relaxed and constrained versions of the full-
space model. VVC 2011 American Institute of Chemical Engineers AIChE J, 58: 789–800, 2012
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Introduction

The key element of scheduling is ensuring that equipment
resources do not handle multiple competing tasks simultane-
ously. In other words, tasks executed on the same unit must
be sequenced, which can be done in a variety of ways.1

Sequencing can be done explicitly, through the use of imme-
diate or general precedence sequencing variables, or implic-
itly, by assigning tasks to different slots of a time grid.
Sequencing variables models are more appropriate for spe-
cific plant topologies, such as multistage plants, where a
given equipment unit is associated to a single production

stage and product identity is kept. On the other hand, time
grid based models are typically employed for simultaneous
batching (number and size of batches) and scheduling in
multipurpose plants with complex production recipes, where
there is also the need to keep track of material resources
over time. Time grid models are also linked to problems fea-
turing renewable shared resources other than equipment,
such as manpower2–4 or utilities.4–7 Nevertheless, the
sequencing variables approach of Méndez and Cerdá3 has
been shown1 a better alternative for a single stage plant with
limited manpower.

Under the context of multistage, multiproduct plants,
Gupta and Karimi8 have used immediate precedence
sequencing variables to schedule product orders subject to
both release and due dates on a set of distinct parallel units
with sequence-dependent setups. An important aspect of the
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mixed integer linear programming (MILP) model is that it
features big-M constraints to sequence different orders
assigned to the same unit, which are known to yield poor
relaxations. The same occurs with the concept of general
precedence,9,10 which leads to more efficient models primar-
ily due to the reduction by half of the number of binary
sequencing variables. The drawback is a minor loss of accu-
racy that may lead to suboptimal solutions as noted by Cas-
tro et al.11

Sequencing approaches can also address simultaneous
batching and scheduling problems, potentially leading to bet-
ter solutions than if both decision levels are decoupled. Mar-
avelias and coworkers12,13 have proposed MILP models that
involve the selection of one or more batches (from a postu-
lated set) and corresponding size, toward satisfaction of the
given production orders. The general12 or immediate13 prece-
dence sequencing variables feature five indices (order, batch,
order, batch, stage) leading to a rapid increase in the number
of binary variables with problem size. For single stage plants
under the restriction of a single batch size,14 the number of
indices can be reduced to just 3 (order, order, unit), if a new
set of integer variables is added to determine the number of
batches required for each order on a particular unit. How-
ever, the resulting model was orders of magnitude slower
than one using multiple time grids to keep track of events
taking place. One possible reason for this behavior is the ab-
sence of big-M constraints in the latter.

If one chooses to rely on time grids instead of sequencing
variables there are a few more possibilities. Some of those that
are suitable for multistage plants under an unlimited intermedi-
ate storage policy and without shared resources (other than
equipments) have recently been evaluated by Castro and co-
workers.11,15–17 If one focuses on continuous-time approaches,
the most important insight is that it is undoubtedly better to
rely on multiple time grids, also known as unit-specific, than
on a single grid with global events. With the former, one can
assume without loss of generality that a single time slot is
enough for every processing task,15 whereas in the latter, tasks
will span across multiple slots.6 Note that unit-specific models
need also to allow tasks to span over multiple event points18

when dealing with multipurpose plants. The other important
insight is that there are16 at least three good, conceptually dif-
ferent unit-specific approaches, more so if sequence-dependent
changeovers are involved.11,17 The one by Castro and Gross-
mann15 has the important property of being a minimum event
point approach, while the ones by Castro and Novais16 and
Shaik and Floudas18,19 have a wider scope (they allow for
both batching and scheduling).

The most serious drawback of time grid based approaches
is the uncertainty in the number of event points, which typi-
cally leads to the requirement of a few iterations before find-
ing the global optimal solution. To address this issue, Li and
Floudas20 have recently proposed a fairly accurate prediction
method for unit-specific models.4,18,19 On the other hand,
sequencing models need to be solved only once and can find
very good solutions in the early nodes of the branch-and-
bound tree despite sometimes being difficult to close the
optimality gap. Besides mathematical programming, other
approaches can be used to tackle scheduling problems in
multistage plants such as constraint programming,10,11,15,21

timed automata,22 and genetic algorithms.23

The general scheduling problem of multistage multiprod-
uct plants with resource constraints has recently been
addressed by Sundaramoorthy et al.24 The plant topology
features nonidentical processing units in each stage with in-
termediate and final storage vessels, where each unit is asso-
ciated to a single stage. Utilities are resources shared by
processing tasks provided that maximum availability is not
exceeded. The robot resources considered in this article are
discrete entities that are shared by transportation tasks that
move the orders from one stage to the next. While there are
obvious similarities between the robot units and the transpor-
tation vessels, the main distinction is that a particular robot
can handle transportation tasks belonging to different pro-
duction stages and not just one. This more complex plant to-
pology leads to major changes in the mathematical formula-
tion, and cannot be considered a special case of the model
by Sundaramoorthy et al.,24 which also considers assignment
decisions. Furthermore, the proposed model relies on a con-
tinuous instead of a discrete-time representation.24

Automated wet-etching stations

In semiconductor plants, wafer fabrication is the most im-
portant process.25 Following imprinting of integrated circuits,
the wafers must go through a series of chemical and deioniz-
ing baths. This step is known as etching and involves auto-
mated transfers of wafer lots between baths with strict
requirements in exposure times. An automated wet-etching
station (AWS) facility can be classified as a multistage plant
with no intermediate storage (NIS) between baths and a
zero-wait (ZW) policy on the chemical baths. The most chal-
lenging aspect is however the incorporation of the material
handling constraints arising from automated transfers. In this
article, we consider that automated transfers are performed
by multiple robots that can be viewed as shared resources.

Geiger et al.26 developed a heuristic algorithm for AWS
based on tabu search, for scheduling transfers and processing
for a given sequence of jobs on baths. Bhushan and Karimi27

obtained better results using other heuristic procedures such
as simulated annealing and heuristic algorithms for determin-
ing the initial sequencing and timing of jobs. For small
instances, the same authors have proposed28 a MILP model
for makespan minimization that is able to determine the
optimal sequence of jobs in the baths as well as robot trans-
fers. The model consists of a slot based formulation for
scheduling under unlimited transportation resources coupled
with typical big-M constraints from sequencing models to
ensure that the available robot executes one transfer at a
time. It was also used as the basis of a two step heuristic for
larger problems, where the unlimited robot model first
defines the best job sequence and the constrained one robot
model then generates a feasible solution. Combining the
strengths of the slot based formulation, which does not
require big-M constraints for sequencing jobs within a unit,
with the advantage of the sequencing model of not requiring
the definition of a large number of slots to tackle problems
where many tasks are involved, was a major breakthrough.
Somewhat related but on a higher level, Sundaramoorthy
and Maravelias,29 have recently proposed a unified frame-
work for processes comprising network and sequential sub-
systems that expresses the latter using a material-like

790 DOI 10.1002/aic Published on behalf of the AIChE March 2012 Vol. 58, No. 3 AIChE Journal



formalism typical of the former but with special features,
under the context of a discrete-time formulation.

This article proposes a hybrid time grid sequencing model
for the optimal scheduling of AWS. The main novelty is the
incorporation of the concept of general precedence, whereas
Bhushan and Karimi28 sequencing variables are defined for a
narrower neighborhood. The new model is shown to be more
efficient and faster at finding good solutions, particularly
with the increase in the number of baths. A two-step heuris-
tic strategy is also proposed that instead of relying on a sin-
gle solution from the unlimited robot model in the first step,
generates a few different job sequences that are within a
specified optimality gap, with each being then used to con-
strain the one robot model in the second step. The insight
gained is that the best sequence for the one robot model is
sometimes suboptimal for the unlimited case. In other words,
better solutions may result with more or less the same com-
putational effort when compared with the previous approach.

Problem Definition

An AWS deals with groups of wafers of the same type,
named wafer lots. Lots in the input buffer come from the
upstream process and are destined to the output buffer,
which follows processing in the last bath. In this type of
technology, wafer lots are moved from one chemical or
water bath to the next by means of automated material han-
dling devices, referred to as robots. All lots follow the same
recipe in sequence, see Figure 1. Overexposure in the chemi-
cal baths can damage the wafers, so the contact time must
be controlled strictly. This is known as a ZW policy. On the
other hand, overexposure to water is safe, so a wafer can
stay in a water bath beyond its processing time. Water baths
can thus act as local storage (LS). Indeed, wafers can only
wait at water baths, since there is NIS and robots cannot be
used as a temporary buffer. Each robot moves a single wafer
lot at a time and needs to remove a lot from a bath before
moving another lot to that same bath. In other words, baths
hold at most one lot at a time to avoid contamination.

Given an AWS consisting of m [ M units divided into |M|-1
baths and an output buffer, i [ I wafer lots and multiple robots
r [ R for moving lots across baths, the objective is to deter-
mine the sequencing of lots at the units, the assignment of
transportation tasks to robots and their sequence so as to

minimize the makespan. Fixed processing times, pi,m, and
transportation times to a given unit/buffer, pm, the latter not
depending on robot positioning, are assumed. Note that the
output buffer is not an actual processing stage (pi,|M| is not
defined) but one must ensure robot availability and also
account for the transportation times of all lots to it.

It is important to highlight that this can be seen as a
2�(|M|-1)þ1 stages problem, featuring tasks requiring dedi-
cated equipment units in the even stages (the chemical and
water baths), and requiring shared resources in the odd
stages (the robots).

General Precedence Sequencing Variables Model

Aguirre and Méndez30 have recently proposed a MILP
based on global precedence sequencing variables for AWS
with multiple robots. The model given next is essentially
their model despite minor changes in the definition of the
sequencing variables. Three sets of binary variables are
employed, being two sequencing variables:

Xi;i0 ¼ 1 if lot i is sequenced before i0

0 otherwise

�
8i; i0 2 I; i0 > i

(1)

Yi;m;i0;m0 ¼ 1 if lot i in unit m is sequenced before lot i0 in m0

0 otherwise

�

8i; i0 2 I; i0 > i;m;m0 2 M;m 6¼ m0 ð2Þ
Binaries Wi,m,r indicate that the transfer of lot i to unit m is
assigned to robot r and there are two sets of continuous
variables, Tsi,m and Tfi,m, which give the starting and ending
times of lot i in unit m, respectively.

The ZW and LS policies are enforced through Eqs. 3 and
4. Equation 5 then ensures that the robot chosen for transfer
does not hold lots longer than it should, i.e. the starting time
in unit m þ 1 is equal to the ending time in m plus the trans-
fer time to m þ 1. Naturally, the starting time in the first
chemical bath must be greater than the transfer time to it,
Eq. 6. Sequencing constraints between different jobs on the
same bath are enforced through Eqs. 7 and 8, where H is a
parameter representing the time horizon. Notice that the for-
mer is enforced if lot i is sequenced before i0 whereas the
latter is enforced otherwise.

Tfi;m ¼ Tsi;m þ pi;m 8i 2 I;m 2 ZW (3)

Tfi;m � Tsi;m þ pi;m 8i 2 I;m 2 LS (4)

Tsi;mþ1 ¼ Tfi;m þ pmþ1 8i 2 I;m 2 M;m 6¼ jMj (5)

Tsi;1 � p1 8i 2 I (6)

Tsi0;m � Tfi;m þ pm þ pmþ1 � H � ð1� Xi;i0 Þ8i; i0 2 I; i0 > i;

m 2 M;m 6¼ jMj ð7Þ

Tsi;m � Tfi0;m þ pm þ pmþ1 � H � Xi;i0 8i; i0 2 I; i0 > i;

m 2 M;m 6¼ jMj ð8Þ
If the transfer of any two lots to different units is handled by
the same robot, they cannot occur simultaneously, see Eqs

Figure 1. Schematic of an AWS.
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9,10. Naturally, all transfers must be assigned to one robot,
Eq. 11. Equation 12 defines the makespan, MS, the
variable to minimize (Eq. 13). It is important to highlight
that there are two new terms on the LHS. Although not
strictly necessary (not considered by Aguirre and Mén-
dez30), since the transition time to the output buffer is
accounted for in the determination of Tsi,|M| (see Eq. 5
when applied to unit m¼|M|-1), these terms make the
formulation tighter by including for all lots i0 sequenced
after i, the processing time in the last water bath plus the
transfer time to the output buffer. The one robot version of
this model will be referred to as O-AM.

Tsi;m þ pm0 � Tsi0;m0 þ H � ð3� Yi;m;i0;m0 �Wi;m;r �Wi0;m0;rÞ
8i; i0 2 I; i0 > i;m;m0 2 M;m 6¼ m0; r 2 R ð9Þ

Tsi0;m0 þ pm � Tsi;m þ H � ð2þ �Yi;m;i0;m0 �Wi;m;r �Wi0;m0;rÞ
8i; i0 2 I; i0 > i;m;m0 2 M;m 6¼ m0; r 2 R ð10Þ

X
r2R

Wi;m;r ¼ 1 8i 2 I;m 2 M (11)

Tsi;jMj þ
X
i02I
i0>i

Xi;i0 � ðpi0;jMj�1þpjMjÞ þ
X
i02I
i>i0

ð1� Xi0;iÞ � ðpi0;jMj�1

þ pjMjÞ � MS 8i 2 I ð12Þ
minMS (13)

Remarks

The model is implicitly assuming that the robots are allo-
cated to different physical areas around the lineal configura-
tion of baths meaning that their paths do not overlap. This is
apparent in Eqs. 7,8, where transfer times to and from unit
m are included to ensure that the robot can only pick up lot
i0 from unit m-1 on the way back from moving lot i to unit
mþ1. If, on the other hand, one assumes that the robot paths
can overlap, lower makespans can be attained as will be
seen later on. This has been the approach of Zeballos et al.21

who have proposed a constraint programming model coupled
with an efficient search strategy. The necessary adjustments
in the model constraints involve replacing Eqs. 7,8 with Eqs.

14–17 and Eq. 12 with Eq. 18. This model will be referred
to as AM.

Tsi0;m � Tfi;m � H � ð1� Xi;i0 Þ 8i; i0 2 I; i0 > i;m 2 M;m 6¼ jMj
(14)

Tsi;m � Tfi0;m � H � Xi;i0 8i; i0 2 I; i0 > i;m 2 M;m 6¼ jMj
(15)

Tsi0;m � Tfi;m þ pm þ pmþ1 � H � ð3� Xi;i0 �Wi;m;r �Wi0;m;rÞ
8i; i0 2 I; i0 > i;m 2 M;m 6¼ jMj; r 2 R ð16Þ

Tsi;m � Tfi0;m þ pm þ pmþ1 � H � ð2þ Xi;i0 �Wi;m;r �Wi0;m;rÞ
8i; i0 2 I; i0 > i;m 2 M;m 6¼ jMj; r 2 R ð17Þ

Tsi;jMj þ
X
i02I
i0>i

Xi;i0 � pi0;jMj�1 þ
X
i02I
i>i0

ð1� Xi0;iÞ � pi0;jMj�1

� MS 8i 2 I ð18Þ

New Hybrid Time Grid/Sequencing Variables
Model

The AWS scheduling problem has some features that can
be considered a special case of the typical multistage plant
scheduling problem. In terms of plant topology, and neglect-
ing transfer constraints, AWS feature a single unit per stage
meaning that we only need to be concerned with lot
sequencing. As a consequence, multiple time grid approaches
become even more attractive, since there is now no uncer-
tainty in the number of slots to specify for each unit, mean-
ing that there is no need to implement an iterative search
procedure over the number of slots to find the global optimal
solution.1 In fact, the number of slots to specify for each
unit is equal to the number of lots.28

Unlimited robot model (URM)

Starting from the model introduced by Castro and
Grossmann,15 we derive the MILP model for the unlimited
robot case by adding new variables and constraints to
model the features of AWS associated with the NIS and
ZW policies. Consider a time grid with t [ T slots with
|T| ¼ |I|. Binary variables Ni,t assign lot i to slot t, with
the latter index implicitly giving the position of lot i in
the sequence. Notice that unit index m has been dropped15

since the initial sequence is kept throughout the processing
stages due to the NIS and ZW policies. Continuous varia-
bles Tt,m indicate the starting time of slot t in unit m,
while Tet,m give the time at which processing ends in
water bath m (m 62 ZW). Figure 2 provides a Gantt chart
with the location of the model variables for a simple
example.

Equation 19 states that the duration of slot t in unit m
must be greater than the processing time of the lot assigned
to the slot. While this is true for all units, the constraint is
written for chemical baths only, since for the water baths the
relation is with the end of processing in the previous slot,
Eq. 20. The starting time in water bath unit mþ1 must be
equal to the start of the same slot t in the previous unit plus
processing and transfer times, Eq. 21. In contrast, the end of

Figure 2. Diagram for understanding timing variables
of the new hybrid model.
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processing in water bath units may go beyond the lot proc-
essing time, see Eq. 22 and Figure 2 for i ¼ 2 in m ¼ 2.
Still, the starting time of the lot in the next unit must be
equal to its ending plus transfer times, Eq. 23. Equation 24
ensures that the starting time of the first slot in the first unit
must be greater than the transfer time to it.

Ttþ1;m � Tt;m þ
X
i2I

Ni;tpi;m 8m 2 ZW; t 2 T; t 6¼ jTj (19)

Ttþ1;m � Tet;m 8m 2 LS; t 2 T; t 6¼ jTj (20)

Tt;mþ1 ¼ Tt;m þ
X
i2I

Ni;tpi;m þ pmþ1 8m 2 ZW; t 2 T (21)

Tet;m � Tt;m þ
X
i2I

Ni;tpi;m 8m 2 LS; t 2 T (22)

Tt;mþ1 ¼ Tet;m þ pmþ1 8m 2 LS; t 2 T (23)

T1;1 � p1 (24)

Equations 25,26 enforce that a slot holds exactly one lot. The
makespan is defined through Eq. 27, while Eq. 28 makes the
formulation more efficient. It simply adds the lot processing
times in unit m and subsequent units to their transfer times.
The unlimited robot model, featuring no big-M constraints, is
completed with Eq. 13.

X
t2T

Ni;t ¼ 1 8i 2 I (25)

X
i2I

Ni;t ¼ 1 8t 2 T (26)

TjTj;jMj � MS (27)

Tt;m þ
X
i2I

Ni;t �
X
m02M

m0�m^m0 6¼jMj

ðpi;m0 þ pm0þ1Þ � MS

8m 2 M;m 6¼ jMj; t 2 T ð28Þ

Multiple robot model (MRM)

In order to model the transportation tasks of the robot
resources, we use the concept of general precedence. When
compared with the approach of Aguirre and Méndez30 we
are relating different unit-slot pairs like in Bhushan and Kar-
imi28 instead of lot-unit pairs. The sequencing variables are
the following:

�Yt;m;t0;m0 ¼ 1 if slot t in unit m starts after slot t0 in m0

0 otherwise

�

8t; t0 2 T; t0 > t;m;m0 2 M;m 6¼ m0 ð29Þ
We will also be needing robot assignment variables for the
transfer tasks, Wt,m,r.

Equations 30,31 are active whenever the same robot is
assigned to transfer tasks of consecutive lots into and out of
the same unit. Then, Eqs. 32,33 are the equivalents of Eq.
9,10. Finally, all transfers must be assigned to one robot, Eq.
34. In summary, the multiple robot model comprises Eqs.
13, 19–28, and 30–34.

Ttþ1;m � Tt;m þ
X
i2I

Ni;tpi;m þ pmþ1 þ pm

� H � ð2� �Wtþ1;m;r � �Wt;mþ1;rÞ 8m 2 ZW; t 2 T;

t 6¼ jTj; r 2 R ð30Þ

Ttþ1;m � Tet;m þ pmþ1 þ pm � H � ð2� �Wtþ1;m;r � �Wt;mþ1;rÞ
8m 2 LS; t 2 T; t 6¼ jTj; r 2 R ð31Þ

Tt;m � Tt0;m0 þ pm � H � ð3� �Yi;m;t0;m0 � �Wt;m;r � �Wt0;m0;rÞ
8t; t0 2 T; t0 > t;m;m0 2 M;m 6¼ m0; r 2 R ð32Þ

Tt0;m0 � Tt;m þ pm0 � H � ð2þ �Yt;m;t0;m0 � �Wt;m;r � �Wt0;m0;rÞ
8t; t0 2 T; t0 > t;m;m0 2 M;m 6¼ m0; r 2 R ð33Þ

X
r2R

�Wt;m;r ¼ 1 8t 2 T;m 2 M (34)

One robot model (ORM)

While the multiple robot model can deal with just a single
robot, its complexity can be significantly reduced for such
special case. First, we can avoid the big-M constraints asso-
ciated to transfers of consecutive lots into and out of the
same unit (Eqs. 35,36 replace Eqs. 30,31). Equations 35,36
can also replace Eqs. 19,20 in model URM to get a lower
bound on the solution that ORM can obtain. Such relaxed
one robot model will be named R-ORM. Second, and more
importantly, the domain of the sequencing variables can
drastically be reduced.

Ttþ1;m � Tt;m þ
X
i2I

Ni;tpi;m þ pmþ1 þ pm

8m 2 ZW; t 2 T; t 6¼ jTj ð35Þ
Ttþ1;m � Tet;m þ pmþ1 þ pm 8m 2 LS; t 2 T; t 6¼ jTj (36)

The sequencing values that take the value of 1 can be seen in
Figure 2 for a simple example comprising a single robot. The
fact that there are just two equal to 1 makes us wonder if the
domain in Eq. 29 can be reduced. Indeed, it can be
significantly reduced as will be shown in the next subsection.
For now, let us assume that subsets YD0 and YD1 represent the
cases where variables Yt,m,t0,m0 are not necessarily equal to 0
and 1, respectively. Furthermore, sets YE0 and YE1 hold the
quartets that are equal to 0 and 1.

The sequencing constraints that prevent simultaneous
transfer of lots by the robot are given by Eqs. 37,38, which
replace Eqs. 32,33. Equation 34 can also be avoided. Notice
that if Yt,m,t0,m0 ¼ 0, Eq. 37 becomes irrelevant and does not
need to be written. If one knows a priori that the value
must be equal to 1, then the big-M term is not required to
make the starting time of slot t in unit m greater than the
starting time of slot t0 in unit m0 plus the transfer time to
m. If, on the other hand, the binary is equal to zero, slot t
in unit m starts earlier than t0 in m0, which is ensured by
Eq. 38.

Tt;m � Tt0;m0 þ pm � H � ð1� �Yt;m;t0;m0 Þ� ���
ðt;m;t0;m0Þ62YE1

8ðt;m; t0;m0Þ 2 YD0 ð37Þ
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Tt0;m0 � Tt;m þ pm0 � H � �Yt;m;t0;m0
� ���

ðt;m;t0;m0Þ62YE0
8ðt;m; t0;m0Þ 2 YD1 ð38Þ

Sequencing variables domain reduction for ORM

We now focus on tightening the domain of the sequencing var-
iables for the one robot model using information about the pro-
cess. More specifically, the robot needs first to remove a lot from
a bath before picking up another lot and bringing it to that same
bath. Consider the lot that will be assigned to the first position in
the sequence. Clearly, the first transportation tasks performed by
the robot will involve moving such lot into the first chemical
bath and into the first water bath (m¼2). Only then, can the sec-
ond lot in the sequence be picked from the input buffer. This
analysis can be systematized rather easily if the transportation
tasks are reported on a hypothetical time grid that accounts for
the robot events. Such grid would require a total of |I|�|M| events.

Recall the example in Figure 2, featuring 3 lots and 3
units. The domain for the transportation tasks on the robot
grid is given in Figure 3 as a function of the time slot (bath
grids) the lot is assigned to, and the equipment unit. One can
see that the domain is quite narrow, with most transportation
tasks being confined to a single slot. Only pairs (t ¼ 1,
m ¼ 3), (2,1), (2,3), and (3,1) have two possibilities. Based
on this diagram, the sets involved in Eqs. 23 and 24 are easy
to determine. For instance, YD0¼{(1,3,2,1),(2,3,3,1)} and
YE1 ¼ Ø. Notice that the schedule in Figure 2, features slot
1 in unit 3 starting after slot 2 in unit 1, as well as slot 2 in
unit 3 following slot 3 in unit 1, so the two sequencing vari-
ables that could be different than 0 are actually equal to 1.

Assuming that the LBm,t and UBm,t give the lowest/highest
possible interval in the robot grid for transferring to unit m
the lot in position t in the bath sequence, we have:

LBm;t ¼
X
t02T
t0�t

X
m02M

m0�mþt�t0

1 8m 2 M; t 2 T (39)

UBm;t ¼ jIj � jMj þ 1�
X
t02T
t0�t

X
m02M

m0�mþt�t0

1 8m 2 M; t 2 T (40)

With these parameters, the elements of sets YE0, YD0, YE1,
and YD1 can be calculated through Eqs. 41–44. Notice that
UBm,t�LBm0,t0 ) Tt,m\Tt0,m0 and Yt,m,t0,m0 ¼ 0. Likewise, if
UBm0,t0�LBm,t ) Tt,m[Tt0,m0 and Yt,m,t0,m0 ¼ 1. Such binary
variables can thus be removed from the formulation.

YE0 ¼ fðt;m; t0;m0Þ : t; t0 2 T; t0 > t;m;m0 2 M;

m 6¼ m0;UBm;t � LBm0;t0 g ð41Þ

YE1 ¼ fðt;m; t0;m0Þ : t; t0 2 T; t0 > t;m;

m0 2 M;m 6¼ m0;UBm0;t0 � LBm;tg ð42Þ

YD0 ¼ fðt;m; t0;m0Þ : t; t0 2 T; t0 > t;m;

m0 2 M;m 6¼ m0;UBm;t > LBm0;t0 g ð43Þ

YD1 ¼ fðt;m; t0;m0Þ : t; t0 2 T; t0 > t;m;m0

2 M;m 6¼ m0;UBm0;t0 > LBm;tg ð44Þ

Remarks

A full time grid based, one robot model, using slot assign-
ment variables for both bath and robot grids, was also devel-
oped. The latter grid used |I|�|M| slots while all former grids
kept the |I| slots. Unfortunately, the model was orders of
magnitude slower primarily because the domains of the addi-
tional (bath slot, unit, robot slot) variables are larger than
that of the global precedence sequencing variables. This
result is consistent with findings by Bhushan and Karimi.28

The sequencing variables used by Bhushan and Karimi28

are somewhat between the concepts of immediate and gen-
eral precedence. The exact definition using this article’s no-
menclature is given in Eq. 45. The authors then employed
sequencing constraints similar to Eqs. 37,38, for a tighter do-
main than the one in Eq. 45, coupled with one mandatory
and two performance enhancing sets of constraints involving
sequencing variables only. A comparison between their
approach and ours is provided later on in terms of computa-
tional statistics.

�Yt;m;t0;m0 ¼
1 if slot t in unit m starts after slot t0 in m0

and before slot t0 in m0 þ 1

0 otherwise

8><
>:

8t; t0 2 T; t0\t;m;m0 2 M;m\m0 ð45Þ

New Heuristic Method

Increasing the number of robots makes the MRM model
considerably more difficult to solve due to the large increase
in size resulting from additional binary sequencing and
assignment variables and associated constraints. We now
propose an efficient heuristic method for the solution of the
one robot problem that can naturally be extended to the mul-
tiple robot case.

One way to reduce the complexity of model ORM, is to
fix the lot-slot assignment variables with the values from the
one robot model without the sequencing constraints for the

Figure 3. Domain of transportation tasks for a simple example featuring |I|53 and |M|53.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com].
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transfers. This relaxed model was named R-ORM. This
two-step heuristic method was proposed by Bhushan and
Karimi28 who reported a maximum deviation in makespan
of only 0.42% when compared with the optimal solution,
in problem sizes up to 14 lots in 4 baths and 10 lots in 6
baths. Following experimental observations that: (i) R-
ORM is highly degenerate; (ii) solutions with the same
objective function but different lot sequences in the baths
will typically lead to a range of makespans when consid-
ering the one robot model; (iii) the optimal bath sequence
from ORM may be suboptimal for R-ORM; we propose
solving the one robot model a few times, starting from
bath sequences that are very good, but not necessarily
optimal.

The new heuristic method relies on four options of the
CPLEX MILP solver.31 With Solnpoolpop¼2 we can call
the populate procedure for storing multiple solutions to the
problem in a solution pool. With Solnpoolintensity¼4, the
solver is instructed to enumerate all practical solutions. Since
this number may be huge even for small problems, we con-
trol the number of solutions generated for the solution pool
with parameter Populatelim. We have used the default value
(20), which is reasonable and avoids consuming a large
quantity of memory. Finally, with Solnpoolgap, the user
ensures that solutions in the solution pool are within a rela-
tive tolerance of the optimal value. Note that this setting
should be selected carefully since the solver will not gener-
ate the best solutions within the given tolerance. If equal to
0, only optimal solutions will be generated, which may be
too few. If greater than zero, the solver may generate the
optimal solution and roughly Populatelim-1 suboptimal solu-
tions, despite possibly having Populatelim degenerate opti-
mal solutions, which will most likely be better starting
points for the one robot model. Overall, Solnpoolgap should
be selected by trial and error and will thus be problem de-
pendent.

The search algorithm is illustrated in Figure 4. Following
the generation of the solution pool, we extract the value of
the binary variables and makespan for each solution s[S of
the relaxed one robot model and store it in parameters ns,i,t
and mss, respectively. The binary variables for the one robot
model are then fixed to the former values by specifying the
lower and upper bound attributes (.lo, .up). The first solution
provides the sequence that is optimal for the relaxed sce-
nario. When adding the robot constraints, the makespan will
typically increase slightly. This will be the first feasible solu-
tion. Afterwards, the focus is on generating better solutions
while minimizing computational effort. To achieve this goal,
a cutoff value is specified to eliminate the parts of the
branch-and-bound search tree with an objective equal or
worse to current best solution. This will make almost all
subsequent problems infeasible. If better solutions are indeed
found, one can: (i) check if the sequence was optimal for the
R-ORM case by comparing the values of mss; (ii) quantify
the gain in considering more than just (one of) the optimal
sequence(s) for R-ORM.

Computational Results

The heuristic algorithm and scheduling models were
implemented in GAMS 23.5 using CPLEX 12.2 as the MILP
solver and taking advantage of the two parallel threads of
the Intel Core2 Duo T9300 2.5 GHz laptop (Windows Vista
Enterprise, 4 GB of RAM). The relative optimality gap was
set to 10-6 and the maximum computational time to 3600
CPUs. The remaining settings were the defaults, except those
indicated in Figure 4 for the two-stage algorithm.

The performance of the optimization methods is illustrated
through the solution of 13 test problems built from the data
given by Bhushan and Karimi.27 These range from 18 lots in
4 baths to 15 lots in 12 baths, which is roughly what the
unlimited robot model can handle in less than 1 h of compu-
tational time. The required data is given in Table 1, with the
lots and units to consider being the firsts according to prob-
lem specification. Five different scenarios will be considered:

Figure 4. Two-stage heuristic algorithm for AWS.
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(i) unlimited robot availability; (ii) single robot availability
while assuming that transfer tasks are always possible (iii-iv)
one robot with full-space and decomposition approach; (v)
two robots.

Unlimited robot availability

We start by analyzing the performance of model URM
that provides a lower bound for the multiple robot model
MRM. As can be seen in Table 2, only P5 and P9 cannot be
solved to global optimality, both with an out of memory ter-
mination before reaching the maximum computational limit
defined. It clearly reflects the increasing complexity with the
increase in the number of lots and units. Interestingly, the
largest problem, featuring 15 lots in 12 baths, can still be
solved in less than an hour.

Single robot neglecting transfer tasks

To compare the performance of models with and without
big-M constraints, we consider the relaxed one robot models

for the time grids (R-ORM) and the general precedence
sequencing concept used by Aguirre and Méndez30 and ear-
lier described (R-AM). As can be seen in Table 3, R-ORM
outperforms R-AM by orders of magnitude despite needing
more than twice the number of binary variables. Notice that
the absence of big-M constraints makes R-ORM consider-
ably tighter (MIP-RMIP), being able to prove optimality for
all but P9 (out of memory termination). In contrast, R-AM
requires significantly more constraints and although able to
find a better solution for P9 (197.3), failed to find the opti-
mal solutions for P5 and P13 and to prove optimality in five
other cases. The other aspect worth highlighting is that the
optimal solutions for the relaxed one robot model are at least
10% worse than those for unlimited robot availability (given
in Table 2). Thus, the plant can benefit from multiple robots.
More on this to follow.

One robot

For the one robot scenario, we now test three different
models. Besides the new ORM model, we consider the also

Table 2. Computational Performance of Model URM

(|I|,|M|-1) DV SV SE RMIP MIP CPUs Nodes

P1 (8,4) 64 121 125 73.6 83.8 0.38 389
P2 (10,4) 100 171 157 86.8 101 1.60 1331
P3 (12,4) 144 229 189 99.3 115.5 9.39 16739
P4 (15,4) 225 331 237 119.0 140.8 178 300377
P5 (18,4) 324 451 285 140.0 166.6 1391† 1628007
P6 (8,8) 64 169 233 102.2 118.2 0.61 521
P7 (10,8) 100 231 293 115.4 134.5 7.02 7597
P8 (12,8) 144 301 353 128.1 150 73.5 89587
P9 (15,8) 225 421 443 147.8 174.5 1357‡ 893267
P10 (8,12) 64 217 341 133.6 156.5 0.94 498
P11 (10,12) 100 291 429 148.7 175.1 8.24 4540
P12 (12,12) 144 373 517 160.7 190.6 58.2 38265
P13 (15,12) 225 511 649 182.2 216.2 3375 2044556

DV ¼ discrete variables. SV ¼ single variables. SE ¼ single equations. RMIP ¼ solution of the relaxed linear problem. MIP ¼ problem solution.
†Out of memory termination (OM), best possible solution (BPS) ¼ 163.6.
‡OM, BPS ¼ 167.3.

Table 1. Processing and Transfer Times for Problems P1–P13

Lot

Unit

1 2 3 4 5 6 7 8 9 10 11 12 13

1 4.3 6.7 11.3 6.3 2.5 6.9 8.1 7.5 4.2 7.1 3.9 6.8 –
2 5.8 6.7 8.2 6.5 4.9 6.5 12.8 6.8 10.4 6.7 11.8 6.7 –
3 10.6 6.7 2.6 6.4 2.7 7.3 13.0 6.6 11.4 6.8 9.2 6.6 –
4 2.7 6.9 6.9 7.6 3.5 7.4 3.9 6.6 7.2 6.7 3.9 6.8 –
5 4.1 6.7 11.0 6.8 7.4 6.2 3.1 6.3 3.7 6.2 9.4 6.9 –
6 3.7 6.9 2.5 6.4 6.5 6.6 2.5 6.6 2.6 6.5 2.7 6.3 –
7 10.5 6.7 3.7 6.6 11.9 6.6 2.6 6.2 6.9 6.5 3.9 6.8 –
8 3.9 6.8 6.6 6.4 3.3 6.9 3.4 6.4 11.3 6.7 5.8 7.5 –
9 2.5 7.5 1.4 7.6 6.6 6.8 11.0 6.9 12.9 6.5 5.2 7.8 –
10 10.8 6.7 10.1 6.5 2.5 6.6 2.7 7.1 4.6 6.5 11.4 6.3 –
11 8.7 6.2 4.2 7.2 6.1 6.2 5.9 6.5 4.6 6.7 8.8 6.6 –
12 7.0 6.3 7.2 6.6 2.7 6.7 8.9 7.1 2.9 6.7 6.4 6.8 –
13 9.1 6.8 2.8 6.4 5.9 6.4 5.9 6.9 10.4 6.9 8.8 6.5 –
14 2.7 6.1 11.4 6.9 7.7 6.4 5.1 6.2 4.7 6.9 10.0 6.8 –
15 2.8 6.8 6.8 6.3 4.2 6.7 8.5 6.6 5.7 6.5 4.3 6.9 –
16 5.7 6.9 2.8 7.1 4.7 6.1 3.9 6.9 4.4 6.4 2.7 6.3 –
17 2.5 7.6 6.7 6.5 2.6 6.4 3.4 7.2 2.9 6.7 7.8 6.4 –
18 3.9 6.8 12.1 6.8 2.7 6.3 9.3 6.2 4.7 6.3 2.6 6.8 –
pm 1.2 0.6 0.8 1.0 0.4 0.6 1.0 1.0 0.8 0.4 0.8 1.0 1.2
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hybrid time slots/sequencing model by Bhushan and Kar-
imi28 (BK) and the simplification of the multiple robot
model by Aguirre and Méndez30 (O-AM). The implementa-
tion of BK features constraints 10a, 10b, 11, and 12 of their
work28 (the implementation of performance enhancing con-
straint 13 turned the model infeasible, and we were unable

to debug it). The main results are given in Table 4, while in-
formation about the problem sizes is left for Table 5.

While for the relaxed one robot scenario there was a sin-
gle problem that could not be solved to optimality, now that
is mostly true, clearly reflecting the increase in complexity
of bringing the robot sequencing constraints into the model.

Table 4. Solution and Computational Times for One Robot Models

Model

Solution CPUs RMIP Best possible solution

ORM BK O-AM ORM BK O-AM ORM/BK O-AM ORM BK O-AM

P1 95.6 95.6 95.6 0.82 1.31 55.3 85.4 54.3 – – –
P2 115.6 115.6 115.6 4.95 3.17 3600 100.5 61.7 – – 102.6
P3 134.1 134.1 135 46.1 13.3 3600 116.5 69.17 – – 87.0
P4 163.6 163.6 167.2 1682 104 3600 141.4 79.42 – – 94.1
P5 194.7 195.7 202.8 3600 706* 3600 168.1 90.11 188.5 191.9 102.4
P6 131.6 132.6 131.6 28.7 3600 350 113.9 84.06 – 127.0 –
P7 153.5 – 155.8 3600 3600 3600 130.2 92.03 144.0 142.6 115.6
P8 172.5 193.6 182.2 3600 3600 3600 146.8 99.77 156.9 152.5 118.8
P9 214.6 – 218.7 3600 3600 3600 172.1 110.7 184.2 176.8 124.4
P10 170.6 – 170.6 92.7 3600 2298 146.1 116.5 – 170.3 –
P11 199.1 – 206.6 3600 3600 3600 164.1 125.62 179.1 178.9 147.2
P12 – – – 3600 3600 3600 180.4 133.19 194.5 190.7 150.6
P13 782.1 – – 3600 3600 3600 207.0 145.15 179.1 216.0 159.6

*Out of memory termination.

Table 3. Computational Performance for Relaxed One Robot Models

R-ORM R-AM

DV SV SE RMIP MIP CPUs CPUs RMIP MIP DV SV SE

P1 64 121 125 85.4 95.1 0.39 2.40 54.3 95.1 28 102 296
P2 100 171 157 100.5 115.5 1.30 81 61.7 115.5 45 136 450
P3 144 229 189 116.5 133.7 7.72 3600* 69.2 133.7 66 175 636
P4 225 331 237 141.4 163.1 65.4 3600† 79.4 163.1 105 241 975
P5 324 451 285 168.1 194.2 2524 3600‡ 90.11 195.6 153 316 1386
P6 64 169 233 113.9 130 0.63 3.34 84.06 130 28 165 584
P7 100 231 293 130.2 149.4 5.67 148 92.03 149.4 45 216 890
P8 144 301 353 146.8 169.1 62.8 3600§ 99.77 169.1 66 271 1260
P9 225 421 443 172.1 197.5 1501{ 3600** 110.7 197.3 105 361 1935
P10 64 217 341 146.1 170.3 2.44 6.24 116.5 170.3 28 229 872
P11 100 291 429 164.1 192.2 12.7 259 125.6 192.2 45 296 1330
P12 144 373 517 180.4 210.7 38.1 3600†† 133.2 210.7 66 367 1884
P13 225 511 649 207.0 241.4 2959 3600‡‡ 145.2 242.4 105 481 2895

Suboptimal solutions in italic.
*BPS ¼ 110.5; †BPS ¼ 102.3; ‡BPS ¼ 108.4; §BPS ¼ 141.3; {OM, BPS ¼ 190.4; **BPS ¼ 134.4; ††BPS ¼ 177.4; ‡‡BPS ¼ 172.3.

Table 5. Model Statistics One Robot Models

Model

Discrete Variables Single Variables Single Equations

ORM BK O-AM ORM BK O-AM ORM BK O-AM

P1 141 167 588 198 240 661 762 357 1416
P2 201 235 945 272 326 1036 1158 461 2250
P3 269 311 1386 354 420 1495 1634 565 3276
P4 386 440 2205 492 576 2341 2498 721 5175
P5 521 587 3213 648 750 3376 3542 877 7506
P6 714 666 2044 819 803 2181 2899 1601 4616
P7 1004 926 3285 1135 1097 3456 4437 2157 7370
P8 1302 1194 4818 1459 1399 5023 6263 2713 10764
P9 1764 1611 7665 1960 1867 7921 9542 3547 17055
P10 1968 1618 4396 2121 1819 4597 6613 3863 9608
P11 2906 2335 7065 3097 2586 7316 10255 5433 15370
P12 3881 3081 10362 4110 3382 10663 14550 7045 22476
P13 5360 4218 16485 5646 4594 16861 22164 9469 35655
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In fact, no solution could be found for P12 and for P13 the
solution is very poor.

Overall, the new proposed model is again the best overall
performer in terms of computational time and quality of the
solution returned. ORM successfully proves optimality under
the hour mark for six problems (P1-P4, P6, and P10), and it
always provides the best solution. In addition, the integrality
gap at termination (last columns in Table 4) is lower except
for P5 and P13 for which BK did a better job. The conceptu-
ally similar model of Bhushan and Karimi28 can be consid-
ered the second best overall performer, being indeed the best
for P2-P4. This tells us that BK handles better an increase in
the number of lots, provided that the number of baths
remains low (recall the problem features in Table 2). Al-
ready for 8 baths, the use of general precedence variables
becomes a better approach, even without the use of the lot-
slot assignment variables. Notice that despite the signifi-
cantly worse relaxation (RMIP column), O-AM surpasses
BK in performance, and it can still find good solutions for
P7-P9 and P11, while being able to prove optimality for P6
and P10.

From the model statistics in Table 5, one can see that BK
has the advantage of leading to smaller problem sizes.
Nevertheless, the number of binary variables resulting from
ORM and BK is roughly the same, which in turn are much
lower than the number from O-AM. This is a direct conse-
quence of the significant domain reduction that can be per-
formed when relating different pairs of (slot,unit) instead of
(lot,unit) pairs, as in AM. With the latter model, a similar
approach can only be applied once the sequence of lots in
the baths is known. The real advantage of restricting the
robot sequencing variables to pairs of units with m\m0 in
BK28 (recall Eq. 45) instead of m=m0 (Eq. 29), is reflected
more on the number of constraints, less than half those from
ORM, than on the number of binaries. These must however
be more complex overall, since BK handles worse an
increase in problem size, having trouble even to find feasible
solutions, as already discussed.

One robot with two-stage heuristic approach

After more or less identifying the size of problems that
can be addressed by full-space models, we switch our atten-
tion to the heuristic approach that enables to widen the range
of tractable problems. As described earlier, the method first

solves the relaxed one robot model to find a few different
sequences, which are then fixed before solving the sequence
constrained one robot model several times. The drawback is
that the optimal solution may be lost in the process. Indeed,
this happens in 6 cases (P2-P5, P8, and P10, see Table 6)
but the increase in makespan is lower than 0.7%. These
were however not our primary target since only P5 and P8
were not solved to optimality by ORM.

The main accomplishment was for P12 (12 lots in 12
baths), for which none of the three full-space methods could
find a feasible solution in 1 h. Within a couple of minutes,
the algorithm could generate 18 different sequences within a
0.5 % optimality gap with respect to the relaxed one robot
problem. Of these, sequence #11 led to the best schedule for
the one robot model (shown in Figure 5), featuring a make-
span equal to 215.6. The 4.3% improvement for P9 was also
very significant, considering that R-ORM was stopped at
1450 CPUs before running out of memory and that, because
of this, there was a single iteration. On the downside, we
still could not find a good solution for P13.

From Table 6, one can see that CPLEX parameter Popula-
telim is just a rough estimate on the number of solutions
generated for the solution pool, since there were cases (P3-
P5) with more solutions than the specified value (20). It is

Table 6. Results for the Two-Stage Heuristic Approach

Model SolnPoolGap # Solutions Best DV Makespan TCPUs R-ORM Optimal? Gain (%) vs. ORM (%)

P1 0.008 12 1 77 95.6 2.87 Yes 0 0
P2 0 18 1 101 116.0 6.27 Yes 0 �0.3
P3 0 26 3 125 134.2 25.9 Yes 0 �0.1
P4 0 23 1 161 164.7 125 Yes 0 �0.7
P5 0 23 4 197 194.8 3269 Yes 0 �0.1
P6 0.005 10 4 650 131.6 9.2 No 2.1 0
P7 0.005 17 3 904 152.6 27.7 No 2.6 0.6
P8 0.004 17 7 1158 173.7 216 No 1.7 �0.7
P9 0 1 1 1539 205.4 1482* Yes 0.0 4.3
P10 0.008 14 3 1904 170.7 12.7 No 0.2 �0.1
P11 0.005 16 13 2806 195.7 152 No 0.8 1.7
P12 0.005 18 11 3737 215.6 4318 No 1.3 1
P13 0 1 – 5135 – 7101 Yes – –

*URM problem stopped at 1450 CPUs.

Figure 5. Best found solution for P12 considering a
single robot.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com].
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also interesting to observe that in these problems, and also
in P2, all sequences were optimal for the relaxed one robot
case. In others, we had to relax the optimality gap in order
to generate a reasonable number of sequences. More impor-
tantly, in P6-P8 and P10-P12, the sequences leading to the
best schedule were not optimal for the R-ORM problem and
we achieved gains up to 2.6% when considering more than
just one optimal sequence, which was the approach followed
by Bhushan and Karimi.28 Furthermore, the additional
sequences bring a small computational cost, since after the
first iteration, the cutoff values make the constrained ORM
problems easier to solve. Finally, while the number of varia-
bles and constraints remains the same when compared with
the unconstrained ORM problem, there is only a small
reduction in the number of binary variables, once more con-
firming that the AWS scheduling complexity lies within the
robot.

Two robots

Increasing the number of robots in the system allows us to
lower the makespan. Interestingly, in all problems that could
be solved to optimality, the solutions from the multiple robot
model MRM are equal to those of the unlimited robot model
URM (compare Table 7 with Table 2). This tells us that two
robots are enough to achieve maximum productivity and
thus there is no point in increasing the computational studies
for a higher number of robots. Again the new proposed
hybrid formulation is better than the pure sequencing varia-
bles model AM, which is able to match the solution only for
P1, P2, and P6.

Notice the significant increase in model size, particularly
in the number of constraints, which reaches 66,700 for
MRM instead of 22,164 for the one robot model ORM
(compare Table 7 with Table 5). Interestingly, the same
number of problems can be solved to optimality by the pro-
posed formulation: 6, with MRM succeeding in P7 and fail-
ing in P4, an opposite behavior to that of ORM. Despite
leading to higher computational times in the problems that
can also be solved to optimality by ORM, the multiple robot
model seems to respond better to an increase in problem
size, since it can still find a good solution for P12 (199.1,

4.4% above the solution of URM, check Table 2), whereas
no feasible solution was returned by ORM.

Conclusions

This article has addressed the scheduling of AWSs using
multiple robots for transporting wafer lots between baths. A
new hybrid formulation has been proposed that relies on the
concept of time slots to implicitly determine lot sequencing
in the chemical and water baths, and on general precedence
sequencing variables for the transportation tasks. Model per-
formance has been evaluated through the solution of 13 test
problems taken from the literature and compared with a
closely related model and to another relying solely on
sequencing variables. The results have shown that the new
model was able to solve more problems to optimality and
did always find the best solution of the group in 1 h of com-
putational time.

This article has also shown that both relaxed and con-
strained versions of the proposed model can be employed
as the basis of an efficient heuristic procedure for the sin-
gle robot problem. The relaxed version neglects robot con-
straints and has been used to generate a few very good
sequences concerning lot processing in the baths. Once the
lot-bath binary variables have been fixed, the problems
become simpler and near optimal solutions can be gener-
ated. The solution improved for the majority of the prob-
lems that could not be solved to optimality by the full-
space model, but, most importantly, a very good feasible
solution was found in a case where all three full-space
models failed. Unfortunately, and due to the rapidly grow-
ing number of sequencing variables, no solution was found
for the 15 lots in 12 baths problem, so other approaches
should be tried beyond this size.
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Table 7. Results for the Multiple Robot Models Considering Two Robots

MRM AM

DV SV SE RMIP MIP CPUs CPUs RMIP MIP DV SV SE

P1 704 761 2461 73.6 83.8 9.90 52.5 52.9 83.8 668 741 3024
P2 1100 1171 3879 86.8 101 32.1 3600* 59.9 101 1045 1136 4820
P3 1584 1669 5617 99.3 115.5 163 3600† 67.0 116.7 1506 1615 7032
P4 2475 2581 8824 119.0 140.8 3600‡ 3600§ 76.6 145.5 2355 2491 11130
P5 3564 3691 12751 140.0 169 3600{ 3600** 86.7 177.4 3393 3556 16164
P6 2224 2329 8481 102.2 118.2 107 321 81.3 118.2 2188 2325 9616
P7 3520 3651 13487 115.4 134.5 1320 3600†† 88.4 138.2 3465 3636 15380
P8 5112 5269 19645 128.1 150.9 3600‡‡ 3600§§ 95.4 158 5034 5239 22488
P9 8055 8251 31042 147.8 181.9 3600{{ 3600*** 105.1 198.2 7935 8191 35670
P10 4640 4793 18085 133.6 156.5 185 3600††† 112.3 156.6 4604 4805 19792
P11 7380 7571 28855 148.7 175.6 3600‡‡‡ 3600§§§ 120.2 183.9 7325 7576 31700
P12 10752 10981 42121 160.7 199.1 3600{{{ 3600**** 126.6 204.5 10674 10975 46392
P13 16995 17281 66700 182.2 465.3 3600†††† 3600‡‡‡‡ 136.8 – 16875 17251 73650

Suboptimal solutions in italic.
*Best possible solutions: 92.5;†83.6; ‡138.7; §88.7.{154.2; **97.3; ††112.4; ‡‡145.3; §§109.7; {{158.9; ***116.4; †††156.5; ‡‡‡172.8; §§§139.3.{{{172.1; ****139.2;
††††190.9; ‡‡‡‡146.3.
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approach to short-term scheduling of resource-constrained multistage
flowshop batch facilities. Comput Chem Eng. 2001;25:701–711.

10. Harjunkoski I, Grossmann I. Decomposition techniques for multi-
stage scheduling problems using mixed-integer and constraint pro-
gramming methods. Comput Chem Eng. 2002;26:1533–1552.

11. Castro PM, Grossmann IE, Novais AQ. Two new continuous-time
models for the scheduling of multistage batch plants with sequence
dependent changeovers. Ind Eng Chem Res. 2006;45:6210–6226.

12. Prasad P, Maravelias CT. Batch selection, assignment and sequenc-
ing in multi-stage, multi-product processes. Comput Chem Eng.
2008;32:1114–1127.

13. Sundaramoorthy A, Maravelias CT. Simultaneous batching and
scheduling in multistage multiproduct processes. Ind Eng Chem Res.
2008;47:1546–1555.

14. Castro PM, Erdirik-Dogan M, Grossmann IE. Simultaneous batching
and scheduling of single stage batch plants with parallel units.
AIChE J. 2008;54:183–193.

15. Castro PM, Grossmann IE. New continuous-time MILP model for
the short-term scheduling of multistage batch plants. Ind Eng Chem
Res. 2005;44:9175–9190.

16. Castro PM, Novais AQ. Short-term scheduling of multistage batch
plants with unlimited intermediate storage. Ind Eng Chem Res.
2008;47:6126–6139.

17. Castro PM, Novais AQ. Scheduling multistage batch plants with
sequence-dependent changeovers. AIChE J. 2009;55:2122–2137.

18. Shaik MA, Floudas CA. Novel unified modeling approach for short-
term scheduling. Ind Eng Chem Res. 2009;48:2947–2964.

19. Shaik MA, Floudas CA. Unit-specific event-based continuous-time
approach for short-term scheduling of batch plants using RTN
framework. Comput Chem Eng. 2008;32:260–274.

20. Li J, Floudas CA. Optimal event point determination for short-
term scheduling of multipurpose batch plants via unit-specific
event-based continuous-time approaches. Ind Eng Chem Res.
2010;49:7446–7469.

21. Zeballos LJ, Castro PM, Méndez CA. Integrated constraint pro-
gramming scheduling approach for automated wet-etch stations in
semiconductor manufacturing. Ind Eng Chem Res. 2011;50:1705–
1715.

22. Subbiah S, Tometzki T, Panek S, Engell S. Multi-product batch
scheduling with intermediate due dates using priced timed automata
models. Comput Chem Eng. 2009;33:1661–1676.

23. He Y, Hui CW. A novel search framework for multi-stage process
scheduling with tight due dates. AIChE J. 2010;56:2103–2121.

24. Sundaramoorthy A, Maravelias CT, Prasad P. Scheduling of multi-
stage batch processes under utility constraints. Ind Eng Chem Res.
2009;48:6050–6058.

25. Uzsoy R, Lee CY, Marti-Vega LA. A review of production planning

and scheduling models in the semiconductor industry. Part 1: System

characteristics, performance evaluation and production planning. IIE
Trans. 1992;24:47–60.

26. Geiger DC, Kempf KG, Uzsoy R. A tabu search approach to
scheduling and automated wet etch station. J Manuf Syst. 1997;
16:102–116.

27. Bhushan S, Karimi IA. Heuristic algorithms for scheduling an auto-

mated wet-etch station. Comput Chem Eng. 2004;28:363–379.
28. Bhushan S, Karimi IA. An MILP approach to automated wet-etch

station scheduling. Ind Eng Chem. Res. 2003;42:1391–1399.
29. Sundaramoorthy A, Maravelias CT. A general framework for pro-

cess scheduling. AIChE J. 2011;57:695–710.
30. Aguirre AM, Méndez CA. A novel optimization method to auto-

mated wet-etching station scheduling in semiconductor manufactur-
ing systems. In: Pierucci S, Buzzi Ferraris G, editors. Computer
Aided Chemical Engineering. 2010; Vol. 28. Elsevier, 883–888.

31. CPLEX 12. In GAMS—The Solver Manuals. GAMS Development
Corporation, Washington DC, 2010.

Manuscript received Oct. 20, 2010, and revision received Feb. 23, 2011.

800 DOI 10.1002/aic Published on behalf of the AIChE March 2012 Vol. 58, No. 3 AIChE Journal


