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An entangled-state generation protocol for a system of two qubits driven with an ac signal and coupled through
a resonator is introduced. We explain the mechanism of entanglement generation in terms of an interplay between
unitary Landau-Zener-Stückelberg (LZS) transitions, induced for appropriate frequencies and strong amplitudes
of the applied ac signal and dissipative processes dominated by photon loss. In this way, we find that the steady
state of the system can be tuned to be arbitrarily close to a Bell state, which is stable against photon loss. Effective
two-qubit Hamiltonians that reproduce the resonance patterns associated with LZS transitions are derived.
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I. INTRODUCTION

The generation and stabilization of entangled states is of
fundamental importance for quantum information applica-
tions. In the last two decades, several proposals explored
strategies based on the use of environmental noise to obtain
and stabilize steady-state entanglement [1–3].

Most of these schemes used an external driving field
as a tool, with examples including adiabatic passage pro-
tocols [4] (extensively employed to generate quantum state
transfer [5,6]), weak resonant drivings (which enable entan-
glement stabilization based on tailoring the relaxation rates
to generate a highly entangled steady state [7–11]), or a
frequency-modulated signal [12] (used to achieve an accel-
erated formation of dissipative entangled steady states).

These protocols were tested in several systems such as
atomic ensembles [13], trapped ions [14–16], Rydberg atoms
[5,12], and superconducting qubits [7–11,17], to mention a
few.

Recently, a mechanism relying on the amplitude modu-
lation of an ac signal was proposed to generate steady-state
entanglement in a system of two coupled qubits driven by a
large-amplitude (nonresonant) periodic signal and interacting
with a thermal bath [18,19].

Nowadays, circuit quantum electrodynamics (cQED)
[20–24] has been established as one of the leading archi-
tectures for studying quantum computation and quantum
simulation, where superconducting qubits are connected to a
transmission line resonator [25–27]. Many important experi-
mental advances have been achieved in this regard, including
the observation of the Jaynes-Cummings ladder [28] and
long-lived qubit-resonator states [29], entanglement of distant
qubits, realization of one- and two-qubit gates, and nondemo-
lition readout operations [11,17,30–37].

In this work we propose a protocol to generate and sta-
bilize maximally entangled states (in particular, Bell states)
in a system of two qubits driven with an harmonic signal,

which are indirectly coupled via a common resonator. Al-
though this driving protocol was implemented in studies of
Landau-Zener-Stückelberg (LZS) interferometry [27,38–42]
and entanglement generation [18,19] with superconducting
qubits, we are not aware of previous proposals employing ac
driven qubits to control entanglement in cQED architectures.
Our approach is rather general and not restricted to the usual
weak resonant driving, going beyond the standard dispersive
regime used to couple the resonator for readout [23]. As is
customary in cQED architectures, we will assume that the res-
onator acts as a filter of noise for the qubits [23,43], protecting
them from spontaneous losses to the environment. With this
in mind, we will model the environment as a thermal bath
coupled to the system mainly through the resonator.

Through an interplay between driving and dissipation, we
show that a unique stationary maximally entangled (Bell)
state can be obtained, provided the qubits are driven with the
appropriate amplitude and frequency. Moreover, the obtained
Bell state is protected from environmental effects for as long
as the driving is applied.

The paper is organized as follows. In Sec. II we do an
overview of the system and present the model Hamiltonian.
In Sec. III we solve the unitary driven dynamics of the system
and analize the LZS resonance patterns of the two relevant
transitions involved in the generation of maximally entangled
steady states, once coupling to environment is included in
Sec. IV. Additionally, two-qubit Hamiltonians that reproduce
the structure of these resonances are also derived in Sec. III.
Conclusions and perspectives are given in Sec. V.

II. SYSTEM OVERVIEW

We study a system composed of two qubits coupled to
a bosonic mode within a resonator, which is itself weakly
coupled to a thermal bath with temperature Tb, as is shown
schematically in Fig. 1.
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FIG. 1. Schematic representation of the system under study. The
qubit i ∈ {1, 2} is periodically driven through εi(t ) and coupled with
strength gi to a mode of frequency � of a resonator. The resonator
is weakly coupled to a thermal bath with strength λ via the bosonic
operator a + a†.

The Hamiltonian of the qubit i ∈ {1, 2}, including the cou-
pling term to the resonator, is given by

Hi(t ) = εi(t )

2
σ (i)

z + gi(a + a†)σ (i)
x , (1)

where σ
(i)
j are the Pauli matrices acting on the qubit i and a†

(a) is the creation (destruction) operator of the bosonic mode
of the resonator. The qubit i’s transition frequency or detuning
is εi, which can be controlled externally as a function of time.
The coupling of the qubit i to the resonator is of strength gi

and we suppose that the associated operator is transversal to
the qubit i’s detuning operator (under this assumption, one can
always rotate the qubit basis such that the coupling to the res-
onator is through σ (i)

x ). A possible qubit i energy gap induced
by a term in Eq. (1) transversal to σ (i)

z was neglected under
the assumption that it is much smaller than the corresponding
gi’s, which is rather justified for several superconducting qubit
systems [44]. The full Hamiltonian for the cQED architecture
is given by

H (t ) = Hs(t ) + Hb + Hsb, (2)

Hs(t ) = �a†a +
2∑

i=1

Hi(t ), (3)

where � is the resonator mode frequency. The term Hb

in Eq. (2) represents the bath Hamiltonian, modeled as a
continuum of harmonic oscillators in thermal equilibrium
at temperature Tb, with ohmic spectral density J (ω) = κω,
where κ is a constant (along this work we take the Boltz-
mann’s constant k = 1 and also h̄ = 1). The term Hsb stands
for the interaction between the system and the thermal bath,
which in this work we suppose is through the operator (a +
a†) and of strength λ. The explicit forms of Hb and Hsb are
given in Appendix A.

The driving required for the Bell-state generation protocol
depends on the relative sign of the couplings gi. We suppose
that the couplings are similar in magnitude, but their relative
sign could be either equal or opposite, corresponding to cou-
plings to even or odd modes of the resonator, respectively.
In the following without loss of generality we will consider
couplings with the same sign and the drivings in detuning

chosen as

ε(t ) ≡ ε1(t ) = ε2(t ) = A cos(ωt ), (4)

with A the amplitude and ω the frequency of the driving. For
the case of opposite coupling signs, the driving should be
chosen to be ε1(t ) = −ε2(t ). It can be shown that both cases
are related by a local unitary transformation H → σ (2)

y Hσ (2)
y ,

which keeps the entanglement generation dynamics invariant.
As we will discuss in detail in Sec. IV, to stimulate the LZS

resonances necessary for this Bell-state generation protocol
we require that 0 < |δg| � g1g2/�, with δg ≡ g1 − g2. As
the relevant involved transitions occur in a timescale δ−1

g , the
smaller δg, the longer it will take to reach the stationary Bell
state.

To solve numerically the dynamics in the purely unitary
case [considering only Hs(t ) in Eq. (2)], we diagonalize
the evolution operator over a period of the driving using a
fourth-order Trotter-Suzuki expansion. In this way we ob-
tain the Floquet states and the associated quasienergies [45].
To study the open dynamics, we evolved the system’s den-
sity operator using the Floquet-Born-Markov (FBM) master
equation [41,46,47] within a moderate rotating wave ap-
proximation (RWA), as is detailed in Appendix B. For the
numerical simulations we truncate the Hilbert space to a finite
number of photon levels. We found that retaining the first five
photon levels was sufficient to attain convergence.

III. UNITARY DYNAMICS

In this section we focus on the unitary dynamics described
by the Hamiltonian Hs(t ) defined in Eq. (3). As the system is
driven through ε(t ) it is relevant to study the energy spectrum
of Hs parametrized as a function of ε, shown in Fig. 2.

For the following analysis, it will be useful to define the
set of Bell states of the two-qubit system: |	±〉 ≡ 1√

2
(|↑↑〉 ±

|↓↓〉) and |
±〉 ≡ 1√
2
(|↑↓〉 ± |↓↑〉), where σz |↑〉 = |↑〉, and

σz |↓〉 = − |↓〉. The Bell states are maximally entangled and
form a basis for the two-qubit Hilbert space.

The structure of the spectrum of Fig. 2 away from all
avoided crossings (AC) is rather simple, the energies and
eigenstates satisfy

Hs(ε) |N ↑↑〉 ≈ (N� + ε) |N ↑↑〉 , (5)

Hs(ε) |N
±〉 ≈ N� |N
±〉 , (6)

Hs(ε) |N ↓↓〉 ≈ (N� − ε) |N ↓↓〉 , (7)

with |N〉 the state of the resonator with N photons.
The aim is to identify the AC that are reached by the

amplitude A of the driving since, in this case, the nonperturba-
tive LZS mechanism [38,39,44,48] is triggered. The relevant
avoided crossings (AC) are shown in Fig. 2 and labeled by
an integer number N and a ± sign to identify an AC located
at ε = ±�, respectively. The N± AC involves the four states
|(N ∓ 1) ↑↑)〉, |N
+〉, |N
−〉, and |(N ± 1) ↓↓〉. In this AC
the levels |(N ∓ 1) ↑↑)〉, |N
+〉, and |(N ± 1) ↓↓〉 are mixed
with each other by an energy of the order of

√
N + 1gi, while

the |N
−〉 is mixed with a superposition of |(N ∓ 1) ↑↑〉 and
|(N ± 1) ↓↓〉 by an energy of the order of

√
N + 1δg, giving
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FIG. 2. Energy spectrum of Hs [Eq. (3)] parametrized a function of ε/�, for g1 = 0.05� and g2 = 0.0485�. AC are located at integer and
half-integer values of ε/�. Those at ε = ±�, labeled as N± are of first order in gi and δg while all others are of second and higher order in gi

and δg. A zoomed-in view of 1+ and 2+ AC is shown, such that the gap of order δg can be seen. The system is driven by a harmonic driving
ε(t ) = A cos(ωt ). Integer values of ε/� are marked with dotted lines. The asymptotic eigenstates away from AC are shown. See text for more
details.

rise to smaller gaps, examples of which can be seen in the
blown up right panel of Fig. 2 for the 1+ and 2+ AC (see
Appendix C for analytic details on the derivation of these
mixing strengths).

The other AC in the energy spectrum are of quadratic or
higher order in gi and δg and are not relevant for the LZS
transitions studied in this paper.

It can be readily seen from Eq. (3) that for g1 = g2

(δg = 0), the singlet states |N
−〉 are exact eigenstates of
Hs(ε) with energy N�. Since they are also eigenstates of the
driving operator [∝ (σ (1)

z + σ (2)
z )], transitions involving the

states |N
−〉 are forbidden for δg = 0. However, when δg = 0,
LZS transitions involving these levels become possible.

In what follows we consider explicitly the LZS interferom-
etry for transitions involving the |0
−〉 and |1
−〉 states and
the passage through the N± AC by means of the harmonic
driving of ε(t ). These transitions will be relevant for the Bell-
state generation mechanism once dissipation is included.

A. Transitions to |1�−〉
We begin by studying the transition probability for

|0 ↑↑〉 → |1
−〉 induced by the periodic driving. We are
interested in this transition because, as we will discuss in
Sec. IV, |1
−〉 will decay into |0
−〉 after including dissipa-
tion, which is a maximally entangled state that is stable against
photon loss.

We recall that in two-level LZS interferometry, when a
quantum system is driven through an AC of magnitude �̃

by an harmonic signal of amplitude A and frequency ω, the
n-resonance condition in the fast driving regime (i.e., Aω �
�̃2) is �̄E = nω, where �̄E is the average energy difference
between the two involved states over a period of the driv-
ing [27,38,49–52]. At the resonance condition the transfer of
population between both states involved in the AC is maxi-
mum. However, as the LZS resonance patterns have a width
∝ �̃ Jn(A/ω), with Jn the nth Bessel function [48], at the
zeros of Jn the transition probability vanishes giving rise to a
phenomenon known as coherent destruction of tunneling [53].

In the present case and considering only the two levels
|0 ↑↑〉 and |1
−〉, the average energy difference is given by �

(due to the symmetric driving this is the energy difference at
ε = 0) while the magnitude of the gap at the 1+ AC between
these two states is proportional to δg, as we already discussed.
Therefore, LZS resonance patterns centered around �/ω = n
and of width ∝ δgJn(A/ω) [48] are expected for the transition
|0 ↑↑〉 → |1
−〉 and indeed are observed, as is shown in
Fig. 3.

In Fig. 4(a) the detailed structure of the LZS interferometry
pattern associated to the resonance �/ω = 2 as a function of
�/ω and A/ω is shown. A modulation of the resonance with
J2(A/ω) is also observed as a function of A/ω, consistently
with the aforementioned description (a similar behavior is
obtained for other resonances at integer values of n). However,
the curvature of the resonance observed as a function of A/ω is
not captured under the assumption of describing this transition
solely as a two-level transition. We numerically find that the
curvature is an effect of order g1g2/�, as we plot in Fig. 5(a),

052413-3



GALLARDO, DOMÍNGUEZ, AND SÁNCHEZ PHYSICAL REVIEW A 105, 052413 (2022)

FIG. 3. Unitary time-averaged transition probabilities calculated
numerically for the transition |0 ↑↑〉 → |1
−〉. Resonances are seen
for integer values of �/ω. The qubit-resonator coupling strengths
used are g1 = 0.1ω and g2 = 0.097ω and the amplitude of the driv-
ing is A = �.

where the transition probability as a function of �/ω and g/ω
with g ≡ (g1 − g2)/2 is shown.

In what follows we will derive an effective two-qubit
Hamiltonian from which the structure of the resonances for
the |0 ↑↑〉 → |1
−〉 transition, including their curvature as a
function of A/ω, can be obtained.

As was explained earlier in this section, the initial state
|0 ↑↑〉 is strongly mixed with the states |1
+〉 and |2 ↓↓〉
at the 2+ AC. However, the transition from |0 ↑↑〉 to |1
+〉
is considerably favored over the transition from |0 ↑↑〉 to
|2 ↓↓〉 (as explained at the end of Appendix C), such that we
can neglect the population transfer to the later state. Under
this approximation, the |0 ↑↑〉 state will transition mostly to
|1
+〉 state and in a lesser degree, via the AC of order δg,
to |1
−〉. In addition, the |1
+〉 state will be strongly mixed
with the |0 ↓↓〉 state in the 2− AC.

Therefore, from the previous argument, we expect that, for
the transition |0 ↑↑〉 → |1
−〉, the most populated states will
be in the subspace S1 spanned by {|0 ↑↑〉 , |0 ↓↓〉 , |1
±〉}.
Projecting the Hamiltonian Eq. (3) into S1, the state of the
resonator becomes uniquely determined by the state of the
qubits (within S1). Thus one can write the terms involving
resonator operators in Eq. (3) in terms of qubit operators

a†a|S1 = |1
+〉 〈1
+| + |1
−〉 〈1
−|
= 1

2

(
1 − σ (1)

z σ (2)
z

)
, (8)

and

1
2 (a + a†)

(
σ (1)

x ± σ (2)
x

)|S1 = |0	∓〉 〈1
±| + |1
±〉 〈0	∓|
= 1

2

(
σ (1)

x ± σ (2)
x

)
, (9)

where now σ
(i)
j are understood as 4 × 4 matrices and |S1

indicates projection into S1. Replacing the above expres-
sions into Eq. (3), one arrives at the effective time-dependent
Hamiltonian, valid for studying the transition |0 ↑↑〉 →

|1
−〉:

Hl (t ) =
∑

i

(ε(t )

2
σ (i)

z + giσ
(i)
x

)
− �

2
σ (1)

z σ (2)
z + �

2
. (10)

Notice that Eq. (10) is the Hamiltonian of two driven qubits
coupled longitudinally studied in Ref. [54]. In the present
case, � plays the role of the interaction strength between the
qubits and 2gi the role of the intrinsic qubit gaps.

In Fig. 4(b) the time-averaged transition probability
|0 ↑↑〉 → |1
−〉 computed numerically using Eq. (10) is dis-
played. The agreement with Fig. 4(a), obtained from the full
Hamiltonian Eq. (3), is excellent, thus confirming the assump-
tions that led to the effective Hamiltonian of Eq. (10).

B. Transitions out of |0�−〉
We now shift our attention to the time-averaged probabili-

ties for the |0
−〉 → (other states) transition, which is defined
as the sum of all transition probabilities from the initial state
|0
−〉 to any other states orthogonal to it. We are interested
in this transition because it is an indicator of the stability of
|0
−〉 against unitary transitions induced by the driving that
might take the system out of this state. Figure 4(c) shows nu-
merical results for the corresponding transition probabilities
using the full Hamiltonian Eq. (3).

The LZS resonance condition for both transitions,
|0
−〉 → |1 ↑↑〉 and |0
−〉 → |1 ↓↓〉, is again �/ω = n for
some integer n. Resonances around these values of �/ω of
width ∝ δgJn(A/ω) are expected and observed in Fig. 4(d),
in analogy to the results of Sec. III A. The effect of g on the
curvature of the resonances out of |0
−〉 is again of order
g1g2/�, but of opposite sign to that of the transitions to |1
−〉,
as can be seen in Fig. 5(b). This implies that there are values
of the driving parameters, A and ω, for which the transitions to
|1
−〉 are stimulated but those out of |0
−〉 are not. This is the
key point that will be made use of to generate Bell states once
dissipation is included, as is explained in the next section.

We will now derive another effective two-qubit Hamilto-
nian for studying the |0
−〉 → (other states) transition. The
initial state |0
−〉 is mixed with the |1 ↑↑〉 and |1 ↓↓〉 states
in the 1− and 1+ AC, respectively. Again neglecting tran-
sitions between |(N ∓ 1) ↑↑〉 and |(N ± 1) ↓↓〉 in the N±
AC (see Appendix C), the population in these two states will
transition to |0
+〉 in the 1± AC and to |2
+〉 in the 3± AC.

Thus in the present case, and unlike the analysis of
Sec. III A, five linearly independent states are, in principle,
involved in the transition under study. However, since the
3± crossings that populate |2
+〉 involve a greater mixing
between states than the 1± crossings, that populate |0
+〉 (be-
cause the gap magnitude increases with N , as can be seen in
Fig. 2 and is shown in Appendix C), we neglect the population
transferred to |0
+〉. Therefore, under these approxima-
tions, we expect that the most populated states will be in
the subspace S2 spanned by {|0
±〉 , |1 ↑↑〉 , |1 ↓↓〉 , |2
+〉}.
Projecting the operators of the Hamiltonian Eq. (3) into S2,
one obtains

a†a|S2 ≈ |1	+〉 〈1	+| + |1	−〉 〈1	−| + 2 |2
+〉 〈2
+|
= 1 + 1

2

(
σ (1)

x σ (2)
x + σ (1)

y σ (2)
y

)
, (11)
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FIG. 4. Upper panel: Unitary time-averaged transition probabilities calculated numerically with the Hamiltonian Eq. (3) for the transitions
(a) |0 ↑↑〉 → |1
−〉 and (c) |0
−〉 → (other states), as a function of A/ω and �/ω. The patterns show resonances at �/ω = n ∈ N with width
of order δg modulated by the nth Bessel function Jn(A/ω). Lower panel: Transition probabilities for (b) |0 ↑↑〉 → |1
−〉 and (d) |0
−〉 →
(other states), calculated using the effective two-qubit Hamiltonians Eqs. (10) and (13), respectively. The line �/ω = 2 and the lines for which
A/ω equals the first two zeros of the second Bessel function are indicated with gray dotted lines. In all cases the qubit-resonator coupling
strengths used are g1 = 0.1ω and g2 = 0.097ω.

1
2 (a + a†)

(
σ (1)

x ± σ (2)
x

)|S2 ≈ |0
±〉 〈1	∓| + |1	∓〉 〈0
±|
= 1

2

(
σ (1)

x ± σ (2)
x

)
, (12)

and we arrive at the effective Hamiltonian, valid for studying
the transition |0
−〉 →(other states)

Htr(t ) =
∑

i

(
ε(t )

2
σ (i)

z + giσ
(i)
x

)

+ �

2

(
σ (1)

x σ (2)
x + σ (1)

y σ (2)
y

) + �, (13)

which is the Hamiltonian of two transversally coupled and
symmetrically driven qubits, with � playing the role of the
interaction strength and 2gi the role of the intrinsic qubit
gaps [54].

Numerical results for the transition probability |0
−〉 →
(other states) computed from Eq. (13) are shown in Fig. 4(d).
Except for the additional thinner resonances around integer
�/ω, which correspond to resonances to states outside S2, the
agreement with Fig. 4(c), obtained using the full Hamiltonian
Eq. (3) is remarkable.

IV. DISSIPATION-INDUCED BELL-STATE GENERATION

In the previous section we concluded that, starting from
the initial state |0 ↑↑〉, there are regions in the A/ω − �/ω

plane where a unitary resonance to |1
−〉 is stimulated but
no unitary resonance involving |0
−〉 is so. When the driving
amplitude A and frequency ω are chosen as to select one of
these points, the process

|0 ↑↑〉 Hs (t )→ |1
−〉 PL→ |0
−〉 (14)

can occur once dissipation is included, where the first transi-
tion is unitary and induced by the driven Hamiltonian Hs(t ),
and the second one is the loss of a photon to the environment.
The same process can also take place when starting from
|0 ↓↓〉 or |0
+〉 since they show similar unitary resonances
for |0 ↓↓〉 → |1
−〉 and |0
+〉 → |1
−〉.

Since the open system dynamics is linear due to the weak
coupling to the environment (see Appendix B for details), one
can understand the evolution of the system’s density matrix
as the independent evolution of its ensemble members which,
for Tb � �, will eventually reach one of the states with zero
photons. If the reached states are different from |0
−〉, they
will go through the process defined in Eq. (14) ending up at
least partially in |0
−〉. As all transitions involving |0
−〉
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FIG. 5. Unitary time-averaged transition probabilities for the
transitions (a) |0 ↑↑〉 → |1
−〉 and (b) |0
−〉 →(other states)
calculated using the effective Hamiltonians Eqs. (10) and (13), re-
spectively, as a function of g/ω and �/ω, for δg = 0.003ω and
A = �. For small g, an approximately quadratic dependence of the
resonance displacement as a function of g is observed, with opposite
curvature for both transitions.

are out of resonance, gradually the population of the system’s
density matrix accumulates in this state.

Figure 6(a) shows numerical results for the time averaged
population of |0
−〉 in the stationary state as a function of
A/ω and �/ω obtained after solving numerically the FBM
master equation for the system’s density matrix ρ (see Ap-
pendix B for details).

The stationary state is found to be unique and T periodic
in time. The behavior of the stationary population closely
follows what is predicted by the previous argument: pop-
ulation maxima very close to 1 are observed for points in
the parameter space along the unitary resonance patterns of
|0 ↑↑〉 → |1
−〉 and population minima, very close to 0, are
obtained for points along the unitary |0
−〉 → (other states)
resonances.

To quantify the degree of entanglement of the qubits, we
use the concurrence as a measure [55],

C[ρq] = max{0, r3 − r2 − r1 − r0}, (15)

FIG. 6. Time-averaged (a) population of |0
−〉 and (b) concur-
rence of the steady state of the driven dissipative system of two qubits
coupled to a resonator, obtained after solving numerically the FBM
master equation associated to the Hamiltonian defined in Eq. (2).
Asymmetrical resonances are observed at integer values of �/ω. The
coupling strengths are the same as in Fig. 4, with bath parameters
κλ2 = 0.0001 and Tb = 0.001ω. The line �/ω = 2 and the lines for
which A/ω equals the first two zeros of the second Bessel function
are indicated with gray dotted lines.

defined in terms of the qubits’ density matrix ρq = Trr(ρ),
where the trace operation is over the states of the resonator
and ri are the real-valued eigenvalues of

√√
ρqσ

(1)
y σ

(2)
y ρ∗

qσ
(1)
y σ

(2)
y

√
ρq, (16)

sorted in ascending order, where ρ∗
q is the complex conjugate

of ρq and the conjugation must be done in a separable basis.
The concurrence takes a value of 0 for a separable state, a
value of 1 for a maximally entangled state, and values in
between for partially entangled states.

Figure 6(b) shows the time-averaged concurrence of the
stationary state. It is observed that the maxima of the con-
currence that are close to 1 are achieved only when the state
|0
−〉 is populated, indicating that this is the only maximally
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entangled state that is generated. It is also noteworthy that, for
driving parameters lying outside the mentioned resonances,
which constitute the vast majority of the points in the A/ω −
�/ω plane (including the case of no driving at all A = 0), the
stationary state is either separable or almost separable.

As we already mentioned, to attain |0
−〉 〈0
−| as the
stationary state of the system, a necessary condition is to
find points in the plane A/ω − �/ω where the resonance
conditions for the transitions to |1
−〉 and out of |0
−〉
do not overlap. This can only be fulfilled if the maximum
resonance deviation from the condition �/ω = n (of order
g1g2/�) is much greater than the resonance width (of order
δg), and this the source of the requirement δg � g1g2/�. The
optimal entanglement generation (maximal area and intensity
of concurrence patterns) is achieved for amplitudes A ≈ �

and frequencies ω such that � is below an integer multiple
of ω by a frequency of the order of g1g2/�, i.e. A = � =
nω − O(g1g2/�).

Finally, Fig. 7 shows the temporal dynamics of relevant
populations of the system’s density matrix at a point of high
entanglement generation A = � = 1.983ω, for the system
starting in the state ρ0 = |0 ↑↑〉 〈0 ↑↑|. It is seen that, even
though the dynamics of the populations is complicated, a
clear resonance to the state |0
+〉 is stimulated in a timescale
of the order of δ−1

g , which gradually decays into |0
−〉 via
photon loss to the environment. Population accumulates in
this state, and given enough time the system ends up essen-
tially at ρ∞ = |0
−〉 〈0
−|. Notice that the fast temporal
oscillations observed in the populations of the |0 ↑↑〉 and
|0 ↑↑〉 states are related to the effective Rabi frequency for the
transitions between the involved states, which, as we already
stressed, is proportional to gJ2(A/ω) (for this analysis we take
g1 = g2 = g without loss of generality). Being g ∼ 0.1ω, the
period of the fast oscillations results ∝ 1/g ∼ 10T . As the
scale of the temporal axis goes to 1000 T hundreds of oscil-
lations are observed. On the other hand, the entangled state
|0
+〉 is stimulated in a timescale of order δ−1

g ∼ 330T , as
can be observed in Fig. 7.

We thus conclude that by applying a driving with appro-
priate amplitude and frequency it is possible to populate the
maximally entangled state |0
−〉 independently of the initial
state of the system.

V. CONCLUSION

In this work we presented an entanglement generation
protocol for a system of two qubits coupled through a
resonator. A maximally entangled steady state is achieved
when a symmetric ac driving, with appropriate frequency and
large amplitudes, is applied over both qubits. The optimal
steady-state entanglement generation is attained for driving
amplitudes A ≈ � and frequencies such that �/ω is slightly
below an integer number.

The areas of entanglement generation in the A/ω-�/ω

plane are associated to resonant unitary transitions into |1
−〉
and out of |0
−〉. If the driving is such that transitions to
|1
−〉 are in resonance, but transitions out of |0
−〉 are not,
once dissipation is included the system will accumulate pop-
ulation in |0
−〉 via photon loss from |1
−〉. All the relevant
features of the unitary resonance patterns were described in

FIG. 7. Temporal dependence of the system’s density matrix
populations, starting from the initial state |0 ↑↑〉 〈0 ↑↑|, for up to
(a) 1000 (linear scale) and (b) 106 (log scale) driving periods, dis-
sipation included. The driving parameters are A = � = 1.983ω and
the rest of the parameters are the same as in Fig. 6. The populations of
|0 ↑↑〉, |0 ↓↓〉, |0
−〉, and |1
−〉 are shown. It is seen that for short
times a resonance between |0 ↑↑〉, |0 ↓↓〉, and |1
−〉 is stimulated.
For later times and via photon loss population gradually accumulates
in |0
−〉.

terms of effective Hamiltonians for two driven qubits. This, in
addition to drastically reducing the original dimension of the
Hilbert space, allows the straightforward analysis of the reso-
nance patterns, as the LZS interferometry for the two-qubit
systems described by the effective Hamiltonians, Eqs. (10)
and (13), was already studied in Refs. [19,54].

The main advantage of the proposed protocol is that it
enables the generation of steady-state entanglement for a
broader range of frequencies and amplitudes, compared to the
traditional schemes for entanglement generation that make use
of weak and resonant driving.

The fact that, due to dissipation, the steady state is inde-
pendent of the initial state of the system [1,2], guarantees that
the obtained entangled state is protected from environmental
effects for as long as the driving is applied.

Moreover, the present proposal allows entangling dis-
tant and strongly driven qubits which are, for example, a
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microwave waveguide apart. Therefore, it is expected that our
scheme could add a robust means to realize entanglement pro-
tocols in setups extensively used nowadays in cQED [23,24].
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APPENDIX A: MODEL OF THE ENVIRONMENT

We model the bath and its interaction with the system using
the Caldeira-Leggett model [56]

Hb =
∫ ∞

0
dωωb†

ωbω, (A1)

Hsb =λA
∫ ∞

0
dω

√
J (ω)(bω + b†

ω ) + Hrn, (A2)

Hrn =λ2A2
∫ ∞

0
dω

J (ω)

ω
, (A3)

where bω and b†
ω are the creation and destruction operators

of the harmonic oscillator continuum, A is a unitless system
operator, λ is a coupling strength, and Hrn is a renormalization
term to cancel all Lamb shifts induced on the system by the
thermal bath.

For the system under study we chose A = a + a† and
J (ω) = κω, with κ a constant with units of energy−2. Usu-
ally, it is necessary to put a cutoff frequency in the bath
spectral density, but for our purposes, and since we already
canceled out the Lamb shifts, it is permissible to take this
cutoff frequency as infinity (greater than all energy scales of
the problem) as we have implicitly done by the choice of
J (ω).

APPENDIX B: FLOQUET-BORN-MARKOV
MASTER EQUATION

Floquet theory is widely used to study time periodic uni-
tary quantum systems [45]. It shows that for a quantum
system with a T -periodic Hamiltonian H (t ), all solutions are
a linear combination of a single basis of states of the form
e−iεαt |uα (t )〉. Here, |uα (t )〉 is T periodic and is called a Flo-
quet state and εα is called its corresponding quasienergy. To
find the Floquet states and their quasienergies it is customary
to diagonalize the evolution operator U (t, t0) over a period
of the driving since the Floquet states satisfy the eigenvalue
equation

U (t + T, t ) |uα (t )〉 = e−iεαT |uα (t )〉 . (B1)

The Floquet-Born-Markov master equation allows mod-
eling dissipative processes in periodically driven sys-
tems [40,46,47,57,58]. Assuming a sufficiently weak coupling
to the environment, such that the thermal bath autocorrelation
time τc = h/kTb is much smaller than the timescale for relax-
ation [57,58], a linear Markovian differential equation for the

time evolution of the system’s density matrix is obtained:

∂tραβ (t ) = −i(εα − εβ )ραβ (t ) +
∑
α′β ′

Lαβα′β ′ (t )ρα′β ′ (t ),

(B2)
where ραβ (t ) = 〈uα (t )| ρ(t ) |uβ (t )〉 are the components of the
system’s density matrix in a Floquet basis. The first term in
Eq. (B2) corresponds to the unitary evolution of the system,
while the second one takes into account dissipative effects.
The transition rates Lαβα′β ′ (t ) are T periodic and can be
Fourier-expanded as

Lαβα′β ′ (t ) =
∑

q

Lq
αβα′β ′e−iqωt , (B3)

with q ∈ Z, and where the coefficients Lq
αβα′β ′ are given by

Lq
αβα′β ′ = λ2

∑
k

[
gk

αα′Ak
αα′A

−k−q
β ′β + gk

ββ ′A
k−q
αα′ A−k

β ′β

−
∑

η

(
δββ ′gk

ηα′A−k−q
αη Ak

ηα′ + δαα′gk
ηβ ′A−k

β ′ηAk−q
ηβ

)]
.

(B4)

In the last expression, the index η runs over the indices of
the Floquet basis, δαβ is the Kronecker delta, and we define

Aq
αβ =

∑
k

〈
uk

α

∣∣A∣∣uq+k
β

〉
(B5)

and

gk
αβ = g(εα − εβ + kω). (B6)

In Eq .(B5), |uk
α〉 is the kth Fourier component of the Floquet

state |uα (t )〉. In Eq. (B6), g(ω′) is the Fourier-transformed cor-
relation function of the thermal bath, which can be expressed
in terms of its spectral density and the Bose occupation num-
ber nTb (ω′) = 1/(eω′/Tb − 1) as

g(ω′) =
{J (ω′)nTb (ω′) ⇐ ω′ > 0,

−J (−ω′)nTb (ω′) ⇐ ω′ < 0,
(B7)

with the value of g at ω′ = 0 obtained by taking the appropri-
ate limit.

For sufficiently weak coupling to the environment, such
that the maximum rate of relaxation or decoherence is much
smaller than the driving frequency, a (moderate) RWA is jus-
tified in the transition rates, Eq. (B3). This sets the terms with
q = 0 effectively to zero, yielding the simplified expression

Lαβα′β ′ ≈ Rαβα′ββ ′ + R∗
βαβ ′α′ −

∑
η

(δββ ′Rηηα′α + δαα′R∗
ηηβ ′β ),

(B8)
in terms of the quantities

Rαβα′β ′ =
∑

k

gk
αα′Ak

αα′A−k
ββ ′ . (B9)

With this approximation, Eq. (B2) no longer depends explic-
itly on time in the Floquet basis.

For the cases studied in this work, it was found that the
operator �αβα′β ′ = −i(εα − εβ )δαα′δββ ′ + Lαβα′β ′ can be nu-
merically diagonalized in terms of left and right eigenvectors
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which are density matrices. That is,

�ρR
μ = ρL

μ� = ζμρμ, (B10)

with ζμ ∈ C and 1
N Tr(ρL

μρR
ν ) = δμν , where N is the dimension

of the system’s Hilbert space. Once these eigenvectors and
eigenvalues are obtained, density matrices can be evolved
readily by projecting on this eigensystem

ρ(t ) =
∑

μ

cμeζμ(t−t0 )ρR
μ, cμ = 1

N
Tr[ρL

μρ(t0)]. (B11)

The real parts of ζμ (which are always negative) are the
decoherence and relaxation rates. In particular, the maximum
relaxation rate can be defined as

γM ≡ maxμ|Re(ζμ)|. (B12)

The regime of validity of the Floquet-Born-Markov equa-
tion [57,58] in terms of γM turns out to be

γM < Tb. (B13)

For every open system simulation performed in this work we
calculated numerically the relaxation rate γM and checked the
validity of the condition of Eq. (B13).

The stationary state ρ∞, which for all cases studied in this
work can be found and is unique, is defined (in the Floquet
basis) as the state ρR

μ with ζμ = 0. It is constant in the Floquet
basis and therefore T periodic in the original system basis.

The numerical procedure used here to solve the Floquet-
Born-Markov equation and to obtain ρ(t ) and ρ∞ was
described in Ref. [41]. To calculate time-averaged functions
f (ρ) of the system’s density matrix in the stationary state,
such as populations or concurrence, we make use of the pe-
riodicity of ρ∞ and numerically integrate

f̄ = 1

T

∫ T

0
dt f [ρ∞(t )]. (B14)

APPENDIX C: N± AVOIDED CROSSINGS
AND ASSOCIATED PARENT HAMILTONIAN

In this section we will derive a Hamiltonian that describes
well the N± AC located at ε = ±� (see Fig. 2). For concrete-
ness we will focus on the AC N+ at ε = +� and the treatment
for the ε = −� case is similar. Starting from the Hamiltonian
of Eq. (3), we can rewrite the interaction term between the
qubits and the resonator in terms of the qubit ladder operators
σ

(i)
± = 1

2 (σ (i)
x ± iσ (i)

y ), obtaining

H = �a†a +
∑

i

(
ε

2
σ (i)

z

+ giaσ
(i)
+ + giaσ

(i)
− + gia

†σ
(i)
+ + gia

†σ
(i)
−

)
. (C1)

Assuming |ε − �| � �, the terms proportional to σ
(i)
+ a

and σ
(i)
− a† approximately conserve the energy of the uncou-

pled system, while the terms proportional to σ
(i)
+ a† and σ

(i)
− a

do not. For small coupling strengths gi � � it is customary
to apply a RWA in which the terms that do not conserve the
energy of the uncoupled system are set to zero.

With this approximation applied, the Hamiltonian Eq. (C1)
becomes block diagonal, where each block has a fixed to-
tal excitation number N ′ = a†a + n1 + n2, where ni = 1

2 (1 +
σ (i)

z ) is the qubit i excitation number. Notice that N ′ = N + 1,
with N corresponding to the integer associated to the N± AC.
Restricting ourselves to the block with N ′ total excitations, we
can write

a†a = N ′ − n1 − n2

= N ′ − 1

2

(
1 + σ (1)

z

) − 1

2

(
1 + σ (2)

z

)

= −σ (1)
z + σ (2)

z

2
+ N ′ − 1, (C2)

and

(a + a†)σ (1)
x

RWA≈ σ
(1)
+ a + σ

(1)
− a† =

√
N ′ − n2σ

(1)
x , (C3)

for the coupling term between the qubit 1 and the resonator.
Now we use that n2 can take only the values 0 and 1 and write

(a + a†)σ (1)
x

RWA≈ ((1 − n2)
√

N ′ + n2

√
N ′ − 1)σ (1)

x

= 1

2

((
1 − σ (2)

z

)√
N ′ + (

1 + σ (2)
z

)√
N ′ − 1

)
σ (1)

x

=
√

N ′ + √
N ′ − 1

2
σ (1)

x −
√

N ′ − √
N ′ − 1

2
σ (1)

x σ (2)
z ,

=
√

N ′+σ (1)
x −

√
N ′−σ (1)

x σ (2)
z . (C4)

where we define
√

N ′± = 1
2 (

√
N ′ ± √

N ′ − 1). Performing
the same procedure for the qubit 2 and then replacing
Eqs. (C2) and (C4) in Eq. (C1), we arrive at an effective
Hamiltonian for the block with N ′ � 1 excitations

HN ′ =
2∑

i=1

(
ε − �

2
σ (i)

z + gi

√
N ′+σ (i)

x

)

−
√

N ′−(g1σ
(1)
x σ (2)

z + g2σ
(1)
z σ (2)

x ) + (N ′ − 1)� (C5)

that can be cast in terms of g ≡ (g1 + g2)/2 and δg as

HN ′ = ε − �

2

∑
σ i

z

+ g
(√

N ′+
(
σ 1

x + σ 2
x

) −
√

N ′−
(
σ 1

x σ 2
z + σ 1

z σ 2
x

))

+ δg

2

(√
N ′+

(
σ 1

x − σ 2
x

) −
√

N ′−
(
σ 1

x σ 2
z − σ 1

z σ 2
x

))
.

(C6)

In the above equation, the operator multiplied by g has
|N
−〉 as an eigenstate with zero eigenvalue as can be
readily verified, and therefore will only generate transitions
between the states |(N ∓ 1) ↑↑〉, |N
+〉, and |(N ± 1) ↓↓〉.
For N ′ > 1, the dominant term in this operator goes as√

N ′g = √
N + 1g. On the other hand, the operator propor-

tional to δg induces transitions between |N
−〉 and the other
states, with a magnitude that goes for N ′ > 1 approximately as√

N ′δg = √
N + 1δg. When ε ≈ �, these terms will dominate

in the Hamiltonian HN ′ , generating AC with energy gaps of
the aforementioned magnitudes. After including driving, the
LZS transitions will be ruled by these AC.
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Moreover, the term proportional to g in Eq. (C6) is
controlled by the (σ 1

x + σ 2
x ) operator for N ′ > 1. This

operator, when acted on |(N ∓ 1) ↑↑〉 or |(N ± 1) ↓↓〉,
yields a state proportional to |N
+〉. This means that in
these AC the state |(N ± 1) ↓↓〉 is mixed with |N
+〉

more strongly than with |(N ∓ 1) ↑↑〉, and similarly for
the |(N ∓ 1) ↑↑〉 state. This justifies neglecting the tran-
sitions between |(N ∓ 1) ↑↑〉 and |(N ± 1) ↓↓〉 in the
N± AC to obtain the effective Hamiltonians derived in
Sec. III.
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