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Quark-nuclear hybrid equation of state for neutron stars under modern observational constraints
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We study a family of equations of state (EOS) for hybrid neutron star matter. The hybrid EOS are obtained
by a Maxwell construction of the first-order phase transition between a hadronic phase described by the
relativistic density-functional EOS of the “DD2” class with excluded volume effects and a deconfined quark
matter phase modeled by an instantaneous nonlocal version of the Nambu–Jona-Lasinio model in SU(2) f with
vector interactions and color superconductivity. The form factor in the nonlocal quark matter model is fitted
to lattice QCD results in the Coulomb gauge. Owing to strong coupling in the vector meson and diquark
channels, a coexistence phase of color superconductivity and chiral symmetry breaking occurs. Our results
show an approximately constant behavior for the squared speed of sound with values of 0.4–0.6 in the density
region relevant for neutron star interiors. To simultaneously fulfill the constraints from the Neutron Star Interior
Composition Explorer radius measurement for PSR J0740 + 6620 and tidal deformability from GW170817 it is
necessary to consider a μ-dependent bag pressure that mimics confinement.
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I. INTRODUCTION

With the advent of multimessenger observations of neu-
tron stars (NSs) due to the detection of the gravitational
wave signal from the inspiral phase of the binary NS merger
GW170817 [1,2], stringent new constraints for the equa-
tion of state (EOS) of NS matter appeared. The measured
low value of the tidal deformability � = 190+390

120 of NSs
at a mass of 1.4M� that was inferred from GW170817
[3] is a challenge for several stiff nuclear matter EOS
such as DD2 [4], a standard relativistic density functional
(RDF) EOS. On the other hand, soft nuclear EOS like APR
[5] or SLy4 [6], which were favorably advocated in the
GW170817 discovery paper [2], fail in matching the re-
cent constraint from the Neutron Star Interior Composition
Explorer (NICER)-X-ray Multi-Mirror (XMM) mass-radius
measurement on PSR J0740 + 6620 that requires a large ra-
dius R2.0 = 13.7+2.6

−1.5 km [7] (R2.0 = 12.39+1.30
−0.98 km [8] from

the Amsterdam team) at the mass (2.08 ± 0.07)M� [9]. Be-
sides this, these nuclear EOS have the caveat that they do not
include the appearance of the strangeness degree of freedom
due to the onset of hyperons that would occur at masses
≈1.5M�.

A successful description of the multimessenger phe-
nomenology of NSs including the recent constraints on R1.4

and R2.0 was given recently with hybrid stars based on the
constant speed of sound (CSS) model for quark matter. A few
examples can be found in Refs. [10–14]. Most of them choose
the value of the squared sound speed c2

s freely;, others vary

the onset of the deconfinement transition and c2
s so that a suf-

ficiently high maximum mass is obtained. Allowing values up
to the causality limit c2

s = 1, it is possible to reach maximum
masses up to 4M� [10,11]. Such ambiguity is not satisfactory.
Moreover, a justification for using the CSS model of the quark
matter EOS is highly desirable.

This is the main motivation for the present work. Following
up on initial indications that the EOS of a nonlocal chiral
quark model with an instantaneous, separable interaction po-
tential can be nicely described by a CSS model [15] and that
also a covariant formulation of such a nonlocal Nambu–Jona-
Lasinio (NJL)-type model is nicely fitted by a CSS model
[13], we investigate this relationship between modern NS
phenomenology and a microphysical approach formulated by
a chiral quark model Lagrangian.

In this work we present a hybrid EOS construction in order
to describe the transition from nuclear to quark matter (QM).
We start from a chiral QM model with instantaneous nonlocal
interactions in the scalar-pseudoscalar meson channel which
predicts a three-momentum dependence of the quark mass
compatible with Coulomb gauge lattice QCD (LQCD). In ad-
dition, the model has a scalar diquark interaction channel that
results in color superconductivity (2SC phase) and a repulsive
vector interaction to provide sufficient stiffness of the QM at
high densities in order to satisfactorily fulfill the observational
constraint of a high neutron star mass exceeding 2M�. As it
will be shown, this model produces an approximately con-
stant speed of sound at the energy densities relevant for NS
interiors.
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Similar approaches for astrophysical applications of hy-
brid EOS within the (local) NJL model have been presented
in the literature, considering either diquark interactions
[16–19], vector interactions [20–22], or both interaction cur-
rents [23–25]. The “instantaneous” nonlocal versions of the
NJL model including 2SC are presented, for instance, in
Refs. [26,27], and in Ref. [28] authors added vector inter-
actions. However, for nonlocal versions of the NJL model
with a covariant form factor, hybrid EOS considering vector
interactions were studied in Refs. [29,30], whereas the pres-
ence of diquarks and vector interactions were considered in
Refs. [31,32]. By comparing the M-R relations obtained in
these works, the effect of including the superconducting phase
is clearly seen: increasing the diquark coupling lowers onset
mass for quark deconfinement.

In Sec. II we describe the QM model and in Sec. III
the construction of the hybrid EOS with its application to
the modern neutron star phenomenological constraints on
the mass-radius diagram and the tidal deformability. Then in
Sec. IV we present the summary and conclusions. We added
an Appendix with complementary calculations for the QM
model, the Tolman-Oppenheimer-Volkoff (TOV) and tidal de-
formability equations.

II. INSTANTANEOUS NONLOCAL CHIRAL QUARK
MODEL WITH VECTOR INTERACTIONS AND 2SC

We describe QM within a nonlocal chiral quark model
which includes scalar and vector quark-antiquark interactions
and antitriplet scalar diquark interactions. The corresponding
effective Euclidean action in the case of two light flavors is
given by

SE =
∫

d4x
{
ψ̄ (x)(−i/∂ + mc)ψ (x) − GS

2
j f
S (x) j f

S (x)

− GD

2

[
ja
D(x)

]†
ja
D(x)+GV

2
jμV (x) jμV (x)

}
. (1)

Here mc is the current quark mass, which is assumed to be
equal for u and d quarks, whereas the currents jS,D(x) are
given by nonlocal operators based on a separable approxima-
tion to the effective one gluon exchange (OGE) model of QCD
[31,33]. In this work we use natural units with h̄ = c = kB =
1. The currents read

j f
S (x) =

∫
d4z g(z) ψ̄

(
x + z

2

)
� f ψ

(
x − z

2

)
,

ja
D(x) =

∫
d4z g(z) ψ̄C

(
x + z

2

)
iγ5τ2λa ψ

(
x − z

2

)
,

jμV (x) = ψ̄ (x) iγ μ ψ (x), (2)

where we defined ψC (x) = γ2γ4 ψ̄T (x) and � f = (1, iγ5�τ ),
while �τ and λa, with a = 2, 5, 7, stand for Pauli and Gell-
Mann matrices acting on flavor and color spaces, respectively.
The functions g(z) in Eqs. (2) are nonlocal “instantaneous”
form factors (3D-FF) characterizing the effective quark in-
teraction, which depends on the spatial components of the
momentum ( �p). Note that the vector current in Eq. (2) is
considered to be local. The reason will be given below. The
effective action in Eq. (1) might arise via Fierz rearrangement

from some underlying more fundamental interactions, and
is understood to be used—at the mean field level—in the
Hartree approximation. The vector mean field (MF) plays a
special role since it affects the chemical potential and thus
the baryon density which is a constraint and not a dynamic
degree of freedom. In general, the ratios of coupling constants
ηD = GD/GS , ηV = GV /GS would be determined by these
microscopic couplings; for example, OGE interactions in the
vacuum lead to ηD = 0.75 and ηV = 0.5. However, since the
precise derivation of effective couplings from QCD is not
known, there is a large theoretical uncertainty in these ratios.
Details of the values used in the present work will be given
below.

We proceed by considering a bosonized version of this
quark model, in which scalar, vector, and diquark fields are
introduced. Moreover, we expand these fields around their
respective MF values, keeping the lowest-order contribution
to the thermodynamic quantities. The only nonvanishing mean
field values in the scalar and vector sectors correspond to
isospin zero fields, σ̄ and ω̄, respectively, while in the diquark
sector, owing to the color symmetry, one can rotate in color
space to fix �̄5 = �̄7 = 0, �̄2 = �̄.

Now we consider the Euclidean action at both finite
temperature T and baryon chemical potential μB. The sim-
plicity of the 3D-FF is that the Matsubara summation can be
performed analytically. We introduce different chemical po-
tentials μ f c for each flavor and color. In principle one has six
different quark chemical potentials, corresponding to quark
flavors u and d and quark colors r, g, and b. However, there is
a residual color symmetry (say, between red and green) arising
from the direction of �̄ in color space. Moreover, if we require
the system to be in chemical equilibrium, it can be seen that
chemical potentials are not independent from each other. In
general, it is shown that all μ f c can be written in terms of three
independent quantities: the baryonic chemical potential μB, a
quark electric chemical potential μQq and a color chemical
potential μ8. The corresponding relations read

μur = μug = μB

3
+ 2

3
μQq + 1

3
μ8,

μdr = μdg = μB

3
− 1

3
μQq + 1

3
μ8,

μub = μB

3
+ 2

3
μQq − 2

3
μ8,

μdb = μB

3
− 1

3
μQq − 2

3
μ8. (3)

As we considered here the vector meson mean field ω̄, that
comes from the term with γ0 in the vector current in Eqs. (2),
the chemical potentials are shifted as

μ̃ f c = μ f c − ω̄. (4)

Since we considered in Eqs. (2) that the vector current is
local, the above shown renormalized chemical potentials only
depend on the mean field ω̄. If we considered a nonlocal
vector current, the term driven by ω̄ would have included the
form factor, giving as a result a chemical potential dependence
on the three-momentum.
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Following Ref. [34], it is convenient to define

μ̃c = μ̃uc + μ̃dc

2
(5)

and

δμ̃c = μ̃uc − μ̃dc

2
. (6)

Thus, the corresponding mean field grand canonical ther-
modynamic potential per unit volume can be written as

�MFA = − T

V
lnZMFA = σ̄ 2

2GS
+ �̄2

2GD
− ω̄2

2GV

− 2
∫

d3 �p
(2π )3

ξ ( �p), (7)

where

ξ ( �p) =
∑

κ,s=±
2

{
εκ

r /2 + T ln

[
1 + e− εκ

r +s δμ̃r

T

]}

+
∑

κ,s=±

{
Ēκ

b /2 + T ln

[
1 + e− Ēκ

b +s δμ̃b

T

]}
. (8)

In the above expression the ± means that one has to con-
sider two terms with each sign. We defined

ε±
r = Ē±

r

√
1 + [g( �p)�̄/Ē±

r ]2 (9)

for the gapped colors, where

Ē±
r = E ± μ̃r (10)

and

Ē±
b = E ± μ̃b (11)

are for the ungapped “blue” color of quarks, and the dispersion
relation is given by

E2 = �p 2 + M2( �p). (12)

Here, the momentum-dependent quark mass function is

M( �p) = mc + g( �p)σ̄ . (13)

The mean field values σ̄ , �̄ are obtained from the coupled
gap equations together with the constraint equation for ω̄:

∂�MFA

∂σ̄
= 0,

∂�MFA

∂�̄
= 0,

∂�MFA

∂ω̄
= 0. (14)

Then the corresponding EOS can be obtained by inserting
into Eq. (7) the mean field values σ̄ , ω̄, and �̄ which are
obtained by solving the gap equations of Eqs. (14), explicitly
shown in Eqs. (A2)–(A4), and using the regularization pre-
scription of Eq. (A5). Thus, the pressure of the quark matter
is given by

Pq = −�MFA
reg . (15)

Now, if we want to describe the behavior of quark matter
in the core of neutron stars, in addition to quark matter we
have to take into account the presence of electrons and muons.
Thus, treating leptons as a free relativistic Fermi gas, the total
pressure of the quark matter plus leptons is given by

P = Pq + Plep, (16)

where Plep reads

Plep = 2 T
∑
l=e,μ
s=±

∫
d3 �p

(2π )3
ln

[
1 + e− εl +s μe

T

]
, (17)

with εl =
√

�p2 + m2
l and the chemical potential μe = μμ.

In addition, it is necessary to take into account that quark
matter has to be in β equilibrium with electrons and muons
through the β-decay reactions

d → u + l + ν̄l , u + l → d + νl , (18)

for l = e, μ. Thus, assuming that (anti)neutrinos escape from
the stellar core, we have an additional relation between
fermion chemical potentials, namely,

μdc − μuc = −μQq = μl (19)

for c = r, g, b, μl = μe = μμ.
Finally, in the core of neutron stars we also require the

system to be electric and color charge neutral; hence the
number of independent chemical potentials reduces further.
Indeed, μl and μ8 get fixed by the condition that charge and
color number densities vanish,

nQtot = nQq −
∑

l=e,μ

nl

=
∑

c=r,g,b

(
2

3
nuc − 1

3
ndc

)
−

∑
l=e,μ

nl = 0,

n8 = 1√
3

∑
f =u,d

(n f r + n f g − 2n f b) = 0, (20)

where the expressions for the different number densities can
be found in Appendix A.

In summary, in the case of neutron star quark matter, for
each value of T and μB one can find the values of �̄, σ̄ , ω̄,
μl , and μ8 by solving Eqs. (14), supplemented by Eqs. (19)
and (20). This allows to obtain the quark matter EOS in the
thermodynamic region we are interested in.

The energy density can be written as

ε = −P + T s + G, (21)

where s = −∂�/∂T . Here, G is the Gibbs free energy, which
depends on conserved charges:

G =
∑

α

μα nα

= μB nB + μQ nQ + μ8 n8. (22)

By imposing electric charge and color charge neutrality, the
last two terms of the above equation are zero; then G can be
written as

G =
∑
f ,c

μ f ,c n f ,c +
∑

l=e,μ

μl nl , (23)

where nB = (1/3)(nu + nd ) with n f = ∑
c n f ,c and the chem-

ical potentials μ f ,c are defined in Eqs. (3).
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A. Zero temperature limit

In the present work we are interested in describing hybrid
EOS for cold compact stellar systems. Then, we will take the
zero limit for the temperature. The corresponding MF grand
canonical thermodynamic potential per unit volume can be
written as in Ref. [34]:

�MFA
T =0,reg = σ̄ 2

2GS
+ �̄2

2GD
− ω̄2

2GV

−
∫

d3 �p
(2π )3

ξT =0( �p) + �
lep
T =0, (24)

where

ξT =0( �p) =
∑

κ,s=±

{
2
[|εκ

r + s δμ̃r

∣∣ − E0
]

+ [|Eκ
b + s δμ̃b

∣∣ − E0
]}

. (25)

For leptons, the thermodynamic potential at vanishing tem-
perature is given by [31]

�
lep
T =0 = − 1

24π2

∑
l=e,μ

μ4
l F (ml/μl ), (26)

with

F (x) = 5
(

2
5 − x2)√1 − x2 + 3x4 ln[(1 +

√
1 − x2)x−1]

valid when μl > ml .
It should be noticed that, in general, there might be regions

for which there is more than one solution for each value of
μB. The stable solution corresponds to an overall minimum
of the thermodynamic potential, from which the expressions
for some other relevant quantities can be easily derived. The
quark and lepton densities are defined as

n f c = −∂�MFA
T =0,reg

∂μ f c
, nl = −∂�MFA

T =0,reg

∂μe
. (27)

The quark chiral condensate is defined as

〈ψ̄ψ〉 = ∂�MFA
T =0,reg

∂mc
. (28)

Finally, a magnitude which is important to determine the
characteristic of the chiral phase transition is the chiral sus-
ceptibility χ , and it can be calculated as

χ = −∂2�MFA
T =0,reg

∂m2
c

= −∂〈ψ̄ψ〉
∂mc

. (29)

B. Form factors and set of parameters

To fully specify the nonlocal NJL model under con-
sideration, one has to fix the model parameters as well
as the instantaneous form factor g( �p) that characterize the
nonlocal interactions between quarks in both channels qq̄
and qq. In this work we consider an exponential mo-
mentum dependence for the form factor in momentum
space,

g( �p) = exp
[ − �p 2/�2

0

]
.

FIG. 1. LQCD data from Ref. [39] and our fit for the normalized
quark effective mass.

This form, which is widely used, guarantees a fast ultraviolet
convergence of quark loop integrals. Notice that the energy
scale �0 has to be taken as an additional parameter of the
model. Other functional forms, e.g., Lorentzian [35–37] or
Woods-Saxon [27] form factors, have also been considered
in the literature, concluding that the form factor choice does
not have a considerable impact on the qualitative predictions
for the relevant thermodynamic quantities [26,31,33,34,38].

Given the form factor functions, it is possible to set
the model parameters to reproduce the observed meson
phenomenology.

First, we perform a fit to LQCD results (in the Coulomb
gauge) from Ref. [39] for the normalized quark effective
mass M( �p)/M(0). This fit, quoted in Fig. 1, has been car-
ried out considering results up to 3 GeV, obtaining �0 =
885.47 MeV.1

Finally, by requiring that the model reproduce the empir-
ical values of two physical quantities, chosen to be the pion
mass mπ = 138 MeV and the pion weak decay constant fπ =
92.4 MeV, one can determine the remaining model parameters
mc = 2.29 MeV and GS = 9.92 GeV−2.

C. Phase diagram and speed of sound

Let us start by studying the behavior of the mean field val-
ues for representative values of ηD and ηV as a function of the
baryonic chemical potential. Our results are shown in Fig. 2.
There, as functions of μB, we quote the MF values σ̄ , �̄, and
ω̄ and the lepton and color chemical potentials, μl and μ8,
for ηD = 1.1 and ηV = 0.5. The critical chemical potentials
μc

B are denoted with thin black vertical lines. The dotted one,
at μB = 888 MeV, indicates the baryonic chemical potential
at which the total pressure vanishes. Here, the mean field
value of the diquark field vanishes, denoting a second-order

1The normalization for the LQCD data was done using data from
Fig. 7(d) of Ref. [39] together with Eq. (26) evaluated at k = 0 with
the corresponding value of the LQCD bare quark mass.
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FIG. 2. σ̄ , �̄, ω̄, μl , and μ8 (in MeV) as functions of μB (in MeV).

phase transition. However, at μB = 931 MeV, one finds the
peak of the chiral susceptibility, indicating a crossover phase
transition to a region where the chiral symmetry is partially
restored. In this narrow region of about 40 MeV, denoted by
the grey band in the figure, one has a 2SC phase with a finite
and small value of the diquark gap coexisting with the chiral
symmetry breaking (χSB) phase.

The appearance of a coexistence phase of 2SC and χSB
has been discussed in the three-flavor case due to the mixing
between ud-diquark condensate and the chiral condensate in
the strange quark sector by the Fierz-transformed ’t Hooft
determinant interaction (axial anomaly; see Refs. [40,41]).

However, in the two-flavor case considered here, the crossover
occurs due to strong coupling and is related to the phe-
nomenon of BEC-BCS crossover in strongly coupled fermion
systems [42].

Carrying out the previous analysis in the ranges allowed by
the model for ηD and ηV , namely, 0.0 < ηV < 1.2 and 0.9 <

ηD < 1.2, we can set up the corresponding phase diagram and
analyze the features of the phase transitions in the ηD-μc

B plane
for different fixed values of ηV .

The phase diagram can be sketched by analyzing the nu-
merical results obtained for the relevant order parameters. For
the chiral symmetry restoration we take as order parameter
the chiral quark condensate, while for the onset of the diquark
condensation we take the MF value of the diquark field. The
chiral critical chemical potentials are defined by the positions
of the peaks in the chiral susceptibilities in the region where
the transition occurs as a smooth crossover, denoted by dashed
lines in Fig. 3. To sufficiently low diquark couplings the
chiral restoration takes place as a first-order phase transition
(solid lines in the figure). However, when ηD is increased, the
chiral critical chemical potential gets reduced, and the chiral
transition continues to be of first order up to a certain critical
end point (CEP). For larger values, the chiral restoration phase
transition proceeds as a smooth crossover.

However, the diquark condensation is always a second-
order phase transition, denoted by dotted lines in Fig. 3.

The region between both phase transition curves, denoted
as a grey band in the figure, is a coexistence region where the
chiral symmetry remains broken with a nonvanishing diquark
MF value, the same as in Fig. 2.

FIG. 3. QM phase diagram in the ηD-μc
B plane. Solid, dotted, and dashed lines correspond to first, second, and crossover phase transitions.

The shaded band indicates the coexistence region.
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FIG. 4. Squared speed of sound for the nonlocal chiral QM
model with ηD = 1.1 and ηV = 0.1, 0.5, and 1.1, respectively.

Finally, from the figure, one can see that when the vector
coupling is increased the CEP position is pushed to the left,
while the coexistence phase becomes wider.

To conclude this section we present our numerical results
for the speed of sound, whose square (c2

s ) is defined as the
slope of P vs ε. This quantity is relevant in the astrophysical
applications as it is related with the stiffness of the EOS. Weak
coupling (perturbative) QCD suggests that the conformal limit
(c2

s = 1/3) is approached from below [43,44] (see also Eq. (5)
of Ref. [45]).

In Fig. 4 we show the squared speed of sound for fixed
diquark coupling ratio ηD = 1.1 and for different values of
ηV, namely, 0.1, 0.5, and 1.1, as function of the energy density
ε. It is clear that, within the present QM model that includes
2SC, c2

s is always larger than the conjectured limit 1/3 on
QCD, and smaller than 1, preserving causality. In the range
of energy densities which is relevant for the cores of neutron
stars, 400 < ε < 2000 MeV/fm3, and which is displayed in
Fig. 4, the values for c2

s are approximately constant and lie in
the range ≈ 0.4-0.6, depending on the parameter set.

In order to understand the role of color superconductivity
for c2

s , it is instructive to apply formula (6) from Ref. [46],
which quantifies the deviation from the conformal limit by

c2
s = 1 + ζ

3 + ζ
, ζ = 18�2

ξ4 a4 μ2
B

, (30)

where � is the pairing gap and a4 = 1 − 2αs/π is the O(αs)
perturbative correction factor to the ideal massless quark pres-
sure; ξ4 = 1.857 [47] specifies the application of this formula
to the 2SC phase considered here. With � = 150 MeV at
μB = 1 GeV (see Fig. 2) and a4 = 0.3 [46], we get from
Eq. (30) the value c2

s = 0.46, in rough agreement with the red
line in Fig. 4. In addition, we have checked that, within our
model without interactions (ηD = ηV = 0), the behavior of c2

s
corresponds to the conformal limit value of 1/3.

III. HYBRID EOS

The aim of the present work is to test the presented QM
model in the astrophysical arena. For that purpose we use
a two-phase description to account for the transition from
nuclear matter to QM in the interiors of compact stars.

The nonlocal NJL model is found to provide a basic under-
standing for the mechanisms governing both the spontaneous
breakdown of chiral symmetry and the dynamical genera-
tion of massive quasiparticles from almost massless current
quarks, in close contact with QCD [48].

However, it does not account for some important features
expected from the underlying QCD interactions. In particular,
the model predicts the existence of colored quasiparticles in
regions of T and μ where they should be suppressed by
confinement. Therefore, to successfully describe the dynamics
of QCD, it is necessary to include the effects of color con-
finement that could be mimicked through a bag pressure term
[49]. In the hybrid description we observed that both hadronic
and QM EOS have similar behavior in the neighborhood of
the phase transition, which has been named as the masquerade
effect [50] (see also Refs. [28,31,51]). Then, below, we will
show that, to satisfactorily fulfill modern astrophysical con-
straints for the neutron star masses and tidal deformabilities
within the present hybrid description, the EOS (total pressure)
of the nonlocal NJL model should be softened (modified)
near the phase transition (from hadronic to QM phase) in
order to avoid the masquerade effect, and stiffened in the
high-density range to reach the maximum mass prediction for
compact stars. A fruitful way to solve both drawbacks at zero
temperature is to include a bag pressure in the total pressure
of the QM description. Therefore, we will start by considering
a constant bag scenario in Sec. III D and then, in Sec. III E, we
will generalize this approach by a μB-dependent bag pressure.

A. Hadronic model

To describe nuclear matter the relativistic density-
functional approach by Typel [52] has been used, which
includes meson-exchange interactions within the “DD2”
parametrization [4]. Even though this model satisfactorily
describes nuclear matter up to the saturation density, at
higher densities the above-mentioned masquerade problem
occurs for the hybrid construction. Therefore, we explore
the hadronic EOS including a recent reformulation of the
excluded volume effect [53] to mimic a repulsive interac-
tion resulting in a proper phase transition. This nucleonic
excluded volume has a microscopic background. It emulates
the quark Pauli blocking effect among nucleons as a necessary
consequence of their quark substructure and the overlap of
the nucleon wave functions. In the present work, different
values of the excluded volume were considered, for instance,
DD2-p40. Here, the label “p40” stands for a positive excluded
volume parameter of v = 4 fm3. This type of nuclear EOS
has been extensively used in systematic studies of hybrid
star models (see Refs. [32,54–56]). In addition, it has also
been considered in a neutron star crust, including the Baym-
Pethick-Sutherland (BPS) model [57], to fully describe the
hadronic EOS at low baryon densities.
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B. Maxwell construction

The present work only considers a sharp interphase be-
tween QM and hadronic phase. That means that no mixed
phase is expected (see Ref. [58] and references therein). Then,
the phase transition between the EOS for nuclear matter and
QM will be described by the Maxwell construction. Both
phases satisfy the charge-neutrality condition and β equi-
librium with electrons and muons. Then, both phases are
connected by requiring that chemical potentials and pressures
of the two phases coincide at the phase transition,

μH = μQM = μc (31)

and

PH = PQM = Pc. (32)

Outside the phase transition, the phase with higher pressure
(lower grand canonical potential) is to be chosen as the
physical one.

It is worth mentioning that the first result we obtained (not
shown here) is that, unless additional (de)confining effects are
introduced with a bag pressure, the only physical crossings
between hadronic and QM EOS occur at very high P and
μB values, producing compact star masses, radii, and tidal
deformabilities that do not accomplish several astrophysical
constraints mentioned in the Introduction (see Sec. I).

C. Calculation of astrophysical observables

In order to rate and compare the obtained EOS we have
to calculate possible neutron star properties. Therefore, to
generate plausible solutions for neutron star properties, hy-
brid neutron star EOS were augmented with the crust EOS
by Baym, Pethick, and Sutherland [57]. In the first step one
can calculate the range of possible neutron star radii and
masses. These can directly be compared to the combined
observations from NICER and XMM Newton of the mil-
lisecond pulsar J0740 + 6620 according to the analysis of
Miller et al. [7]. To evaluate them one has to solve the TOV
equations for a static nonrotating, spherical-symmetric star
[59,60] (see Appendix B for details). The tidal deformability
� can be calculated for the considered sequence of neutron
star masses [61] and compared to the constraint obtained
from the gravitational wave signal that was observed for the
binary neutron star merger GW170818 [3] in the mass range
M ≈ 1.4M�.

The astrophysical observables were calculated on the basis
of a code by Maselli [62].

D. Constant bag pressure

As a first step towards astrophysical applications, we con-
sider a shift of the QM EOS by a constant bag pressure
B(μB) = const = B that allows to lower the crossings be-
tween the hadronic and QM curves in the P vs μB plane
(Maxwell construction).

We renormalize the QM EOS considering that

P(μB) → P(μB) − B, (33)

where a bag pressure shift is included in the QM EOS.
Throughout this section, we will consider a fixed B =
10 MeV/fm3 that lies in the range 10–50 MeV/fm3 used in
Ref. [49]. With this particular choice we are able to obtain an
early onset from hadronic to QM phase as can be see from
Fig. 5.

First, in order to explore the effects of setting different
parameter values, for example, the ηV values for QM and
the excluded volume parameter for the hadronic phase, we
proceed as follows: First we consider a hybrid description for
a fixed QM EOS and different hadronic ones. Later we choose
one hadronic EOS and different QM EOS. After that, we will
only present some representative hybrid EOS.

In Fig. 5(a) we show a particular QM EOS for fixed ηD =
1.1, ηV = 0.6 (green dashed line), and different hadronic
EOS: DD2 (orange) or DD2-p10 (black), p40 (light blue) and
some values in between, p20 (green), and p30 (purple). As
expected, the stiffer the hadronic EOS, the earlier the crossing
with the QM EOS. These EOS were considered as input for
solving the TOV equations, giving as output the M vs R shown
in Fig. 5(b). Earlier onsets can be observed for larger excluded
volume parameters in the hadronic EOS, corresponding to
stiffer hadronic EOS. In all cases, the maximum mass attained
is about 2.3M� with R ≈ 12.35 km.

However, in Fig. 5(c) we show one hadronic EOS, DD2-
p40 (solid line), and different QM EOS with ηD = 1.1 and ηV

from 0.5 to 0.9 (different line styles). In Fig. 5(d), we show
the M-R relations that correspond to the parameter selections
shown in Fig. 5(c). One observes that the increase of ηV shifts
the onset of deconfinement to higher masses. At the same
time, the maximum mass increases with ηV , exceeding even
the value of about 2.6M� attained at R ≈ 13.75 km for ηV =
0.9. Since the vector interactions produce a stiffer QM EOS,
the larger the vector coupling, the larger both maximum mass
and radius, but at the price of a later onset of deconfinement.

In Fig. 6 we summarize the results for the hybrid EOS and
their relation to the NS observational constraints. Figure 6(a)
shows the Maxwell constructions for three hybrid EOS cases:
an early phase transition onset (ηV = 0.5, DD2, red lines),
a high mass onset (ηV = 0.8, DD2-p40, blue lines), and an
intermediate onset value (ηV = 0.6, DD2-p20, green lines).

In Fig. 6(b) we compare these hybrid EOS with a well-
known constrained region from Hebeler et al. [63] that
accommodates all EOS discussed before. The comparison
with the confidence region of the Bayesian analysis for a
multiparameter EOS model (piecewise polytrope in this case)
with the NICER and X-ray Multi-Mirror (XMM-Newton)
observations of PSR J0740 + 6620 (see Ref. [7] for details)
shows a very good agreement for all the presented EOS with
the only exception of DD2-p40, which has a too late onset
of deconfinement for the very stiff hadronic phase. A similar
discussion of the admissible EOS region can be found in
Ref. [64] based on a large number of individual EOS gen-
erated by a speed-of-sound interpolation method.

In Fig. 6(c) the squared speed of sound is shown for the
hybrid EOS from Fig. 6(a). The behavior of c2

s in the quark
matter phase is rather constant in a narrow range around
≈ 0.5, for ηV = 0.5-0.8. We note that in Ref. [13] the re-
verse observation has been made. Namely, a constant speed
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FIG. 5. Left: (a) QM EOS for ηD = 1.1 and Bag = 10.0 MeV/fm3 for ηV = 0.6 (green dash-dotted line), and different hadronic EOS with
solid lines. (b) The corresponding M-R relations for the hybrid EOS in (a). The solid dots indicate the respective phase transition points and
vertical bars the location of the maximum mass (down). Right: (c) QM EOS with ηD = 1.1, Bag = 10.0 MeV/fm3, and ηV from 0.5 to 0.9
(different trace lines), and hadronic EOS DD2-40 in light blue solid line. (d) The corresponding M-R relation.

of sound model for quark matter provides a perfect fit to a
nonlocal NJL model with covariant form factors.

The M-R plot is presented in Fig. 6(d), where we show the
hybrid solutions together with the purely hadronic ones. As
in previous very recent works [65–67], we show for compar-
ison different colored regions corresponding to either pulsar
measurements or forbidden (striped) regions that serve as
constraints for the compact star EOS. The green band region
above 2M� corresponds to the updated mass measurement
of PSR J0740 + 6620 [9], which was recently upgraded to
a mass-radius measurement by NICER, shown by the purple
ellipsoidal type region for the result of the Maryland-Illinois
team [7] and by the wine colored region for XMM-Newton
Spectroscopy [8]. The orange and red regions around M =
1.4M� correspond to the compactness estimates for the com-
ponents labeled as M1 and M2 of the binary NS merger
GW170817 obtained from the gravitational wave signal of its
inspiral phase [3]. The central big blue region corresponds to
the 95% contour of the joint probability density distribution
of mass and radius from NICER observation of PSR J0030 +
0451 [68]. The green and brown striped bands correspond to
excluded regions derived from GW170817 observations by

Bauswein et al. [70] and Annala et al. [71]. The light blue band
region corresponds to the mass 2.59+0.08

−0.09 M� of the lighter
component in the binary merger event GW190814 [72]. Older
maximum mass constraints from Shapiro Delay measurement
of PSR J0348 + 0432 and PSR J1614 + 2230 [73–77] are also
included as additional references.

In Fig. 6(e) we show the tidal deformability as a function
of M/M� including its value (� = 190+390

120 ) from GW170817
[3]. Finally, in Fig. 6(f) we present the tidal deformability
parameters �1 and �2 of the high and low mass components
of the binary merger (see Appendix B for details) compared to
the probability density contours for the analysis of GW170817
signals [1,69]. The �1 and �2 parameters characterize the size
of the tidally induced mass deformations of each star.

Note that for tidal deformability results, the hybrid EOS
are not separated into their QM and hadronic parts; then in
Figs. 6(e) and 6(f) the traced lines represent all the hybrid EOS
and the solid lines are for the pure hadronic EOS as usual, but
their results are indistinguishable in almost all the cases.

From the results shown in Figs. 6(e) and 6(f) it is evident
that even for the case of early onset of deconfinement the hy-
brid EOS model with a constant bag pressure is not sufficient
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FIG. 6. (a) Pressure vs chemical potential for the QM (dashed lines) and the hadronic (solid lines) EOS. (b) Pressure vs energy density,
and we highlight the fact that NS interiors do not probe the energy densities where pQCD is applicable. (c) The squared sound speed c2

s is
shown for the corresponding hybrid EOS. (d) The M-R relations are given. The solid dots indicate the respective phase transition points and
vertical bars show the location of the maximum mass stars. The results for the pure hadronic EOS are also shown (lighter line colors), with
the star symbols indicating the points where the causal limit of the EOS is reached and the dotted lines stand for results from its acausal part.
For comparison with the NS phenomenology, the mass-radius constraints from NICER observations (see Refs. [7,68] for details) and from the
merger event GW170817 are shown. (e) The tidal deformability � vs M/M� for the set of hybrid EOS (traced lines), hadronic EOS (solid lines,
overlapped with QM ones), and comparison to the results of GW170817. (f) The comparison of �2-�1 calculated for our EOS in comparison
to the analysis of the gravitational wave signal from the merger GW170817 [1,69]. For the remaining mass and radius constraints in (d) see
Ref. [65].
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to fulfill both constraints, maximum mass and tidal deforma-
bilities, simultaneously. Therefore, a more general approach
is necessary.

E. Density-dependent bag pressure

There is a way out that goes beyond the standard for-
mulation of the nonlocal NJL-type models by including
density-dependent coefficients. That approach promotes the
nonlocal NJL relativistic mean field setting to a model with
medium-dependent coupling (μB dependence). We were in-
spired by Ref. [32], where a μB dependence of the bag
pressure was included in a covariant nonlocal NJL-type model
of quark matter so that the EOS of the density functional
approach developed by Kaltenborn et al. [55] could be ap-
proximately reproduced. In our present work, we use the
same functional form of the μB-dependent bag pressure from
Ref. [32]. In this way it is possible to describe both an early
onset of quark matter and an increase of the maximum mass.
This method has been used before, e.g., in Ref. [78] and in
Ref. [79] for solving the hyperon puzzle by early quark decon-
finement. Here we have a similar situation. We need an early
onset of the strong phase transition in order to simultaneously
have a sufficient compactification and to keep the high value
for the maximum mass. The slope of B(μB) defines a bigger
and earlier jump in energy density at the first-order phase
transition, which is the necessary change that leads to the
compactification of the hybrid stars that allows to fulfill the
tidal deformability constraint.

We want to point out that one way to justify a medium de-
pendence of the coupling constants and background pressure
in chiral quark models of the NJL type with current-current
interactions is to postulate a relativistic density functional
[55,67,80]. Upon expanding around the stationary point, the
density-functional approach assumes the form of an effec-
tive NJL-type model with medium-dependent couplings (see
Refs. [67,80]). In this way it was possible to obtain a strong
first-order phase transition with a large enough latent heat of
the transition to allow for a separate third family of hybrid
stars associated with the phenomenon of mass twin neutron
stars [32].

Then, in what follows we will consider a μB-dependent bag
pressure as in Ref. [32], given by the equation

B(μB) = B0 f<(μB) (34)

with

f<(μB) = 1

2

[
1 − tanh

(μB − μ<

�<

)]
, (35)

where we have set μ< = 895 MeV, �< = 180 MeV, and
B0 = 35 MeV/fm3 as the optimal values to reproduce the
astrophysical observables. Note that this bag pressure, in the
vicinity of the transition from hadronic to QM phase, takes a
value around the one considered in Sec. III D. Also, it is im-
portant to remark that a μB-dependent bag pressure will affect
the value of nB = ∂P/∂μB, producing a noticeable effect on
the Gibbs free energy via Eq. (22) and therefore also on the
energy density. This effect is not present in the scenario with
B = const.

This particular functional μB dependence of B(μB) permits
to soften the QM EOS near the phase transition to avoid the
masquerade problem [50], and then, for higher μB, B(μB) →
0 allowing for a stiffer EOS, necessary to reach the maximum
mass constraint.

Besides, in order to accomplish the tidal deformability
constraints, the hybrid EOS should be able to produce M-R
relations that fulfill the radius estimations for M = 1.4M�
from the binary NS merger GW170817 [3].

In Fig. 7 we summarize the results obtained with the pro-
posed hybrid construction but considering now the B(μB)
function instead of the constant B. In Fig. 7(a) we show P
vs μB for QM and hadronic EOS. For QM we display the
corresponding EOS considering ηD = 1.1 and three different
values for ηV = 0.5, 0.6, 0.8. The hadronic EOS correspond
to DD2, DD2-p20, and DD2-p40. It is observed that with
the chosen parameter values the crossing of the hadronic and
QM EOS occur at lower P and μB values in comparison
with the constant B case. In Fig. 7(b), the hybrid EOS is
included with NICER constraints, where a notorious change
can be observed with respect to the corresponding panel of
Fig. 6: now the energy gaps are bigger for lower values of
ηV . A consequence of the energy gap enhancement could be
that the M-R curves obtained in the QM phase have a bigger
deviation from the corresponding hadronic lines around the
phase transition. In Fig. 7(c) the corresponding curves for the
squared speed of sound are shown, where a peak is observed in
the region of the transition from hadronic to QM. A constant
behavior at high densities, with c2

s between 0.5 and 0.6, can
be seen as well. In Fig. 7(d) the corresponding mass-radius
relations are displayed, showing both the hybrid solutions and
the hadronic ones (lighter colored lines). As in the previous
section, different constraint regions from astrophysical ob-
servables are included. Earlier phase transition onset values
compared with the ones with constant B are obtained and, as
in all the previous M-R plots, the lower the vector coupling,
the smaller the radius and the mass of the corresponding
maximum mass stars. The tidal deformabilities �(M ) we
obtained and the one corresponding to GW170817 are shown
in Fig. 7(e). Finally, in Fig. 7(f) the �1-�2 relations are shown
and compared with the 50% and 90% probability regions from
the inspiral gravitational wave measurement of GW170817.
As can be seen from the B(μB) results, it is possible to simul-
taneously fulfill the maximum mass and tidal deformability
constraints.

IV. SUMMARY AND CONCLUSIONS

In the present work we investigated the relationship
between modern NS phenomenology and a microphysical
approach formulated by a chiral quark model Lagrangian.
We used a two-phase description of quark-nuclear matter
to obtain a first-order deconfinement phase transition by a
Maxwell construction between the DD2 model (with ex-
cluded volume and a crust of neutron stars) for nuclear matter
and a nonlocal instantaneous NJL-type model, including
color superconductivity and local vector repulsive interactions
for QM. Nonlocality was introduced in the quark currents
through a Gaussian form factor in three-dimensional (3D)
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FIG. 7. Same as Fig. 6, but for the μB-dependent bag pressure B(μB).

momentum space, except in the vector channel. To obtain
the input parameters of the QM model we first performed a
fit to the momentum dependence of the quark mass function
from LQCD in the Coulomb gauge to obtain a value for the
effective range parameter �0. Then, the values of the scalar
coupling GS and the current quark mass mc were fixed by
low-energy phenomenology. An advantage of the 3D-FF used

in the present work is that it allows to perform Matsubara
summations analytically.

The first nontrivial result of this nonperturbative quark mat-
ter model is a coexistence phase of color superconductivity
and chiral symmetry breaking that is due to strong coupling
in the vector meson and diquark channels. The second re-
markable finding obtained within the present QM model is the
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approximate constancy of the squared sound speed c2
s in the

whole range of energy densities relevant for the quark matter
interior of NS. The approximately constant values for c2

s lie in
the range 0.4–0.6 for the considered quark model parameters.
This confirms for the 3D-FF model the observation made ear-
lier in Ref. [13] for the 4D-FF model that a constant speed of
sound model for quark matter with c2

s = 0.45-0.54 provides a
perfect fit in the energy density range relevant for NS interiors.
Our results show that we need to include a bag pressure in the
QM EOS in order to fulfill modern observational constraints
in a satisfactory way. Moreover, a μB-dependent bag pressure
is essential to simultaneously satisfy both radius constraints,
for R2.0 for high-mass NSs from the NICER observation of
PSR J0740 + 6620 and R1.4 for typical-mass NSs from the
tidal deformability obtained from the inspiral gravitational
wave measurement of GW170817. The bag pressure value
close to the transition is in the range adopted by some works
in the literature.

The hybrid description studied in the present work is the
first step of testing the model before applying its finite temper-
ature generalization to the simulation of supernova explosions
and NS mergers. We expect to report on this issue in the near
future.
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APPENDIX A: DETAILS OF THE NONLOCAL MODEL
FOR QUARK MATTER

In this Appendix we show some explicit expressions cor-
responding to the nonlocal chiral quark model considered in
Sec. II.

From Eqs. (14) the gap equations for the mean fields σ̄ and
�̄ together with the constraint equation for the mean field ω̄

read

σ̄ = 2Gs

∫
d3 �p

(2π )3

g( �p) M( �p)

E

×
∑

κ

{
1 − nF

(
Ēκ

b + δμ̃b

T

)
− nF

(
Ēκ

b − δμ̃b

T

)

+ 2Ēκ
r

εκ
r

[
1 − nF

(
εκ

r + δμ̃r

T

)
− nF

(
εκ

r − δμ̃r

T

)]}
,

(A1)

�̄ = 2GD�̄

∫
d3 �p

(2π )3
g2( �p)

×
∑
κ=±

{
2

εκ
r

[
1 − nF

(
εκ

r + δμ̃r

T

)
− nF

(
εκ

r − δμ̃r

T

)]}
,

(A2)

and

ω̄ = 2GV

∫
d3 �p

(2π )3

×
∑
κ=±

κ

{
1 − nF

(
Ēκ

b + δμ̃b

T

)
− nF

(
Ēκ

b − δμ̃b

T

)

+ 2 Ēκ
r

εκ
r

[
1 − nF

(
εκ

r + δμ̃r

T

)
− nF

(
εκ

r − δμ̃r

T

)]}
,

(A3)

where nF (x) = (1 + exp(x))−1 is the Fermi distribution func-
tion. The solutions for Eqs. (A2)–(A4) in the vacuum, at
T = μ = 0, are denoted with the subscript 0 as σ̄0, �̄0, and
ω̄0, respectively. In the vacuum �̄0 and ω̄0 are zero, so the
vacuum thermodynamic potential reads

�MFA
0 = σ̄ 2

0

2GS
− 12

∫
d3 �p

(2π )3
E0/2. (A4)

Notice that in the above expression E2
0 = �p 2 + M2

0 ( �p) where
M0( �p) = mc + g( �p)σ̄0. The integral in Eq. (7) turns out to be
ultraviolet divergent because of the zero-point energy terms.
Since this is exactly the divergence of Eq. (A4), a successful
regularization scheme consists just in the vacuum subtraction

�MFA
reg = �MFA − �MFA

0 . (A5)

Finally, the quarks and lepton number densities, n f c and nl ,
respectively, are given by

n f c = − ∂�MFA

∂μ f c
, nl = −∂�lep

∂μe
, (A6)

where f = u, d , c = r, g, b, and l = e, μ. Thus,

n f r = n f g = −
∫

d3 �p
(2π )3

×
∑
κ=±

{[
nF

(
εκ

r +δμ̃r

T

)
−nF

(
εκ

r −δμ̃r

T

)]
(δu f −δdf )

− κ
Ēκ

r

εκ
r

[
1 − nF

(
εκ

r + δμ̃r

T

)
− nF

(
εκ

r − δμ̃r

T

)]}
,

(A7)

n f b = −
∫

d3 �p
(2π )3

×
∑
κ=±

{[
nF

(
Ēκ

b +δμ̃b

T

)
−nF

(
Ēκ

b −δμ̃b

T

)]
(δu f −δdf )

− κ

[
1−nF

(
Ēκ

b +δμ̃b

T

)
−nF

(
Ēκ

b −δμ̃b

T

)]}
, (A8)
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and

nl = −2
∑

l=e,μ

∫
d3 �p

(2π )3

×
[

nF

(
εl + μe

T

)
− nF

(
εl − μe

T

)]
. (A9)

Note that the fermion density has only the contribution of the
first term of the regularized thermodynamic potential (A5),
since the second one has no dependence on the chemical
potentials.

In what follows we present some analytic expressions in
the zero temperature limit, where for notation convenience we
have omitted the subscript T = 0.

The corresponding gap equations and constraint equa-
tion are given by

σ̄ = 2GS

∫
d3 �p

(2π )3

g( �p) M( �p)

E

×
∑

κ,s=±

{
Ēκ

r

εκ
r

εκ
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2

Ēκ
b + s δμ̃b∣∣Ēκ
b + s δμ̃b
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}
,

(A10)
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ω̄ = 2GV

∫
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(A12)

The number densities read

n f r = n f g =
∫

d3 �p
(2π )3

×
∑
κ=±

{
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, (A13)

n f b =
∫

d3 �p
(2π )3
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Ēκ
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2
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}
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where for leptons

nl = 1

3π2

(
μ2

l − m2
l

)3/2
. (A15)

Finally, for completeness, the chiral quark condensate is
defined as

〈q̄q〉 = ∂�MFA
reg

∂mc
= −

∫
d3 �p

(2π )3
ζ ( �p), (A16)

where

ζ ( �p) =
∑
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2

[(
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. (A17)

APPENDIX B: CALCULATION OF GRAVITATIONAL
MASS, RADIUS, AND TIDAL DEFORMABILITY OF

SPHERICAL COMPACT STARS

To compute the internal energy density distribution of com-
pact stars and thus derive the mass-radius relation we utilize
the TOV equations for a static and spherical star in the frame-
work of general relativity:

dP(r)

dr
= G(ε(r)) + P(r))(M(r) + 4πr3P(r))

r(r − 2GM(r))
, (B1)

dM(r)

dr
= 4πr2ε(r), (B2)

with P(r = R) = 0 and P(r = 0) = Pc as boundary condi-
tions for a star with mass M and radius R.

Here we want to briefly describe how to compute the tidal
deformability (TD) of a compact star, based on the results
of Refs. [61,81–84]. To determine the dimensionless tidal
deformability parameter � = λ/M5 that can be computed for
small tidal deformabilities in a perturbative way, here λ is
the stellar TD and M is the stellar gravitational mass [32]. In
addition, λ is related to the so called Love number:

k2 = 3
2λR−5. (B3)

The TD can be thought of as a modification of the space-time
metric by a linear l = 2 perturbation of a spherical symmetric
star,

ds2 = −e2�(r)[1 + H (r)Y20(θ, ϕ)]dt2

+ e2�(r)[1 − H (r)Y20(θ, ϕ)]dr2

+ r2[1 − K (r)Y20(θ, ϕ)](dθ2 + sin2 θdϕ2), (B4)

where K ′(r) = H ′(r) + 2H (r)�′(r), primes denoting deriva-
tives with respect to r.

The functions H (r), β(r) = dH/dr obey

dH

dr
= β, (B5)

dβ

dr
= 2

(
1 − 2

m(r)

r

)−1

× H

{
−2π [5ε(r) + 9P(r) + f (ε(r) + P(r))]

+ 3

r2
+ 2

(
1 − 2

m(r)

r

)−1(m(r)

r2
+ 4πrP(r)

)2}

+ 2β

r

(
1 − 2

m(r)

r

)−1

×
{
−1 + m(r)

r
+ 2πr2(ε(r) − P(r))

}
, (B6)
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where f = dε/d p is the equation of state. The above equa-
tions and the TOV equations have to be solved simultaneously.
The system is to be integrated outward starting near the center
using the expansions H (r) = a0r2 and β(r) = 2a0r as r → 0,
where a0 is a constant that determines how much the star is
deformed and turns out to be arbitrary since it cancels in the
expression for the Love number. With the definition of

y = R β(R)

H (R)
, (B7)

the l = 2 Love number is found as

k2 = 8C5

5
(1 − 2C)2[2 + 2C(y − 1) − y]

×{2C[6 − 2y + 3C(5y − 8)]

+ 4C3[13 − 11y + C(3y − 2) + 2C2(1 + y)]

+ 3(1 − C)2[1 − y + 2C(y − 1)] ln 1 − 2C}−1,

(B8)

where C = M/R is the compactness of the star.
Finally, note that the �1 and �2 parameters for the two

components of the NS merger are obtained from Eq. (B3) with
the corresponding M-R values,

�1,2 = 2

3
k2

(
R1,2

M1,2

)5

. (B9)
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