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Algorithm 900: A Discrete Time Kalman Filter
Package for Large Scale Problems
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Data assimilation is the process of feeding a partially unknown prediction model with available

information from observations, with the objective of correcting and improving the modeled results.

One of the most important mathematical tools to perform data assimilation is the Kalman filter.

This is essentially a predictor-corrector algorithm that is optimal in the sense of minimizing the

trace of the covariance matrix of the errors. Unfortunately, the computational cost of applying the

filter to large scale problems is enormous, and the programming of the filter is highly dependent on

the model and the format of the data involved. The first objective of this article is to present a set

of Fortran 90 modules that implement the reduced rank square root versions of the Kalman filter,

adapted for the assimilation of a very large number of variables. The second objective is to present

a Kalman filter implementation whose code is independent of both the model and observations and

is easy to use. A detailed description of the algorithms, structure, parallelization is given along

with examples of using the package to solve practical problems.
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1. INTRODUCTION

The Kalman filter is a set of mathematical equations that combine informa-
tion from a model output and observations to produce a better estimation
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(or analysis) of the dynamical system. Essentially, it implements a predictor-
corrector type estimator that is optimal in the sense that it minimizes the esti-
mated error covariance under some hypotheses. The state and the covariance
matrix of forecast errors are predicted (using the model), and, if observation
data is available, a correction step is performed (see Welch and Bishop [2001]).

The filter is named after Rudolph E. Kalman, who in 1960 published his
paper describing a recursive solution to the discrete-data linear filtering prob-
lem [Kalman 1960]. The Kalman filter has been extensively applied in mo-
tion prediction (see Azuma and Bishop [1994]), parameter estimation (see
Charalambous and Hibey [2001] and Annan et al. [2005]), navigation and global
positioning systems (see Kim and Iltis [2002]), improvement of species concen-
trations in chemical transport models (see Zhang et al. [1997, 1999], van Loon
et al. [2000], Flemming et al. [2001], El Serafy et al. [2002], and Segers [2002]),
image treatment (see Ertürk [2002] and Kuo et al. [2002]), improvement of
oceanographic models (see Allen et al. [2002] and Hoteit et al. [2004]), etc.

The size of the problem may restrict the application of the Kalman filter.
For example, in a chemistry transport model of 20 species concentrations in
a grid of 50 × 50 × 20 cells, the state vector would be order n = 106 and we
would need to operate on square matrices of order n. The most expensive part
of the Kalman algorithm is the prediction of the covariance matrix of forecast
errors, where we have to apply the tangent linear model 2n times. In complex
models, a time step could take a few seconds making a standard Kalman filter
step prohibitively expensive to implement. However, new techniques have been
developed for large scale problems like reduced rank square root methods and
ensemble methods based in Monte-Carlo estimations (see Brown and Gaston
[1995], Chin et al. [1995], Pham et al. [1998], Segers et al. [2000], Hoteit et al.
[2001, 2002], Evensen [2003], Asif [2004], Hoteit and Pham [2004], Treebushny
and Madsen [2005], Chen et al. [2005] and Hanea et al. [2005]). According to
the application, covariance matrices may have a sparse structure which could
simplify some array operations and speed up execution (e.g., for observations
the covariance matrices may be treated as diagonal). The user must decide
whether or not to use reduced rank methods according to the complexity of the
model.

Another common problem is related to implementation difficulties. Every
time the filter is applied, the model needs to be called many times. Therefore,
the model source code has to be rearranged. Noise has to be added to gener-
ate samples. An interface is needed between the incoming observations and
the data produced by the model. After the assimilation step the model has to
restart with the newly generated analysis, and the complete implementation is
full of subtle relationships between the model and the observations. One major
obstacle is that models are like black boxes, where the user changes configura-
tion files and not the code itself. The source code for the model should not be
changed unless the user is an expert.

This article proposes a modular assimilation environment in Fortran 90.
It means that observations, model and assimilation are separated from one
another. For example, if the observation stations change location, there is no
need to modify the main code, but only a module related to locations. If we
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need to change the model, there is no need to transform all the code, but only
the module related to the model. If we want to change the Kalman filter being
used, a change in the module related to the assimilation will suffice. This will
allow the user to make minimum changes to the code supporting the modeling
system (model, data formats, libraries, configuration files) in order to avoid
introducing coding bugs. The choice of the language was made because many
large scale models are written either in Fortran 77 or in Fortran 90 (even when
it is possible to mix languages, some users prefer not to so). The modules can
handle single and double precision and use the BLAS/LAPACK libraries for the
matrix operations. For the parallel implementation the BLACS, SCALAPACK
and MPI libraries are used.

This article also proposes the implementation of a reduced rank square root
ensemble Kalman filter taking advantage of the facilities in Fortran 90 for
matrix-vector manipulation which is used extensively in 2D and 3D models.
An example of a 3D system is presented and comparisons between the model
solution and the true and assimilated solutions are given. Notice that the as-
similation modules include other versions of the filter, like the complete ex-
tended Kalman filter and the ensemble Kalman filter (useful for small and
medium scale problems), and the RRSQRT Kalman filter (useful for large scale
problems).

Several other packages are available that implement the Kalman filter, for
example,

(1) STSA (The Time Series Analysis Toolbox for O-Matrix [STSA]): This tool-
box is a collection of O-Matrix functions for performing time series and
statistics related analysis and visualization. It has capabilities for ARMA
and ARFIMA, Bayesian, non-linear and spectral analysis related models.
Time series filtering functions and spectral analysis functions are provided.
Random number generators are included for both time series, and general
statistical analysis. It is a commercial package using the O-Matrix lan-
guage.

(2) BFL (Bayesian Filtering Library [BFL]): This library provides an applica-
tion independent framework for inference in Dynamic Bayesian Networks,
that is, recursive information processing and estimation algorithms based
on Bayes’ rule, such as Extended Kalman filters, particle filter, etc. It is
written in C++.

(3) KALMTOOL [KALMTOOL]: It is a set of MATLAB tools for state estimation
for nonlinear systems. The toolbox contains functions for Extended Kalman
filtering as well as for two new filters called the DD1 and DD2 filters. The
toolbox specifically addresses the problem of not having observations avail-
able at all sampling instants.

(4) Bayes++ Bayesian Filter Classes [BAYES++ ]: Bayes++ is an open source
library of C++ classes. These classes represent and implement a wide vari-
ety of numerical algorithms for Bayesian Filtering of discrete systems. The
classes provide tested and consistent numerical methods and the class hi-
erarchy explicitly represents the variety of filtering algorithms and system
model types.
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(5) COSTA [COSTA ]: It is an open source project designed to provide a free
toolbox for data assimilation for models conforming to the COSTA inter-
face. The current available implementations are: data assimilation methods
(ensemble, reduced rank square root, ensemble square root and COFFEE
methods) and parameter estimation methods (simplex, conjugate gradient
and LBFGS methods). This package is prepared for parallel computing.

(6) PALM [Buis et al. 2003]: This project aims to provide a general structure
for a modular implementation of a data assimilation system where the as-
similation algorithm is split up into independent units. The package uses C,
Fortran and MPI for portability. Today, PALM software is used in an oper-
ational way in the French Operational oceanography project MERCATOR.

(7) ESMF (Earth System Modeling Framework [ESMF], Collins et al. [2005];
Hill et al. [2004]): Developed by the team centered at NCAR, ESMF is an
open source software for building climate, numerical weather prediction,
data assimilation, and other Earth science software applications. Some of
the features of this package are: Fortran 90 and (partial) C/C++ interfaces,
portability, MPI and OpenMP support, a large set of test, infrastructure
and superstructure for coupling and building Earth system components.

Some of the packages cited above have the disadvantage that they are either
commercial or programmed in a high-level language. However, this list also
presents a number of highly sophisticated systems that provide features such
as parallelism, interfaces with other languages, modularity and portability.

The aim of the package presented in this article is to provide parallelism,
portability, and modularity, but especially ease of use. The user only needs to
code the basic features related to the model and observations (e.g., setting the
number of observations, covariance matrices, model propagation, etc). Derived
types could have been used but the idea was to keep the programs at the max-
imum level of simplicity for the user. The parallel version is just an additional
module, and the user does not need to worry about communicators, array dis-
tribution or parallelization strategies.

This article is structured as follows: In Section 2, a mathematical background
is presented along with a brief explanation of the implemented methods. Sec-
tion 3 is devoted to explaining several versions of the Kalman filter. Section 4
refers to the design of the package, Section 5 shows a sample application and,
finally, Section 6 is dedicated to the conclusions.

2. MATHEMATICAL BACKGROUND

Let us define the following entities:

n .= dimension of the model state (variables we want to assimilate) (1)

p .= number of observations (usually p � n) (2)

xt .= true state, xt ∈ Rn (3)

xf .= background (or forecast) model state, xf ∈ Rn (4)

xa .= analysis model state, xa ∈ Rn (5)

y .= vector of observations, y ∈ Rp (6)
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H .= observation operator, H : Rn −→ Rp (7)

H .= tangent observation operator, H : Rn −→ Rp (8)

R .= observation error covariance matrix, R ∈ Rp×p (9)

Pf .= background (or forecast) error covariance matrix, Pf ∈ Rn×n (10)

Pa .= analysis error covariance matrix, Pa ∈ Rn×n (11)

x .= expected value of x (12)

The pair
(
xf, Pf

)
defines the previous knowledge (or background) of the sys-

tem state with an estimation of the error. It can be obtained, for example, via
a model. The pair

(
y, R

)
provides the observations with an estimation of the

observation errors. These can be obtained, for example, from measurement sta-
tions. The objective is to generate a new pair

(
xa, Pa

)
where the analysis xa is

as close as possible to the true state in the root mean square sense.
Assuming that we have

—nontrivial errors: Pf and R are positive definite matrices,

—unbiased errors: the expectation of the background and observation errors

are zero, that is, xf − xt = y − H
(
xt

) = 0,

—uncorrelated errors: observation and background errors are mutually uncor-

related, that is,
(
xf − xt

) (
y − H

(
xt

))T = 0,

then it can be proved (see Bouttier and Courtier [2002]) that the analysis de-
fined by corrections to the background, which depends linearly on background
observation departures and has a minimum variance estimate, is

xa = xf + K
(
y − H

(
xf

))
, (13)

where K, called the gain matrix, is defined by

K = PfHT
(
HPfHT + R

)−1

. (14)

This is called the BLUE (Best Linear Unbiased Estimator).
The covariance matrix for analysis errors is given (for any K) by

Pa = (
I − KH

)
Pf (

I − KH
)T + KRKT , (15)

and, if K is the optimal least-squares gain, the expression is reduced to

Pa = (
I − KH

)
Pf. (16)

In practice, the user does not know K exactly and the formulation (16) can
lead to an erroneous gain matrix, so it is convenient to work with the analysis
error covariance matrix defined by (15).

The problem of finding the pair
(
xa, Pa

)
is equivalent to the minimization of

the following functional:

J (x) =
(
x − xf

)T
Pf−1

(
x − xf

)
+ (y − H (x))T R−1 (y − H (x)) . (17)

For the evolution in time of the whole system, we need a model to propagate
the state vector and the forecast error covariance matrix or we can apply the
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BLUE, and get a better approximation of the true state. Suppose that we have
a model Ml→l+1 : Rn −→ Rn that takes the state vector forward from time step
l to time step l + 1, and also assume that the tangent linear model Ml→l+1 :
Rn −→ Rn is available. Assuming the hypotheses for the BLUE, and

—forecast errors: The model error Ml→l+1

(
xt

l

) − xt
l+1 is unbiased with known

model error covariance matrix Ql ,

—uncorrelated analysis and model errors: The analysis error xa
l − xt

l and the
model error Ml→l+1

(
xt

l

) − xt
l+1 are mutually uncorrelated,

we can prove (see Bouttier and Courtier [2002]) that the optimal way (in the
least square sense) to assimilate the observations sequentially is given by the
Kalman filter algorithm

xf
l+1 = Ml→l+1

(
xa

l

)
, (18)

Pf
l+1 = Ml→l+1Pa

l MT
l→l+1 + Ql , (19)

Kl+1 = Pf
l+1HT

l+1

(
Hl+1Pf

l+1HT
l+1 + Rl+1

)−1
, (20)

xa
l+1 = xf

l+1 + Kl+1

[
yl+1 − Hl+1

(
xf

l+1

)]
, (21)

Pa
l+1 = (

I − Kl+1Hl+1

)
Pf

l+1

(
I − Kl+1Hl+1

)T +
+Kl+1Rl+1KT

l+1. (22)

Here the subscripts represent time evolution.
Equations (18) and (19) are the prediction part of the filter, while Eqs.

(20)–(22) are the correction applied to minimize the variance of the analysis.
As stated, the filter can be applied to small and medium problems, but it does
not scale well to larger problems because

—Storage: For atmospheric applications, we can have n ≈ 106 and a full error
covariance matrix of size n × n may be in excess of a teraword (see the as-
similation system at the Data Assimilation Office [Lyster et al. 2003] as an
example).

—Too Many Model Evaluations: Equation (19) requires 2n evaluations of the
tangent linear model. In some cases, the tangent version of the model is
obtained by an automatic differentiation package, or it is computed using
two evaluations of the model. Therefore, the propagation of the forecast error
covariance matrix is too expensive.

—Matrix-Vector Manipulation: Normally, large scale models represent the sys-
tem state as 3D matrices, so a transformation matrix→vector is needed to
apply one filter step, and then a transformation vector→matrix to continue
the propagation in time.

—Non-linearities: The extended Kalman filter (18)-(22) linearizes the model,
but this linearization has shown to be invalid in a number of applications
(see Evensen [1994, 1997]).

The next section explains the main algorithms that are used in the assimi-
lation modules.
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3. VERSIONS OF THE KALMAN FILTER ALGORITHM

3.1 EKF (Extended Kalman Filter)

The algorithm (18)–(22) without the time subscripts (for simplicitiy) may be
written as

xf = M
(
xa)

, (23)

Pf = MPaMT + Q, (24)

K = PfHT
(
HPfHT + R

)−1

, (25)

xa = xf + K
(
y − H

(
xf

))
, (26)

Pa = (
I − KH

)
Pf (

I − KH
)T + KRKT . (27)

3.2 RRSQRTKF (Reduced Rank Square Root Kalman Filter)

The covariance matrices have good properties being both symmetric and (semi)
positive definite. Therefore, they can be factorized and square roots computed
(for example, via Cholesky decomposition, or SVD). Whereas in some contexts
the square root of a matrix P means P1/2, we will say that a matrix S is a
square root of a matrix P if P = SST . Compared with standard Kalman filter-
ing algorithms, square root algorithms are known for their superior numerical
properties (see Bierman [1977] and Kaminski et al. [1971]). “They are also more
numerically robust than non-square-root forms because they are less suscepti-
ble to rounding errors and prevent the error covariance matrices from becom-
ing negative definite” (see Brown and Gaston [1995]). Paige [1985] suggests
general representations of covariance matrices in linear filtering in which the
covariance and information matrices are implicitly defined. He also develops
numerically reliable algorithms (see also Kourouklis [1977]).

Stability problems can be reduced using the square root form of covariance
matrices, but there may still be storage and time difficulties. The solution for
this is to use a square root covariance matrix with less columns. That is, given
a covariance matrix P

P = SST , S ∈ Rn×n −→ P ≈ SST , S ∈ Rn×m, (28)

where m � n and m is usually referred to as the number of modes. With this
formulation, we still have the symmetry and semipositive definiteness of the
covariance matrices.

Define

ma
.= number of modes of the analysis error covariance matrix (29)

m f
.= number of modes of the forecast error covariance matrix (30)

mq
.= number of modes of the model error covariance matrix (31)

mr
.= number of modes of the observation error covariance matrix, (32)

Sa .= square root covariance matrix of analysis errors, Sa ∈ Rn×ma (33)

Sf .= square root covariance matrix of forecast errors, Sf ∈ Rn×m f (34)
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Sm .= square root covariance matrix of model errors, Sm ∈ Rn×mq (35)

So .= square root covariance matrix of observation errors, So ∈ Rn×mr (36)

Then, covariance matrices in the Kalman filter algorithm (23)–(27) can be
transformed in terms of the reduced rank square root as follows

SfSfT ≈ Pf ≈ MSaSaT MT + SmSmT = [
MSa | Sm] [

MSa | Sm]T =⇒
Sf ≈ [

MSa | Sm]
, (37)

K = PfHT
(
HPfHT + R

)−1

≈ SfSfT
HT

(
HSfSfT

HT + SoSoT
)−1

=⇒

K ≈ Sf
(
HSf

)T
([

HSf | So
] [

HSf | So
]T

)−1

, (38)

SaSaT ≈ (
I − KH

)
Pf (

I − KH
)T + KRKT

≈ (
I − KH

)
SfSfT (

I − KH
)T + KSoSoT KT

=
[(

I − KH
)

Sf | KSo
] [(

I − KH
)

Sf | KSo
]T

=⇒

Sa ≈
[(

I − KH
)

Sf | KSo
]

(39)

Note that

(1) the number of forecast modes m f is ma + mq ,

(2) after the assimilation step, the square root of the analysis error covariance
matrix (39) has a larger number of columns, viz ma + mq + mr , and a trun-
cation strategy is needed in order to be able to continue with the algorithm
(in Treebushny and Madsen [2003] a procedure based on the Lanczos de-
composition algorithm is used, in van Loon and Heemink [1997], Segers
et al. [2000], and Segers [2002] a procedure based in the SVD is explained,
in Hoteit and Pham [2004] a reduced-order extended Kalman filter is
proposed).

(3) generally, the number of observations p is much less than the dimension of
the state space n. In this case, we should take mr = p in order to avoid loss
of information.

Finally, the RRSQRTKF algorithm is:

xf = M
(
xa)

, (40)

Sf = [
MSa | Sm]

, (41)

K = Sf
(
HSf

)T
([

HSf | So
] [

HSf | So
]T

)−1

, (42)

xa = xf + K
[
y − H

(
xf

)]
, (43)

Sa =
[(

I − KH
)

Sf | KSo
]

, (44)

Sa ← reduce Sa to ma columns, (45)
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3.3 ENKF (ENsemble Kalman Filter)

The idea of the ensemble Kalman filter is to represent the error statistics us-
ing an ensemble of model states. Therefore, instead of forecasting the analysis
error covariance matrix using the tangent linear model, the model states are
propagated and the covariance matrix is recovered from them. It is very easy to
implement, and there is no need to propagate full covariance matrices, but only
a few model states (or modes) that contain the information about the system
and its statistics. It captures nonlinearities of the model (see Evensen [1994,
2003]) and a tangent linear model is not necessary (and sometimes not avail-
able). The only problem is that the error in the Monte Carlo sampling decreases
proportionally to 1/

√
N where N is the number of modes. The ENKF has been

applied succesfully to several models (in Allen et al. [2002] it is used in the
European Regional Seas Ecosystem Model ERSEM, Segers [2002] shows an
implementation in the LOTOS model and Annan et al. [2005] use it as an ef-
ficient method for parameter estimation and ensemble forecasting in climate
modelling is developed).

The ENKF algorithm explained in Evensen [2003] is:

Generate (only the first time): ξai ∈ N
(
xa, Pa)

, i = 1 : m, (46)

Propagate: ξ fi = M
(
ξai) + ηi, ηi ∈ N

(
0, Q

)
, i = 1 : m, (47)

Estimate: xf = 1

m

m∑
i=1

ξ fi, (48)

Estimate: Pf = 1

m − 1

m∑
i=1

(
ξ fi − xf

) (
ξ fi − xf

)T
, (49)

Gain matrix: K = PfHT
(
HPfHT + R

)−1

, (50)

Correct: ξai = ξ fi + K
(
yi − H

(
ξ fi

))
, yi ∈ N

(
y, R

)
, i = 1 : m, (51)

Estimate: xa = 1

m

m∑
i=1

ξai, (52)

Estimate: Pa = 1

m − 1

m∑
i=1

(
ξai − xa) (

ξai − xa)T
, (53)

3.4 RRSQRTENKF (Reduced Rank Square Root ENsemble Kalman Filter)

This is a version of the Ensemble Kalman filter using the square root of covari-
ance matrices. This method is called EnSR (see Whitaker and Hamill [2002]
and Tippett et al. [2003]), but for the rest of this article it will be referred to as
RRSQRTENKF. The algorithm (46)-(53) becomes

Generate (only the first time): ξai ∈ N
(
xa, SaSaT

)
, i = 1 : m, (54)

Propagate: ξ fi = M
(
ξai) + ηi, ηi ∈ N

(
0, SmSmT

)
, i = 1 : m, (55)
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Estimate: xf = 1

m

m∑
i=1

ξ fi, (56)

Estimate: Sf = 1√
m − 1

⎛
⎜⎜⎝

...
...

ξ f1 − xf · · · ξ fm − xf

...
...

⎞
⎟⎟⎠ , (57)

Gain matrix: K = Sf
(
HSf

)T
([

HSf | So
] [

HSf | So
]T

)−1

, (58)

Correct: ξai = ξ fi + K
(
yi − H

(
ξ fi

))
,

yi ∈ N
(
y, SoSoT

)
, i = 1 : m, (59)

Estimate: xa = 1

m

m∑
i=1

ξai, (60)

Estimate: Sa = 1√
m − 1

⎛
⎜⎜⎝

...
...

ξa1 − xa · · · ξam − xa

...
...

⎞
⎟⎟⎠ , (61)

Notice that both ENKF and RRSQRTENKF require the generation of ran-
dom vectors with a prescribed distribution. This can be done every time step,
but it is better to let the ensemble evolve according to the model and the obser-
vations. From the numerical experiments performed it is clear that ENKF and
RRSQRTENKF require some time before the ensemble members represent the
dynamical system well.

We also note that the user should choose the number of columns of the re-
duced rank square root covariance matrices equal to the ensemble size. If this
is not the case, a reduction step, as in (45), needs to be added.

4. DESIGN

4.1 Overview

We have developed a set of Fortran 90 modules that implement the Kalman
filter adapted for large scale problems. The methods implemented are the
Extended Kalman filter (identified as EKF), the Reduced Rank Square Root
filter (identified as RRSQRTKF), the Ensemble Kalman filter (identified as
ENKF) and the Reduced Rank Square Root Ensemble filter (identified as
RRSQRTENKF). Each method and each necessary assimilation task (for exam-
ple, model and observations) is coded in modules that can be replaced according
to the application.

A list of capabilities is

—Modularity: As mentioned before, we have separated all the assimilation
tasks in the implementation. This means that observations, model and assim-
ilation are different entities. For example, if the observation stations change
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location, there is no need to modify the main code, but only a module related
to location. If we need to change the model, there is no need to transform
all the code, but only the module related to the model. If we want to change
the Kalman filter version, a change in the module related to the assimi-
lation will suffice. This allows the user to make minimum changes to the
code implementing modelling system (model, data formats, libraries, con-
figuration files) in order to minimize the risk of introducing programming
bugs.

—Simplicity: There are no derived types defined in the code. It is clear that
derived types are a useful language tool, but in this case the intention was
to determine the global variables and the specific functions associated with
the assimilation. Users are encouraged to introduce new abstract types and
restrict the complexity they need to those modules that have to be edited,
rather than adjust their code to an existing structure. The software has
been written for users with some programming experience as well as expert
coders.

—Language: The modules are programmed in Fortran 90. The choice of the
language was made because many large scale models already exist in either
Fortran 77 or Fortran 90. Only standard Fortran 90 ([Adams et al. 1992]) has
been used and the code has been succesfully compiled and executed with the
Intel Fortran Compiler, Portland Fortran Compiler, GNU Fortran and g95.
For parallelization MPI was used (compiled with the Intel Fortran Compiler,
Portland Fortran Compiler, GNU Fortran and g95 respectively).

—Precision: The modules can use either single and double precision. Some
models have their outputs in single precision, others in double precision, so
this is a useful feature. The switch between precisions requires a change to
a single parameter and recompilation.

—Parallelism: Repeated tasks like propagating states (or applying the observa-
tion operator, or the tangent observation operator, or the tangent model) are
parallelized using the master-slave strategy and MPI (Message Passing In-
terface). In this case the master sends a set of independent tasks to the slave
processors. Once a task is completed, the slave acquires a new task from
the master. Linear algebra operations are performed using BLACS (Basic
Linear Algebra Communication Subprograms) and SCALAPACK (Scalable
LAPACK). The global matrices are distributed in a process grid and opera-
tions are performed in each process over local matrices. Finally, the global
matrices are rebuilt from local pieces. The parallelism is included in a mod-
ule and the user just needs to call the parallel routines implemented thereby
avoiding the use of explicit communicators and data distribution.

5. SAMPLE APPLICATION

We illustrate the use of our software to solve a problem to assimilate CO con-
centrations in the area of Santiago de Chile. The user manual that accompanies
the software contains a number of other illustrative examples as well as pro-
gramming details.
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Fig. 1. Emissions generated by MODEM and stations.

5.1 Assimilation of CO

The implementation used the MATCH model [MATCH]. The version of the
filter applied was the Reduced Rank Square Root Kalman filter with 50
samples.

A square grid of order 41 is considered in the horizontal domain with 16
levels in the vertical direction leading to a space state of dimension 26896. For
the initialization phase, the model was run for a period of three days with an
atmosphere free of CO. The initial state vector is set to the last output of the
MATCH initial run, adding an error of 100%. The simulation period was 13
days starting at June 17th, 1999, performing an analysis every 3 hours (the
time step for observations). The meteorological fields were generated using the
HIRLAM model [HIRLAM] with a resolution of 0.01 degrees (≈ 1 km.) and a 1
hour time resolution.

The CO emissions were generated by MODEM [MODEM] (see Figure 1).
There are eight monitoring stations located at different positions in Santi-

ago. The observations are taken from the measuring stations at surface level,
at 3 hours intervals, when the analysis step is performed. In Figure 1 we show
the eight monitoring stations and the domain of simulation: (1) Seminario,
(2) Independencia-Recoleta and (5) Parque O’Higgins are in Santiago city cen-
ter; (3) La Florida covers the east and south area; (4) Las Condes - Vitacura
monitors the north-east sector; (6) Pudahuel-Cerro Navia and (7) Cerrillos reg-
ister measurements at the west side of the city; and (8) El Bosque is located
at the south. The error in the observations was set to 30% of the reported
value.
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Fig. 2. Results of the CO assimilation.

After 100 hours of the simulation running assimilation, we obtain the re-
sults shown in Figure 2, where we also present a comparison of the model,
observations, truth and assimilation.

6. CONCLUSIONS

Due to the constant growth of the efficiency and speed of the computers investi-
gations related to modelization have received a new impulse. New models and
strategies have been proposed which require increasing computer power. There-
fore, new ways of improving forecasts have been implemented, for example, the
discrete time Kalman filter. Over the past decades scientists have realized that
only improving a model is not enough to get good forecasts, because there are
always errors in the data. We can have a perfect model, but if the data is in
error we cannot do anything about it. That is why information coming from
observations must be used to correct the model. The idea behind this work is
to provide a platform where researchers (from oceanography, climatology, etc.)
can make use of the Kalman filter in their prediction models in an easy way,
changing their source codes as little as possible in order to add assimilation
material.

The package is oriented to large scale problems, although some versions of
the Kalman filters without simplifications are also implemented. The modules
are organized to separate tasks; model, observations and assimilation are con-
sidered as different so that each may be changed with only local changes to the
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code. This provides a cleaner implementation as well as one that minimizes the
risk of introducing errors.

Parallelism is implemented using MPI using a master-slave strategy. Lin-
ear algebra operations are optimized using the BLAS, LAPACK, PBLAS and
SCALAPACK libraries.

The treatment of vectors and matrices takes advantage of Fortran 90 fea-
tures. This aspect is very important because most of the models in 3D use 3D
matrices to represent the state of a domain, but the filter needs the representa-
tion of the state as a vector, so an efficient way of transforming between matrices
and vectors is required.

The assimilation libraries can be inserted in any model if observations are
available. There are versions of the filter that do not require the tangent lin-
ear model (which is sometimes not available) but can capture the strong non-
linearities present in many problems, for example, air pollution. These libraries
do not deal with setting the covariance matrices because this strongly depends
on both the model and the received observations. The most difficult part of the
assimilation is how to set the covariance matrices of model and observation
errors. The user must know the modeling system in detail in order to obtain an
effective assimilation, and may need to improve some parts of the code to gain
efficiency for a particular problem.

Numerical tests in 0D, 1D, 2D and 3D have been implemented with sat-
isfactory results in all the versions of the filter. In 0D, solving the ordinary
differential equation as in the example provided in the user’s manual, one can
see how efficient the filter is in reducing the uncertainties. We note that the full
Kalman filter produces discontinuities in the assimilated solution, and these
occur when an assimilation step is performed. The filters based on Monte Carlo
methods (ENKF and RRSQRTENKF) produce smoother solutions. From the ex-
periments we can see that the ensemble needs a period of time to obtain a good
representation of the system state. This also can be seen in 0D. For large scale
problems it is impossible to apply the full filter. The two 3D problems presented
in the examples (see the user’s manual) illustrate the use of the package in real
applications. In the first case we were able to assimilate CO concentrations in
the model MATCH, and in the second case we were able to assimilate O3 con-
centrations in the POLAIR3D model. In the last case a detailed description is
provided on how to implement the model.

We believe that our libraries represent a helpful tool for the modeler, and a
good starting point for tuning the variables involved in the filter.
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