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Abstract

In this work, we study the evolution of the susceptible individuals during the spread of an epidemic modeled by the
susceptible-infected-recovered (SIR) process spreading on the top of complex networks. Using an edge-based
compartmental approach and percolation tools, we find that a time-dependent quantity WS(t), namely, the probability
that a given neighbor of a node is susceptible at time t, is the control parameter of a node void percolation process
involving those nodes on the network not-reached by the disease. We show that there exists a critical time tc above which
the giant susceptible component is destroyed. As a consequence, in order to preserve a macroscopic connected fraction of
the network composed by healthy individuals which guarantee its functionality, any mitigation strategy should be
implemented before this critical time tc. Our theoretical results are confirmed by extensive simulations of the SIR process.
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Introduction

The study of epidemic spreading has been one of the most

successful applications on networks science. Recent outbreaks of

new influenza strains like the H1N1 [1] and the H5N5 flu or the

Severe Acute Respiratory Syndrome (SARS) [2], which are

characterized by a high rate of mortality and/or fast propagation

velocity, motivate the development of epidemic models that

capture the main features of the spread of those diseases. In

particular, mathematical tools applied to model epidemics are very

important since they allow to understand how a disease impact on

the society, helping to develop new policies to slow down its

spreading.

One of the simplest models that reproduce seasonal diseases,

such as influenza, is the susceptible-infected-recovered (SIR)

model [3,4], which has been the subject of extensive theoretical

and numerical research on complex networks [3]. In the SIR

model the individuals can be in one of three states, susceptible,

infected or recovered. In its discrete formulation [5–7], at each

time step, infected individuals infect their susceptible neighbors

with probability b and recover at a fixed time tr since they were

infected, called recovery time. According to these rules, the disease

spreads on the contact network until it reaches the steady state

where there are only susceptible and recovered individuals. It was

found that the steady state of the SIR model can be mapped into a

link percolation problem which provides a theoretical framework

to study this process [6,8–10]. It is known that the size of the

infection, defined as the fraction of recovered individuals at the

steady state, is governed by the effective probability of infection or

transmissibility T of the disease which depends on b and tr. In the

SIR model, the size of the infection is the order parameter of a

second order phase transition with a critical threshold transmis-

sibility Tc. Below Tc the disease is an outbreak, where the infection

reaches a small fraction of the population while above Tc an

epidemic develops exactly as in a link percolation process [6,8–10].

In uncorrelated infinite networks this threshold is given by

Tc~1=(k{1) [6,11], where k~Sk2T=SkT is the branching

factor of the network, and SkT and Sk2T are the first and the

second moment, respectively, of the degree distribution P(k).
Here, k is the degree or number of links that a node can have with

kminƒkƒkmax. For Erdös-Rényi networks (ER), the degree

distribution is P(k)~e{SkTSkTk=k! and the threshold is found

at Tc~1=SkT. However, most of the real networks have a

heterogeneous degree distribution that is better represented by a

pure Scale-Free network (SF) with P(k)*k{l, where l measures

the broadness of the distribution. In the thermodynamic limit, for

SF networks with 2vlv3, Sk2T?? and as a consequence, the

critical transmissibility Tc?0 which means that the epidemic

spreads for any value of T [6,11]. However, due to finite size

effects, real networks have finite critical transmisibilities.

In a recent paper, using a generating function formalism,

Newman [12] showed that at the steady state of the SIR model

there exists a second threshold T� above which the residual

network composed by the biggest giant susceptible cluster that

remains after a first propagation, is destroyed. From an

epidemiological point of view, this implies that if a disease spreads

for a second time on the residual network, it cannot become an

epidemic. On the other hand, Valdez et al: [13] showed that T� is

an important parameter to determine the efficiency of a mitigation

or control strategy, because any strategy that decrease the

transmissibility below T�, can protect a large and connected

cluster of susceptible individuals. Using a percolation framework,

they explained the lost of the susceptible giant cluster as a not-
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random node percolation process, that they called node void

percolation, in which a susceptible individual corresponds to a

void node in link percolation.

Even though percolation theory was very useful to describe the

steady state of the SIR model on complex networks, it is still very

challenging to explain the dynamics of the model to develop

intervention strategies before the epidemic spreads to a large

fraction of the population. To describe the dynamics of epidemic

spreading on networks, recently some researchers developed

differential rate equations for the SIR model that take into

account the network topology. Lindquist et al: [14] introduced an

‘‘effective degree’’ approach through a large system of ordinary

differential equations. Under this approach, the nodes and their

neighbors are categorized by their disease state (susceptible,

infected, recovered) and each differential equation compute the

evolution of the fraction of susceptible or infected nodes with a

number i and s of infected and susceptible neighbors, respectively,

with 0ƒiƒkmax and 0ƒsƒkmax. As a result, a system with

O k2
max

� �
equations needs to be solved. This approach represents

accurately the evolution of the number of infected individuals, but

at a high computational cost. On the other hand, Miller [15] and

Miller et al: [16,17] proposed an ingenious approach to describe

the evolution of a SIR process with rates by means of an edge-

based compartmental model (EBCM) [15,16] which has the

advantage to describe the dynamical spreading of an epidemic

with only a few equations. With these equations, the authors found

accurate results for the evolution of the number of infected

individuals for static and dynamic evolutive topologies like ‘‘edge

swapping’’ and ‘‘dormant contacts’’ for transmissibilities above the

critical threshold [16].

While most of the literature is focused on studying the evolution

of the fraction of infected or susceptible individuals, it has not yet

been investigated how the epidemic spread affects the evolution of

the network composed by the susceptible individuals. Understand-

ing this problem is important because the network composed by

the healthy individuals is the network that sustains the function-

ality of a society, e.g. the economy of a region. In this paper we

present a novel idea for the SIR model, based on a dynamical

study of the network composed by susceptible individuals. We

show that the temporal decreasing of the size of the giant

susceptible cluster can be described as a dynamic void node

percolation process with an instantaneous void control parameter.

We find that there exists a critical time tc above which the giant

susceptible component overcomes a temporal second order phase

transition with mean field exponents. The paper is organized as

following: in Methods and Results we present the theoretical

framework to derive the evolution equations. Then we study the

evolution of the giant susceptible cluster and its temporal critical

behavior. Finally we present our conclusions.

Methods and Results

Theoretical framework
The evolution equations of the dynamic SIR model provide the

basis for analyzing theoretically novel magnitudes that could be

useful for epidemiologists and authorities to plan policies to stop a

disease before an epidemic develops. In the SIR model, initially,

all the nodes are susceptible except for one node randomly

infected, that represents the index case from which the disease

spreads. The infected individual transmits the disease to suscep-

tible neighbors with probability b each time unit and recovers tr

time units since he was infected. For the SIR with fixed recovery

time, the transmissibility is given by T(b,tr):T~1{(1{b)tr

[13].

In order to study the evolution of the states of the individuals in

the SIR with fixed recovery time, we use the edge-based

compartmental model (EBCM) [15–17]. The EBCM is based on

a generating function formalism, widely implemented in branch-

ing and percolation process on complex networks [3,18–20]. For a

branching process that spreads on uncorrelated networks, such as

the tree of infected individuals, two generating functions that

contain the information of the topology of these networks are

defined. The first one is the generating function of the node degree

distribution P(k) which is given by G0(x)~
P

k P(k)xk. The

second one is the generating function of the degree distribution of

the first neighbors of a node, also called excess degree distribution

P1(k):kP(k)=SkT, given by G1(x)~
P

k kP(k)=SkTxk{1. Here,

P1(k) is the probability to reach a neighbor of a node, following a

link. It is straightforward that the mean connectivity of the nodes is

SkT~G
0

0(1).

Denoting the fraction of susceptible, infected and recovered

individuals at time t by S(t), I(t) and R(t), respectively, the EBCM

approach describes the evolution of the probability that a node

(which we call root node) is susceptible. In order to compute this

probability, an edge is randomly chosen and a direction is given, in

which the node in the target of the arrow is the root, and the base

is its neighbor. Disallowing that the root infects the neighbor,

h(t):ht is the probability that the neighbor does not transmit the

disease to the root, with ht given by

ht~WS(t)zWI (t)zWR(t) ð1Þ

where WS(t), WR(t) and WI (t) are the probabilities that the

neighbor is susceptible, recovered, or infected but has not

transmitted yet the disease to the root. The probability that a

root node with connectivity k is susceptible is therefore hk
t and the

fraction of susceptible nodes is S(t)~
P

k P(k)hk
t ~G0(ht). This

approach simplifies the calculations, reducing the problem to

finding an evolution equation for ht, from where the evolution of

S(t), R(t) and I(t) is derived. Thus, using the EBCM approach

adapted to SIR with fixed tr (see Supporting Information Sec.1),

the evolutions of ht, WS(t) and WI (t) are given by the deterministic

equations

Dht~{bWI (t) ð2Þ

DWS(t)~G1(htz1){G1(ht) ð3Þ

DWI (t)~{bWI (t){DWS(t)z(1{T)DWS(t{tr) ð4Þ

where D is the discrete change of the variables between times t and

tz1. Eq. (2) represents the decrease of ht when a infected

neighbor transmits the disease. Eq. (3) represents the decrease of

WS(t) when a susceptible neighbor is infected (notice that

DWS(t)v0). This term contributes to an increase of WI (t) in Eq.

(4) where the first term represents the decrease of WI (t) when the

links transmit the disease, the second term corresponds to the term

of Eq. (3) mentioned above and the third term represents the

decrease of WI (t) due to the recovery of infected individuals.

From the above equations, the evolution of the fraction of

infected individuals can be computed as

DI(t)~{DS(t)zDS(t{tr) ð5Þ

Percolation with a Dynamical Control Parameter
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where the first term represents the fraction of new infected

individuals (see Supporting Information Sec.1). The second term

represents the recovery of infected individuals that have been

infected tr time units ago.

These difference equations correctly describe the evolution of

S(t), I(t) and R(t) above the criticallity for all values of tr and b
(see Supporting Information Sec.1). In the next section, we will

show that combining this approach and dynamic percolation, we

can describe the time-dependent evolution of the susceptible

individuals in the SIR model as a dynamic void node percolation

process for any value of tr.

Temporal percolation of susceptible individuals
In Ref. [13] it was found that the process under which the

susceptible clusters size decrease can be explained with node void

percolation defined below that as we will show can be related with

the dynamic SIR process.

In the steady state of the SIR model an epidemic cluster is

equivalent to a Leath growth process [21,22] with a link

occupancy probability T . The Leath process on complex networks

generates a single cluster that represents the infection tree for a

given value of the transmission probability T . Denoting by fn(T)
the probability that a cluster reaches the nth generation following a

link, the probability f?(T) that a link leads to a giant component

(n??) is given by [13,22]

f?(T)~1{
X?
k~1

kP(k)

SkT
1{T f?(T)½ �k{1 ð6Þ

where f?(T) is the solution of

f?(T)~1{G1 1{T f?(T)½ � ð7Þ

As the ‘‘infectious’’ cluster grows from a root, generation by

generation, the sizes of the void clusters, i:e: the nodes not reached

by the disease, are reduced as in a node dilution process, since

when a link is traversed a void cluster loses a node and all its edges.

As a consequence, for large generations f?(T) can also be

interpreted as the probability that a void cluster loses a node.

However, in this kind of percolation process the void nodes are not

killed at random, instead they are removed following a link. We

call this type of percolation ‘‘node void percolation’’. If we denote

by 1{Vs the probability that a void node is removed due to the

occupancy of a link, at the steady state the following relation holds

1{Vs~f?(T) ð8Þ

Then Vs is the probability that a void node is not removed due to

the fact that the link has not been traversed. Thus, Vs is equivalent

to WS(t??) because the void nodes correspond to the susceptible

individuals in the steady state. As in any percolation process, there

is a critical probability Vs
c at which the void network undergoes a

second order phase transition. Above Vs
c a giant void component

exist while at and below Vs
c void nodes belong only to finite

components. In epidemic terms, this means that at Vs
c only finite

susceptible clusters can be reached. As a consequence, the fraction

of links T� needed to reach this point fulfills [13]

Vs
c~1{f?(T�) ð9Þ

Therefore, from Eqs. (7) and (9) we obtain

Vs
c~G1 1{T�(1{Vs

c )
� �

ð10Þ

where T� is the solution of Eq. (10). This result shows that at the

steady state, for T§T�, we have Vs
vVs

c and therefore the size of

the giant susceptible cluster S1?0 [13]. Even though static

percolation is a useful tool to analyze the final size of the giant

component of susceptible individuals [12], it is very important to

know the evolution of S1(t), since it can be used as a criteria to

begin or to increase an intervention to protect a large fraction of

the susceptible population [13]. As we will show below, S1(t) can

be fully related with a node void percolation process at every

instant t.

In order to describe the evolution of the size of the giant

susceptible cluster, we define vt as the probability that a neighbor

of a root not connected to the giant susceptible cluster has not yet

transmitted the disease to the root at time t. This is possible if the

neighbor of the root node is infected but has not yet transmitted

the disease, recovered or susceptible but not connected to the giant

susceptible cluster, with probabilities WI (t), WR(t) and G1(vt)
respectively. Similarly to ht (see Eq. (1)), these probabilities satisfy

the relation

WR(t)zWI (t)zG1(vt)~vt ð11Þ

where G1(vt) is the generating function of the neighbor of a root

not connected to the giant susceptible cluster. From Eq. (1),

WI (t)zWR(t)~ht{WS(t)~ht{G1(ht). Then Eq. (11) can be

rewritten as,

vt{G1(vt)~ht{G1(ht) ð12Þ

and the evolution of S1(t) is given by

S1(t)~G0(ht){G0(vt) ð13Þ

where G0(ht) is the total fraction of susceptible individuals and

G0(vt) is the fraction of individuals belonging to finite susceptible

clusters at time t. Notice that the dynamical Eqs. (12) and (13) are

a time-dependent versions of the ones derived in Ref. [12] for the

steady state (t??) of the SIR model. This suggests that the

evolution of the giant susceptible or percolating void cluster can be

thought as a temporal percolation process. Thus, the magnitudes

derived for the static percolation of the susceptible individuals have

a dynamical counterpart. As a result, Vs and WS(t), are equivalent

not only at the steady state, but also at every instant of time. In

order to show the equivalence, in Fig. 1 we show in the same plot

S1(t) as a function of WS(t), obtained from Eqs. (3)–(2) and (12)–

(13), and the steady state S1(t??) as a function of Vs [12] for ER

and SF networks with the same SkT and N for T~0:76wT�.
As we can see, the static curve S1(t??) as a function of Vs is

the same as S1(t) as a function of WS(t) and they coincide with the

simulations for different values of tr which shows the equivalence

between Vs and WS(t) at every instant of time and not only at the

steady state (for details of the simulations see Supporting

Information Sec.1). Thus our process can be explained by a

dynamic percolation with an instantaneous void transmissibility

Vs:WS(t).

With our theoretical formulation, we will show that there is a

critical time tc at which the giant susceptible cluster disappears

that correspond to the time at which WS(tc)~Vs
c . In order to

prove this, notice that according to Eq. (12), ht and vt can be

thought as two points with the same image of the function

Percolation with a Dynamical Control Parameter
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x{G1(x). Solving this equation for the variable vt above T�, two

solutions are found since the curve x{G1(x) is a concave function

for xw0 as can be seen in Fig. 2. One of the solutions is the trivial

one, for which S1(t)~0, that corresponds to the maximum of the

function x{G(x) at htc
~vtc

:vc. Then the giant susceptible

cluster is destroyed at the point vc which fulfills

x{G1(x)½ �
0
Dwc~0 ð14Þ

then,

wc~ G
0
1

� �{1

(1) ð15Þ

Thus when Eq. (14) is satisfied, the giant susceptible cluster

disappears and WS(tc):Vs
c~G1(vc~hc)~G1 G

0
1

� �{1

(1)

� 	
, i:e:

WS(tc)~G1 G
0
1

� �{1

(1)

� 	
ð16Þ

For ER networks it is straightforward to show that WS(tc)~1=SkT.

In Fig. 3 we plot the time evolution of the fraction of susceptible

individuals S1(t) in the susceptible giant component as a function

of t for ER and SF networks obtained from the theory and the

simulations, for a transmissibility T above T�.
As shown in Fig. 3, there is an excellent agreement between the

theoretical curve S1(t), obtained from Eqs. (12) and (13), and the

simulations which validate that percolation tools can be used to

describe the time dependence of the susceptible individuals in the

SIR process for TwT�. On the other hand, in the figure we can

see that for TwT�, the giant susceptible cluster S1(t) is destroyed

at t~tc which occurs exactly at WS(tc)~Vs
c (see the insets of

Fig. 3). Our results show that WS(t) can be used to determine

whether a giant susceptible cluster exists at a given time. In turn, in

the insets of Fig. 3 we can see that the size of the second susceptible

cluster S2(t) has a sharp peak around tc, indicating that, as in static

percolation, the susceptible individuals overcome a second order

phase transition. However, this transition is not given by a random

node percolation process. As the disease spreads through the links,

the susceptible individuals are removed with probability propor-

tional to kP(k), i:e:, the susceptible network loses the higher

degree nodes first. For this reason, the disease spreading induces a

second order phase transition in the susceptible network with

mean field exponents at tc (see discussion in the Supporting

Information Sec.2).

An important implication of our results is that, it can be used by

the health authorities to implement intervention strategies before

the critical time tc is reached. This will allow to protect a

macroscopic fraction of the network composed by healthy

interconnected individuals which preserve all the topological

properties characteristic of social contact networks and their

functionality.

Conclusions

In this paper we introduce a temporal dynamic percolation to

characterize the evolution of the susceptible individuals in a SIR

model. We show using an edge-based compartmental approach

and percolation tools that as the disease spreads the evolution of

the susceptible network can be explained as a temporal node void

percolation that can be mapped instantaneously into static

percolation. We show that for transmissibilities above T�, there

Figure 1. Equivalence between WS(t) and Vs. S1(t??) as a function of Vs (|) obtained in Refs. [12,13] and S1(t) as a function of WS(t) (solid line)
obtained from Eqs. (3)–(2) and (12)–(13) with N~105 and mean connectivity 4.07 in the giant component for (A) a ER network with SkT~4 and (B) SF
network with l~2:63, kmin~2 and SkT~4:07. In the insets we show S1(t) as a function of WS(t) from the simulations (symbols) and from Eqs. (3)–(2)
and (12)–(13) (solid line) for tr~1 (%) and tr~20 (p). (Color online).
doi:10.1371/journal.pone.0044188.g001

Figure 2. Schematic of the behavior of Eq. (12) for TwT�. From
the initial condition h0~h(t~0)~1, ht and vt , satisfies Eq. (12). For
ht=vt we have two solutions that correspond to S1(t)w0. When ht

reaches the maximum of the function x{G1(x), hc~vc , the giant
susceptible component is destroyed. The dashed lines are used as a
guide to show the possible solutions of Eq. (12).
doi:10.1371/journal.pone.0044188.g002
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exist a critical time above which the giant susceptible cluster is

destroyed and the susceptible network overcomes a second order

transition with mean field exponents. All our theoretical results are

in excellent agreement with the simulations. Our findings are very

interesting from an epidemiological point of view since the

existence of a threshold time implies that when a very virulent

disease reaches a small number of susceptible individuals, the

authorities have only a limited time to intervene, in order to

protect a big community (susceptible giant component) that has

not been already reached by the epidemic, and to preserve the

topological features of SF networks. Our finding on the susceptible

network could be extended to other epidemics dynamics allowing

to obtain a better description of the effect of diseases spreading on

social and technological networks.
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