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OpenFOAM� libraries are a great contribution to CFD community and a powerful way to create solvers
and other tools. Nevertheless in this creative process a deep knowledge is needed concerning with classes
structure, for value storage in geometric fields and also for matrices resulting from equation systems,
becoming a hard task for debugging.

To help in this process a new tool, called gdbOF, attachable to gdb (GNU debugger) is presented in this
paper. It allows to analyze classes structure at debugging time. This application is implemented by gdb
macros, these macros can access to code classes and also to their data in a transparent way, giving the
requested information. This tool is tested for different application cases, such as the assemble and storage
of matrices in a scalar advective–diffusive problem, non orthogonal correction methods in purely diffu-
sive tests and multiphase solvers based on Volume of Fluid Method. In these tests several types of data
are checked, such as: internal and boundary vector and scalar values from solution fields, fluxes in cell
faces, boundary patches and boundary conditions. As additional features of this tool data dumping to file
and a graphical monitoring of fields are presented.

All these capabilities give to gdbOF a wide range of use not only in academic tests but also in real
problems.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

OpenFOAM� is a CFD library that allows users to program solv-
ers and tools (for pre-processing or post-processing) in a high-level
specific language. This high-level language refers to the fact of
writing in a notation closer to the mathematical description of
the problem, releasing the user from the internal affairs of the
code.

This programming approach contrasts with procedural lan-
guages approach, such as Fortran, that are widely used in academic
and scientific environments but oriented to the low-level problem
resolution, i.e., the manipulation of individual floating-points val-
ues. Thus, in order to achieve the abstraction from the low-level cod-
ing it is necessary to follow another way, so that the Object-Oriented
Programming (OOP) paradigm is selected. This methodology pro-
duces code which is easier to write, to validate and to maintain com-
pared with purely procedural techniques. Respect to OpenFOAM� it
is completely written is C++. This language is less rigorously object-
oriented than the others languages (such as SmallTalk or Eiffel), due
to the inclusion of some characteristics that are not strictly object-
based. The main add-on is operator overloading, which is essential
to working with tensor, vector and scalar fields objects concepts as
ll rights reserved.
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in the mathematical notation. On the other hand, it is a multiplat-
form language and, due to that it is based on C, is as fast as any other
procedural languages [1].

There are five fundamental concepts in OOP, whereby Open-
FOAM� achieves its objectives: modularization, abstraction, encap-
sulation, inheritance and polimorphism [2]. All of them are widely
used in the code. Polymorphism is a key concept in OpenFOAM�,
which is clearly demonstrated by the proliferation of virtual meth-
ods (methods that must be implemented in child classes). Exam-
ples of this include the implementation of boundary conditions,
which inherit from a base class patchField, so they have the
same interface but different implementations. Another example
is the representation of tensor fields: in this case geometric-

Field is the parent class and various tensor fields inherit from
it: scalarField (rank 0), vectorField (rank 1) and tensor-

Field (rank 2), each one implementing the interface provided by
the parent class in different ways.

In addition to these OOP features, there are other tools of the
C++ language which are not strictly object-based and those are
used in OpenFOAM�. They are the aforementioned operator over-
loading and the use of preprocessor macros. Macros allow to insert
code directly in the program, avoiding the overhead of invoking a
function (passing parameters to the stack, do a jump, take param-
eters), without losing the code readability [3].

As it was mentioned, using these techniques a library oriented
to high-level development is generated, ensuring that the user only
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mailto:santiagomarquezd@gmail.com
http://www.cimec.org.ar
http://dx.doi.org/10.1016/j.advengsoft.2011.12.006
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


18 S. Márquez Damián et al. / Advances in Engineering Software 47 (2012) 17–23
has to take care about the model to solve and not other details of
coding [4]. On the other hand, some problems could arise in the
application creation stage yielding to undesired results. There be-
gins the code debugging work, and this includes monitoring values
corresponding to variables involved in the resolution, such as, ten-
sors, vectors and/or scalar fields defined at cell or face centers,
coefficients in the system matrix, and many other examples. In
addition, debugging is not ever motivated by problems, but simply
for exploratory or control purposes [5].

From the side of debugging tools in GNU-Linux platforms, gdb
(GNU-debugger) is the defacto standard. It includes a variety of
tools for code analysis and data inspection at run-time [6] which
gives a successful environment for OpenFOAM� debugging. gdb of-
fers a powerful print command likely to inspect arrays in memory,
nevertheless it can be used directly only in simple data structures
like lists or Fields. Data examination gets hard when viewing
the desired data involves polymorphism and inheritance con-
nected with the virtual methods used by the library. This work
requires to walk through the general class tree looking for the attri-
butes which are wanted to be inspected. Moreover, once desired
attributes are found, these maybe do not directly represent the
information required by the developer. In the case of the matrices
generated by fvm methods, they store the coefficients using the
LDU Addressing technique (see gdbOF User’s Manual, Appendix
A1), so it is necessary to apply a decoding algorithm to transform
it into the traditional format (full or sparse), and to control and oper-
ate with their values.

The main objective of the gdbOF tool is to solve problems like
those explained in the previous paragraph. This tool is imple-
mented by gdb macros and it is based on an implementation of
gdb macros for STL (Standard Library for C++) debugging [7]. These
macros simplify the task of debugging the OpenFOAM� libraries,
performing the work actions transparently to the user: the simple
call of a gdb macro from console triggers a sequence of actions that
include: navigate the OpenFOAM� class tree, collect information
and reorder it for representation in an user readable format.
Moreover, gdbOF includes the option of writing the output into a
file on disk and to view it graphically. This output is formatted
appropriately to be imported in numerical computation software
such as Octave or Matlab�, thus allowing the developer to expand
the possibilities of data inspection at debugging time.

In this work the design concept of the tools will be presented
and several cases will be solved as examples of use. These prob-
lems not only emerge in an academic context but also occur in real
application environments: the first consists in a scalar advective–
diffusive problem in which the emphasis will be placed on the
assembling and storage of matrices; the second consists in a
non-orthogonal correction method in purely diffusive tests; and
the third is an analysis of multiphase solvers based on Volume of
Fluid Method. The last examples are focused in volumetric and sur-
face data inspection both in array and graphical format.

2. Basic debugging

One of the most common tasks in the debugging process is to
look at the values stored in an array, that is possible in gdb with
the command of Example 1, where v is the array to analyze.

Example 1 View array.

$(gdb) p ⁄v@v_size
1 http://openfoamwiki.net/index.php/Contrib_gdbOF.
Nevertheless, as it was pointed out in the previous section, data
inspection in OpenFOAM� requires often more complex sentences.
A typical example is to verify at debugging time that a certain
boundary condition is being satisfied (typically when the boundary
condition is coded directly in the solver and the next field informa-
tion is obtained after solving the first time-step). Boundary
conditions in OpenFOAM� are given for each patch in a Geomet-

ricField, then, assuming that the inspected patch is indexed as
0 (the attribute BoundaryField has information of all the
patches), sentence presented in Example 2 is needed to observe
the values on this patch, where vSF is a volScalarField.
Example 2 View Boundary Field values.

$(gdb) p ⁄(vSF.boundaryField_.ptrs_.v_[0].v_)
@(vSF.boundaryField_.ptrs_.v_[0].size_)

Note that the statement in Example 2 does not include any call
to inline functions, which could generate some problems in gdb,
giving even more complex access to information.

gdbOF solves the inconvenience of knowing the attribute’s place
and using long statements. Using gdbOF commands, as it is shown
in Example 3, the same results are obtained. Note the simplifica-
tion of the statement, this is the gdbOF spirit, reducing the work
needed to debug and perform the same tasks more simply and
transparently.

Example 3 View Boundary Field values with gdbOF.

$(gdb) ppatchvalues vSF 0

There are many examples in OpenFOAM� like the previous one
in which the necessity of a tool that simplifies the access to the
complex class diagram can be useful. Note that in the last example
it was not mentioned how the index of the desired patch was
known. Usually OpenFOAM� user knows only the string that
represents the patch, but not the index by which it is ordered in
the list of patches. Here gdbOF simplifies the task again, providing
the ppatchlist command which displays the list of patches with
the corresponding indexes. Regarding to other basic gdfOF tools
please refer to the gdbOF User’s Manual, Chapter 2.
3. Advanced debugging

3.1. System matrix

Increasing the complexity of debugging, there can be found
cases involving not only the search and dereference of some plain
variables. A typical case is the dumping of the linear system, Ax = b,
generated by the discretization of a set of differential equations
which are being solved. This is stored using the LDUAddressing
technique which takes advantage of the sparse matrix format
and saves the coefficients in an unusual way. This storing format
and the necessity of accessing to individual matrix coefficients
lead to trace the values one by one and to apply a decoding algo-
rithm. There are two commands to do this task, one to dump the
data as full matrices and the other to dump the data as sparse
matrices.

In order to implement the necessary loops over the matrix
elements, gdb provides a C-like syntax to use iterative (while,
do-while) and control structures (if, else). These commands have
a very low performance, so the iteration over large blocks of data

http://openfoamwiki.net/index.php/Contrib_gdbOF
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must be done externally. gdbOF becomes independent of gdb for
the assembly of matrices using another platform: the lduAd-

dressing vectors are exported to auxiliary files and the
calculation is performed in another language through calls to the
shell. Thus, python is chosen due to its ability to run scripts from
console and having a simple file management, both to load and
to save data. This is performed by the pfvmatrixfull/pfvma-

trixsparse commands whose structure is presented in Pseudo-
code 1.

Pseudo-code 1 Structure of gdbOF Command pfvmatrixfull/

pfvmatrixsparse.

1. Get parameters
2. Get upper and lower arrays with gdb
3. Redirect data to an auxiliary file
4. Format the auxiliary files: gdb format ? python format
5. Call python script to assemble the matrix

(a) Read auxiliary files
(b) Set limits
(c) Do lduAddressing
(d) Complete with zeros

6. Format auxiliary files: python format ? gdb format
7. Show output or/and save file in octave format. Add header

(sparse case)
3.2. Mesh search

Another group of macros are those which search in the mesh.
The aforementioned inability of gdb to perform loops on large
blocks of data extends to the case of meshes, forcing thus to do
the searching tasks using external tools. In order to circumvent
this issue OpenFOAM�’s mesh methods are used to accomplish
these tasks. Thus gdbOF includes ad hoc stand-alone applications
to which call at debugging time to search in the mesh. Even
though this way means creating a new instance of the mesh in
memory, the cost in time and development is lower than that re-
quired to accomplish the search on the mesh in gdb, implement-
ing the loops in the gdb C-like syntax, or in another language
such as python. These OpenFOAM� applications are included in
gdbOF package and they are compiled when the gdbOF installer
is run.

Cases of searching on the mesh typically covered by gdbOF are
those which start with a point defined by [x,y,z], returning a cell
index or values in some field, either in the center of cell (vol-
Fields) or at each of its faces (surfaceFields).

Regarding to obtaining the value of a field at some point there is
no more inconvenient than finding the index of the cell or index of
the cell containing the point (via pfindcell command), whose
centroid is nearest to it. The corresponding volFields command
returns two indexes: the index of the cell that contains the point,
and the index of the cell which has the nearest centroid.
Afterwards, the user put one of these indexes in the command
pinternalvalueslimits to extract the field value in the cell
centroid, or to observe the equation assembled for that cell with
the command pfvmatrix.

A Pseudo-code of this tool is presented in Pseudo-code 2, where
it may be noted that it does not exist any communication between
gdb and other platforms more that the shell call. The return of the
results is through temporal files, which must be generated in a par-
ticular format to be readable by gdbOF. This particular technique is
used since it is not possible to access from a given process to the
data of a second process which is being debugged.

Pseudo-code 2 Structure of gdbOF Command pfindcell.
1. Get parameters
2. Call FOAM app. to make the search

(a) Start new case
(b) Do search
(c) Save results in a temporal file

3. Read temporal file using a shell script
4. Show the indexes by standard output

Another kind of searching through the mesh is to find a list of
indexes of faces belonging to a cell. This task operates in a similar
way. The user invokes a gdbOF command and this uses a back-end
application. Despite the simplicity of using the commands, the
code is more intricate because the storage of faces in a cell is not
correlated, and the faces are subdivided in internal or boundary
faces (this requires walking through the list of faces in the mesh).
It is also needed to identify whether these faces are in the inter-
nalField or in one of the patches in the boundaryField: the last
option requires seeking the patch which the face belongs to and
the local index of the face within this patch. With this information
it is possible to obtain the field’s value at that face. For more infor-
mation see gdbOF User’s Manual Appendix C.

The gdbOF command psurfacevalues performs this search:
given a cell, find the indexes of the faces that make up it and the
value of the chosen field in each of these faces.

In pfindcell, the result stored on disk was only necessary to
parse and display it on console, but in this case, the indexes that re-
turns the application should be used to access to an array containing
the values of the field. To do that, this implementation requires to
generate a temporal gdb macro (using a shell script) because it is
not possible in gdb to assign the result of extracted data from a file
to a variable. The Pseudo-code 3 presents this implementation.

Pseudo-code 3 Structure of gdbOF Command psurfacevalues.
1. Get parameters and check if it is a surfaceField

2. Call FOAM application to make the search
(a) Start new case
(b) Do search
(c) Save results in a temporal file

3. Read temporal file using a shell script
4. Through each index:

(a) Generate temporal macro
(b) Call macro (this macro prints the results)

Note that the temporal gdb macro is generated on the fly and it
is only functional for the parameters generated in the temporal
code of the macro (Field name and location of the desired value),
then the loop in all faces of the cell is transparent to the user
and it is not a problem for debugging.
3.3. Graphical debugging

Having in mind that the aim of these tools is the debugging of
field manipulation software, the most powerful tool is finally pre-
sented. It consists on the spatial visualization of fields in a graph-
ical way.

This is a widely spread concept which reminds us the first ef-
forts in graphical debugging [8]. An usual application of graphical
debugging are general data structures [9,10], and particularly
linked-lists [11] and graphs [12]. Data Display Debugger [13,14]
can be cited as an useful and general tool for these purposes.
Respect to the field manipulation software debugging, it requires
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mesh manipulation and more sophisticated data analysis tools
which drives to specific implementations [15,16].

In the gdbOF particular case, this objective summarizes previ-
ously presented tools, and it is particularly tailored for volField
debugging. Basically it consists in an OpenFOAM� format data
dump tool callable from any debugging point with optional .vtk
file format for exporting (via foamToVtk tool) and Paraview�

[17] on the fly running. The algorithm to achieve this goal is pre-
sented in Pseudo-code 4.

Pseudo-code 4 Structure of gdbOF Command
pexportfoamformat

1. Get parameters and check if it is a volField

2. OS environment setting (first run)
(a) Creation of data dump directories
(b) Symbolic linkage of constant/ and system/ to avoid

data duplication
3. Get actual time-step and last data written name
4. Write OpenFOAM� file format header and set field

dimensions
5. Write internalField

6. Identification of boundary patches via ppatchlist

calling.
7. For each patch, write boundaries’ surfaceFields.
8. Close file.
9. Call optional parameters (.vtk exporting and Paraview�

running)
4. Tests

4.1. Scalar transport test

The first test consists of the unsteady advective–diffusive equa-
tion, in a two dimensional geometry with a mesh of 3 � 3 cells,
which is shown in Fig. 1.

The partial differential equation solved is presented in Eq. (1).

@q/
@t
þr � ðqU/Þ � r � ðqC/r/Þ ¼ S/ð/Þ ð1Þ

with the boundary conditions shown in Eqs. (2)–(4).

r/ � njinsulated ¼ 0 ð2Þ
/fixed1 ¼ 373 ðKÞ ð3Þ
/fixed2 ¼ 273 ðKÞ ð4Þ

To solve this problem, the following parameters are selected:
U ¼ ½1;0� m

s

� �
; Dt ¼ 0:005 ðsÞ; q ¼ 1 kg

m3

� �
; C/ ¼ 0:4 m2

s

� �
; S/ð/Þ ¼

0 and /0 = 273 (K) uniform along the whole domain as initial
solution.
Fig. 1. Geometry and patches in scalar transport test (numbers identify cells).
In the Finite Volume Method, each cell is discretized as it is
shown in Eq. (5) [18].

/n
p � /0

p

Dt
Vp þ

X
f

F/n
f �

X
f

C/Sf ðr/Þnf ¼ 0 ð5Þ

where / is the unknown field, Vp the cell volume, Dt the time-step, F
the flux of the advective field at the faces and Sf. n and 0 superscripts
represent different time-steps and f subscript indicates a face value.

It is known that the assembly of a problem that includes con-
vection using the upwind method results in a non-symmetric ma-
trix, in addition, increasing the diffusive term and decreasing the
time step, this matrix will tend to be diagonal dominant.

Assembling Eq. (5) in each cell for the initial time (t = 0.005), the
system of equations presented in Eq. (6) is obtained.

202:6/0 � 0:4/1 � 0:4/3 ¼ 55271:4
� 1:4/0 þ 202:2/1 � 0:4/4 ¼ 54600
� 1:4/1 þ 201:6/2 � 0:4/5 ¼ 54545:4
� 0:4/0 þ 203/3 � 0:4/4 � 0:4/6 ¼ 55271:4
� 0:4/1 � 1:4/3 þ 202:6/4 � 0:4/5 � 0:4/7 ¼ 54600
� 0:4/2 � 0:14/4 þ 202/5 � 0:4/8 ¼ 54545:4
� 0:4/3 þ 202:6/6 � 0:4/7 ¼ 55271:4
� 0:4/4 � 1:4/6 þ 202:2/7 � 0:4/8 ¼ 54600
� 0:04/5 � 1:4/7 þ 201:6/8 ¼ 54545:4

ð6Þ
4.1.1. OpenFOAM� Assembly
The above system, which was assembled manually, can be com-

pared with the system obtained by running the OpenFOAM� solver
scalarTransportFoam.

Establishing a breakpoint in the proper code line, and calling the
gdbOF pfvmatrixfull command, the system matrix A is printed
on the console. This matches the manually generated system,
showing the right performance of the tool.

Example 4 View system matrix with gdbOF.

$(gdb) b fvScalarMatrix.C:144

$(gdb) run

$(gdb) pfvmatrixfull this fileName.txt

$(gdb) shell cat fileName.txt
202.60
 �0.40
 0.00
 �0.40
 . . .
�1.40
 202.20
 �0.40
 0.00
 . . .
0.00
 �1.40
 201.60
 0.00
 . . .
�0.40
 0.00
 0.00
 203.00
 . . .
. . .
 . . .
 . . .
 . . .
 . . .
(gdb) p ⁄ totalSource.v_@9

{55271.4,
 54600,
 54545.4,
 55271.4
 . . .
An additional feature of this command and others, is the ability
to export data in a file format compatible with the calculation soft-
ware Octave and Matlab�. To do this only one more parameter is
needed in the command invocation, indicating the file name. gdbOF
is responsible for exporting the values in the correct format, using
rows, columns and values in [row,col,coeff] format. pfvma-
trixsparse exports the matrix of the system in this format which
has a header that identifies the file as a sparse matrix. This method
greatly reduces the size needed to store the matrices in the case of
medium or large meshes.

Regarding to patch commands this example is also useful to show
their potentiality. Suppose that checking a boundary condition is
wanted, for example the value / = 3732 in the fixed1 patch. First of
all, it is necessary to know the index of this patch. Once the patch index
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is known, it is possible to see its values (see Example 5). The output is
an array with three values corresponding to the boundary condition
on each one of the three faces that make up this patch.

Example 5 View patches list with gdbOF.

(gdb) ppatchlist T

PatchName –> Index to Use

FIXED1 –> 0

FIXED2 –> 1

INSULATED2 –> 2

INSULATED1 –> 3

FRONT_AND_BACK –> 4

(gdb)

(gdb) ppatchvalues T 0

(gdb) $1 = {373,373,373}

Appendix B of the gdbOF User’s Manual shows how the internal
and boundary values (in volFields and in surfaceFields) are
stored in OpenFOAM�.
4.2. Laplacian test

In this problem, gdbOF is used to monitor the field values and
the resulting equations system, in order to realize how the correc-
tion method for non-orthogonal mesh used in OpenFOAM� works3

[18,19].
The problem to solve is defined in Eq. (7), with the boundary

conditions shown in (8)–(10), and the non-orthogonal mesh pre-
sented in Fig. 2.

r � ðqC/r/Þ ¼ 0 ð7Þ
r/ � njinsulated ¼ 0 ð8Þ
/fixed1 ¼ 273½K� ð9Þ
/fixed2 ¼ /fixed1 ð10Þ

Constants and initial conditions are: q = 1, C/ = 1 and /0 = 0 (K)
in the whole domain.

Example 6 allows to verify the proper initialization of the inter-
nal field. The list shown presents the values of the field.

Example 6 View internalField values with gdbOF.

(gdb) pinternalvalues T

(gdb) $1 = {0,0}
2 In the case, T is used to represent the scalarField instead of / because
OpenFOAM� preserves / for a surfaceScalarField which represents the flux
through each face (/ = Sf � Uf).

3 The diffusive term in a non-orthogonal mesh is discretized in the following way:
Sf � (r/)f = Df � (r/)f + kf � (r/)f, where Sf = Df + kf. The correction methods propose
different forms to find Df.
It can be shown analytically that the solution to this problem is a
linear function /(x) = ax + b, and if /fixed2 = /fixed1) a = 0 and the
solution is constant, doing unnecessary the second term in non-
orthogonal correction [kf � (r/)f = 0]. It allows us to compare the sys-
tems generated by the different approaches in respect to the ob-
tained in OpenFOAM�, and to determine which one is used as default.

Using minimum-correction approach Df ¼ d�S
jdj d

� �
:

� 3:29/0 þ 1:79/1 ¼ �409:5
1:79/0 þ�3:29/1 ¼ �409:5

Using orthogonal-correction approach Df ¼ d
jdj jSj

� �
:

� 4:5/0 þ 3/1 ¼ �409:5
3/0 þ�4:5/1 ¼ �409:5

Using over-relaxed approach Df ¼ d
d�S jSj

2
� �

:

� 5:25/0 þ 3:75/1 ¼ �409:5
3:75/0 þ�5:25/1 ¼ �409:5

Example 7 shows how gdbOF extracts the equation system.
Here, the reader can verify that the over-relaxed approach is
implemented as default in OpenFOAM�.

Example 7 Equation System debugging in LaplacianTest.
$(gdb) b fvScalarMatrix.C:144

Breakpoint 1 at 0xb71455dc: file fvMatrices/

fvScalarMatrix. . . line 144

$(gdb) run

. . .

$(gdb) pfvmatrixfull this this.txt

Saved correctly!

$(gdb) shell cat this.txt
�5.25 3.75

3.75 �5.25
(gdb) p ⁄totalSource.v_@2
{-409.5, �409.5}
4.3. Multiphase test

As the last example, a multiphase solver, namely interFoam is
used showing gdbOF functionality. In this case a 2D reference prob-
lem is solved, which has analytical solution. Let be a rectangular
domain with a Couette velocity profile (see Fig. 3), and filled with
a light fluid as initial condition and the domain inlet with a heavy
fluid in all its extension. The problem to solve is the evolution of
the heaviest phase through the domain along the time.

This two phase system is solved by means of a momentum
equation (see Eq. (11)) and an advection equation for the void frac-
tion function a (see Eq. (12)) [20]

@qU
@t
þr � ðqUUÞ � r � ðlrUÞ � ðrUÞ � ra

¼ �rpd � g � xrqþ rjra ð11Þ

@a
@t
þr � ðUaÞ þ r � ½Urað1� aÞ� ¼ 0 ð12Þ

In this case, g = 0 and it can be shown that rpd and j are both
null (no pressure gradient is needed in a velocity driven flow and
curvature vanishes due a linear interface). Taking this in mind,
an initial linear velocity profile is an spatial solution of Eq. (11)
so it reduces to Eq. (13).



Fig. 3. Geometry in interFoam test.
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@U
@t
¼ 0 ð13Þ

From this conclusion it is clear that streamlines are horizontal,
and the heaviest phase advances more quickly as streamlines are
closer to the top region, giving a linear interface front (see
Fig. 3). This advancement is governed by an advective equation
for the indicator function which includes an extra term, suitable
to compress the interface [21].

Using Finite Volume Method Eq. (12) can be discretized as in Eq.
(14) [22]

anþ1 � an

Dt
V þ

X
f

an
f /

n
f þ an

f 1� an
f

� �
/n

rf

h i
¼ 0 ð14Þ

where /n
f ¼ Un � Sf ; /n

rf ¼ Un
r � Sf and superindex n implies the time-

step. Ur is the compressive velocity and is computed directly as a

flux: /rf ¼ nf min Ca
j/j
jSf j
;max j/j

jSf j

� �h i
. Ca is an adjustment constant

and nf ¼
ðraÞf

jðraÞfþdn j � Sf is the face unit normal with dn as a stabilization

factor [20]. /rf values are variable only vertically in this example and
will be checked at debugging time against those calculated from the-
ory, using gdbOF tools. In this case, because of how the advective
terms are calculated it is necessary to show values at faces.

Domain was meshed as a 3D geometry due to OpenFOAM�

requirements [23] with a 100 � 10 � 1 elements in the grid,
so each hexahedron has edges of 0.1 units in size. Since its
definition and taking Ca = 1,jUrj = jUj, therefore /r f ¼ Ur � Sf ¼
0:01jUr j �Ur � �Sf

� �
. So taking three distances from the bottom edge

of the domain, y = 0.05, y = 0.45 and y = 0.95, values for /rf in faces
with Sf aligned with x direction must be j/rfj = 0.005, j/rfj = 0.045
and j/rfj = 0.095 respectively.

Again, it is necessary to find the indexes of three cells with such
y coordinates, taking for example x = 0.05, and using pFindCell

tool the results shown in Example 8 can be obtained.

Example 8 View cell index in multiphase problem.
(gdb) pfindcell
 0.05
 0.45
 0.05
RESULTS:
Nearest cell centroid cell number: 400

Containing point cell number (-1 = out): 400

As it was explained in Section 3.2 using only the index of the cell
is not enough to address the values in a surfaceField of a given
field. Each cell has as many surface values as faces in the cell, there-
fore it is necessary to show all these values, extracting the informa-
tion from faces whose indexes are not necessarily correlative.
psurfacevalues gdbOF command simplifies this task. Knowing
the index of the cell to analyze, it returns the information on each
face about the field indicated in the command line parameters:
boundary face or internal face (categorized according to whether
it has a neighbor or not) and field value. If it is working with a 2D
mesh, information is also returned as in a 3D mesh, but it indicates
which of these faces has an empty boundary condition (see gdbOF
User’s Manual, Appendix C or Section 3.2).
Example 9 Example of usage of psurfacevalues for face defined
field.

(gdb) psurfacevalues phir 400

internal Face:

$5 = 0
tt internal Face:
$6=-0.0045
internal Face:

$7 = 0
empty Face

empty Face

boundary Face:

$8 = 0.0045
So that, applying this command to the cell previously found,
makes it possible to show /rf in all faces of that cell (see Example
9). Results are consistent with the original problem. Two faces are
marked as empty because the mesh has only one cell in depth. This
boundary condition is used by OpenFOAM� to represent no vari-
ability in direction perpendicular to the face, allowing a 2D calcu-
lation. Faces 5 and 7 corresponds to top and bottom faces of the cell
where flux is null. Finally, faces 6 and 8 have faces with normals
aligned with the velocity and the flux values are those predicted
theoretically for y = 0.45. Values have different sign due to the nor-
mals orientation.

Regarding graphical debugging presented in Section 3.3 pex-

portfoamformat is a useful tool to inspect the a field as in
Fig. 3. To do so, command is invoked as in Example 10 and results
are shown in Fig. 4.

Example 10 Field exporting to .vtk by means of pexportfoam-
format. Paraview� is invoked as well.

(gdb) pexportfoamformat alpha1 VTK Paraview

Including internal field . . .

Including boundary field (s)

fixedWall

movingWall



Fig. 4. a field representation in Paraview� using pexportfoamformat (with VTK

option).
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inlet

outlet

frontAndBackPlanes

--------------------------------------
Field saved to gdbOF_dump/alpha1.0.dump
--------------------------------------
Exporting to VTK. . .

Launching Paraview. . .
5. Conclusions

OpenFOAM� is a free software tool that enables high-level pro-
gramming using a similar sintaxis as the mathematical expression
that solves the problem. The use of C++ programming language and
all its object-oriented machinery allows a fast and expandable code
improving the performance of procedural languages. The OOP
approach provides greater simplicity for maintenance and code
expansion, since it uses five main features: modularity, abstraction,
encapsulation, inheritance and polymorphism. To complete the
machinery, the flexibility of C++ allows to include non object-based
elements, such as operator overloading and the definition of
macros instead of functions.

The downside of all these benefits is an intricate code, which is
difficult to learn and to analyze. These difficulties arise, for exam-
ple, when there are problems with unwanted results, or simply
looking for analyzing if a procedure is properly executed. These
tasks require debugging with tools like gdb, but given the complex-
ity of the aforementioned code it is necessary to expand the capa-
bilities of the debugger with a set of commands that allow simply
navigation through the code and class inspection, giving the place
to gdbOF.

So, gdbOF was presented simplifying the tasks to a single line. In
addition, due to the use of parameters in each command, gdbOF of-
fers the versatility of adapting to different objects that exist in a
typical OpenFOAM� simulation, such as volFields and sur-

faceFields each with its derivatives Scalar, Vector and Ten-

sor. Another benefit presented and tested was the ability to do
geometric searches in the mesh at debugging time, being able to
find the index of a particular cell or face, or the list of faces sur-
rounding a cell. All of these tasks were achieved through calls to
backend applications which are included in the gdbOF distribution
package. In addition to this list of benefits it may be included the
ability to obtain the system of equations associated to the discrete
version of the problem, allowing to see them in different formats
and exporting them to disk to be manipulated with other software,
and the possibility of extracting only a sub-matrix to analyze only a
specific part of it.

Finally a graphical debugging tool was presented. This goal is
achieved by means of an interface between gdb an Paraview�

which is built up based on more basic gdbOF tools. Once data are
properly exported all the benefits of the graphical tool can be re-
sorted in order to analyze the results.

All of these gdbOF features described above, allow the user to
have greater efficiency and flexibility at debugging OpenFOAM�

applications.
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