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Starting with a 5D physical vacuum described by a 5D Ricci-flat background metric, we study the
emergence of gravitational waves (GW) from the Induce Matter (IM) theory of gravity. We obtain the
equation of motion for GW on a 4D curved spacetime which has the form of a Fierz–Pauli one. In our
model the mass of gravitons mg is induced by a static foliation on the noncompact space-like extra
dimension and the source-term is originated in the interaction of the GW with the induced connections
of the background 5D metric. Here, relies the main difference of this formalism with the original Fierz–
Pauli one.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Although standard general relativity (GR) [1] achieved great
success and withstood many experimental tests, it also displayed
many shortcomings and flaws which today make theoreticians
question whether it is the definitive theory of gravity [see [2] and
references therein]. It is well known that GR is very difficult to
quantize. This fact rules out the possibility of treating gravitation
like other quantum theories, and precludes the unification of grav-
ity with other interactions. At the present time, it is not possible
to realize a consistent quantum gravity theory which leads to the
unification of gravitation with the other forces. In particular, the
theory of gravitational waves (GW) is a rich subject that brings
together different domains such as general relativity, field theory,
astrophysics and cosmology. At present various gravitational-wave
detectors, after decades of developments, have reached a sensitiv-
ity where there are significant chances of detection, and future
improvements are expected to lead, in a few years, to advanced
detectors with even better sensitivities [3]. The tensor perturba-
tions of the metric hμν propagate and can affect the background
spacetime ḡμν [4]. Since the discovery of the CMB electromagnetic
radiation we know that its spectrum is a perfect black-body. This
background is, to a first order approximation, isotropic. There are
good reasons to expect that the Universe is permeated also by
a stochastic background of GWs generated in the early universe.
Furthermore, a stochastic background can also emerge from the in-
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coherent superposition of a large number of astrophysical sources,
too weak to be detected separately, and such that the number
of sources that contribute to each frequency bin is much larger
than one. The inflationary theory is one of the better candidates to
describe the early stages of the accelerated expansion of the uni-
verse [5]. This theory can be recovered from the 5D IM one [6,7].

In this Letter we study the emergence of gravitational waves
(GW) from the Induce Matter (IM) theory of gravity [8]. We shall
investigate how we can to obtain the equation that describes the
evolution of GW from a 5D vacuum state, which is defined from
a Ricci-flat spacetime. We shall restrict to canonical metrics [9]
which are, at least, 5D Ricci-flat, on which we shall define a 5D
vacuum state.

2. Formalism

We consider a 5D theory of gravity on which we define a vac-
uum, such that the first variation of the action is (5)δI = (5)δIE +
(5)δIM , where

(5)δI = 1

2

∫
d5x

√|g|δgab
{ Rab

8πG
+ Tab

}
. (1)

Here, the first term is the variation of the gravitational Einstein
action (5)IE and the second one is the variation of the matter
action (5)IM . Here, G is the gravitational constant, g is the de-
terminant of the covariant tensor metric gab = ḡab + δgab

1 and
R = R̄ + δR is the Ricci scalar on the metric. Furthermore, ḡab

2 is

1 In this Letter a, b run from 0 to 4 and Greek letters run from 0 to 3.
2 Greek indices run from 0 to 3, and Arabic ones from 0 from 4.
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the background tensor metric, which we shall consider as describ-
ing a Ricci-flat spacetime. The energy-momentum tensor of matter,
Tab is defined from the variation of the matter action (5)IM under
a change of the metric, and will be considered as null to describe
the 5D apparent vacuum. In what follows we shall take in mind a
particular class of background metrics named canonical [10]

dS̄2 = ψ2

ψ2
0

ds̄2 − dψ2, (2)

where ds̄2 = ḡαβ(xα,ψ)dxα dxβ and ψ0 is introduced to preserve
the physical dimensions. The perturbations, which are in principle
very small, are δgab = hab . Since the fluctuations of the metric are
small, the perturbed Riemann tensor can be linearized

δRabcd � −1

2
[hbd,ac + hac,bd − hbc,ad − had,bc], (3)

so that the Ricci tensor (which is equal to the perturbed Ricci
tensor because the background Ricci tensor will be considered as
zero) δRab = ḡcdδRcabd

δRab � −1

2

[
hc

a,cb + hc
b,ac − ḡcehce,ab − �hab

]
, (4)

where commas denote the partial derivative and � is the D’Alam-
bertian on the background 5D spacetime.

2.1. 5D gauge invariant field

Now we consider the gauge invariant field Ψ a
b = ha

b − 1
2 δa

bh,
where h is the scalar h = ḡabhab , such that we impose the 5D
gauge

Ψ a
b;a = 0, (5)

where the semicolon denotes the covariant derivative. This gauge
implies that ha

b,a = 1
2 h,b − Γ̄ a

cahc
b − Γ̄ c

baha
c , Γ̄ a

bc , being the second
kind Christoffel symbols of the 5D background metric. If we con-
sider an apparent vacuum R̄ab = 0, we obtain

�hab = ḡcehce,ab − (
hc

a,cb + hc
b,ac

)
, (6)

so that Eq. (6) becomes

�hab = (
Γ̄ c

eche
a
)
,b + (

Γ̄ c
eahe

b
)
,c − (

Γ̄ e
achc

e
)
,b − (

Γ̄ e
bahc

e
)
,c, (7)

which is the linearized wave equation for the tensor field hab on
any 5D Ricci-flat metric, and

� ≡ ḡαβ ∂2

∂xα∂xβ
+ 2ḡαψ ∂2

∂xα∂ψ
+ ḡψψ ∂2

∂ψ2
.

Eq. (7) describes the dynamics of hab(xa) on the 5D Ricci-flat
canonical metric (2). Notice that they have the form �hab = Sab .
Here, Sab describes the interaction of hab with the background
metric, which manifests itself through the connections Γ̄ e

ac . Of
course Sab should be null for a really 5D Riemann-flat metric [i.e.,
for a 5D Minkowsky spacetime].

2.2. Fluctuations on a 5D apparent vacuum

In order to study the tensor fluctuations hab , on the canon-
ical metric (2), we shall consider the Einstein equations Gab =
−8πGTab , but written in the following manner

Rab = −8πG

[
Tab − 1

3
gab T

]
, (8)

where we have considered the expressions gab gab = 5 with
ḡab ḡab = 5,3 Rab = R̄ab + δRab , Tab = T̄ab + δTab , and the expan-
sion gab = ḡab + hab for the 5D Ricci-flat metric. If we separate the
equations on the background and fluctuations in (8), one obtains

R̄ab = −8πG

[
T̄ab − 1

3
ḡab T̄

]
, (9)

δRab = −8πG

[
δTab − 1

3
(ḡab + hab)δT

]
. (10)

Eq. (9) describes the background Einstein equations on the 5D vac-
uum and (10) the tensor fluctuations around (2). By multiplying
Eq. (9) by ḡab and taking into account that the metric is Ricci-flat,
we obtain

T̄ = 0, (11)

which is a manifestation of the absence of matter on 5D. On the
other hand, from Eq. (10), it is possible to obtain the expression
that relates the fluctuations of the Ricci scalar and the energy-
momentum one

δR = 16πG

3
δT . (12)

Now we consider the expression (4), which is valid only in a linear
approximation. Hence, Eq. (6) holds

δTab = 1

3
(ḡab + hab)δT , or δTab = 1

3
gabδT . (13)

Therefore, from Eq. (10) one obtains

δRab = 0, δTab = 0, (14)

so that, as one expects, R and T are 5D invariants.

3. Dynamics of GW on 4D

Now we consider the dynamics of hab on a 4D hypersurface
described by ḡαβ(xα,ψ) evaluated on a particular foliation on the
noncompact fifth coordinate ψ = ψ0:

ḡαβ

(
xα,ψ

)∣∣
ψ=ψ0

. (15)

We shall consider that the components hψψ = haψ = hψa = 0.
Eq. (6), evaluated on this hypersurface can be written as

(4)�hab + 2ḡαψ ∂2hab

∂xα∂ψ
+ ḡψψ ∂2hab

∂ψ2

∣∣∣∣
ψ=ψ0

= ∂

∂ψ

(
Γ̄

ψ
αahα

b
) + ∂

∂xβ

(
Γ̄

β
αahα

b − Γ̄ α
bahβ

α

)

+ ∂

∂xb

(
Γ̄ α

βαhβ
a + Γ̄

ψ
βψhβ

a − Γ̄ α
aβhβ

α

)∣∣∣∣
ψ=ψ0

, (16)

where we must remember that the connections Γ̄ a
bc are those of

the 5D canonical metric (2). Since we are interested on the μν
components of hab , we obtain

(4)�hμν + 2ḡαψ ∂2hμν

∂xα∂ψ
+ ḡψψ ∂2hμν

∂ψ2

∣∣∣∣
ψ=ψ0

= ∂

∂ψ

(
Γ̄

ψ
αμhα

ν

) + ∂

∂xβ

(
Γ̄

β
αμhα

ν − Γ̄ α
νμhβ

α

)

+ ∂

∂xν

(
Γ̄ α

βαhβ
μ + Γ̄

ψ
βψhβ

μ − Γ̄ α
μβhβ

α

)∣∣∣∣
ψ=ψ0

. (17)

3 Both expressions imply that h2 + ḡabhab + hab ḡab = 0.
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The equations of motion for the remaining components are com-
plied automatically because hψψ = haψ = hψa = 0. If we take into
account that ḡαψ = 0 and ḡψψ = −1, we obtain

(4)�hμν − ∂2hμν

∂ψ2

∣∣∣∣
ψ=ψ0

= ∂

∂ψ

(
Γ̄

ψ
αμhα

ν

) + ∂

∂xβ

(
Γ̄

β
αμhα

ν − Γ̄ α
νμhβ

α

)

+ ∂

∂xν

(
Γ̄ α

βαhβ
μ + Γ̄

ψ
βψhβ

μ − Γ̄ α
μβhβ

α

)∣∣∣∣
ψ=ψ0

. (18)

Since we are dealing with 5D canonical metrics like (2), it is possi-
ble to consider the following separation of variables: hμν(xα,ψ) ∼
Σ(ψ)h̃μν(xα). We obtain the system of equations

(4)�h̃μν − m2
gh̃μν

∣∣
ψ=ψ0

= Sμν

(
xα,ψ0

)
, (19)

∂2Σ(ψ)

∂ψ2
= m2

gΣ(ψ), (20)

where

Sμν

(
xα

) = ∂

∂ψ

(
Γ̄

ψ
αμh̃α

ν

) + ∂

∂xβ

(
Γ̄

β
αμh̃α

ν − Γ̄ α
νμh̃β

α

)

+ ∂

∂xν

(
Γ̄ α

βαh̃β
μ + Γ̄

ψ
βψ h̃β

μ − Γ̄ α
μβ h̃β

α

)∣∣∣∣
ψ=ψ0

. (21)

Eq. (19) is the Fierz–Pauli [12] equation of motion for massive
gravitons with mass mg and an Sμν -source. Notice that mg is in-
duced by the foliation ψ = ψ0, but the source becomes from the
nonzero connections Γ̄ α

βγ of the background canonical metric (2).
It is evident from Eq. (21) that the source Sμν is originated in the
interaction of the gravitational waves with the background through
the connections Γ̄ α

βγ of the 5D background metric (2) evaluated in
the static foliation ψ = ψ0. The general solution of (19) is

h̃μν(x) =
∫

d4x′ 

(
x − x′)Sμν

(
x′)

=
∫

d4x′ 

(
x − x′){ ∂

∂x′β
(
Γ̄

β
αμh̃α

ν

) − ∂

∂x′β
(
Γ̄ α

νμh̃β
α

)

+ ∂

∂x′ν
(
Γ̄ α

βαh̃β
μ

) − ∂

∂x′ν
(
Γ̄ α

μβ h̃β
α

)}
, (22)

where 
(x − x′) is the Green function which obeys: ((4)� −
m2

g)
(x − x′) = δ(4)(x − x′). The effective action due to the inter-
action of GW with matter will be

IInt = 4πG

∫
d4x T̄ μν(x)h̃μν(x), (23)

where h̃μν(x) is given by (22) and the source Sμν by (21).

4. Concluding remarks

We have studied GW in the framework of the Induced Mat-
ter theory of gravity. In particular, we have restricted our study to
canonical metrics like (2), which are, at least, Ricci-flat (they could
be also Riemann-flat). These kind of metrics are suitable to de-
scribe a 5D physical vacuum on which GW propagates freely with-
out interactions. We have defined a 5D gauge invariant field Ψ a

b ,
to obtain the linearized equations (7) that describe gravitational
waves (for massless gravitons) on a canonical Ricci-flat metric (2).
Note that they take the form �hab = Sab , where Sab is the inter-
action of the GW with the background metric, which should be

null for a really 5D Riemann-flat metric [i.e., for a 5D Minkowsky
spacetime]. After it, we have obtained the equations of motion
for hμν , on a static foliation of the metric (2). From the relativis-

tic point of view, observers that move with frames U 4 ≡ dx4

dS = 0
(described by a constant foliation on the extra dimension), can
see the massive gravitons moving on a curved hypersurface, such
that their equation of motion is described by the effective 4D Ein-
stein’s equations (19), with a nonzero fluctuations of the energy-
momentum tensor: Sμν given by (21). Such a 4D hypersurface is
embedded in the 5D apparent vacuum, which is geometrically de-
scribed by a 5D Ricci-flat spacetime. From the mathematical point
of view, the Campbell–Magaard theorem [11] serves as a ladder to
go between manifolds whose dimensionality differs by one. This
theorem, which is valid in any number of dimensions, implies that
every solution of the 4D Einstein equations with arbitrary energy-
momentum tensor can be embedded, at least locally, in a solution
of the 5D Einstein field equations in vacuum.

The interesting of Eq. (19) is that describes gravitons with
mass mg on a 4D curved spacetime, where Sμν represents the
interaction of GW with the connections of the background 5D met-
ric (2) on ψ = ψ0. This is the main difference with the original
Fierz–Pauli formalism, where Sμν becomes from the interaction of
GW with matter described by T̄μν [3].
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