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Convergence rates for adaptive finite elements
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In this article, we prove that it is possible to construct, using newest vertex bisection, meshes that equidis-
tribute the error in theéd 1-norm whenever the function to be approximated can be decomposed as a sum
of a regular part plus a singular part with singularities around a finite number of points. This decompo-
sition is usual in regularity results of partial differential equations. As a consequence, the meshes turn
out to be quasi-optimal, and convergence rates for adaptive finite-element methods using Lagrange finite
elements of any polynomial degree are obtained.
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1. Introduction

The study of adaptive procedures for the numerical solution of partial differential equations (PDES)
started in the late 70s and are now standard tools in science and engineering. The ultimate purpose
of adaptivity is to reduce the computational cost through the automatic construction of a sequence
of meshes that would eventually equidistribute the approximation errors, leading to (quasi-)optimal
meshes. Adaptive methods for stationary problems usually consist of the loop

SOLVE — ESTIMATE — MARK — REFINE (1.1)

Experience strongly suggests that, starting from a coarse mesh, such an iteration converges within
any prescribed error tolerance in a finite number of steps, and it does so in an optimal manner, provided
that thea posteriorierror estimators are reliable and efficient. What is observed in fact is that for a large
class of problems and data, the solutiang and meshes” obtained with adaptive methods of the
form (1.1) satisfy

lu—uzlly < CHZT)™PI, (1.2)

whereu denotes the exact solutiop the polynomial degree of the finite-element space over the esh
andd the dimension of the underlying space. This is the same error bound that is obtained with uniformly
refined meshes for smooth (regular) solutieng H P+ by an application of classical interpolation
estimates (se€iarlet 1978. The decay rate dictated bg.2—which is also observed in practice for

the so-called singular solutions belongingH&(Q2) for s < 2—is usually calledptimal error decay

The precise goal of this paper is to show a broader family of functions for which this so-called optimal
decay can be obtained when using adaptive methods. We will prove that this decay holds for functions
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that can be decomposed as a sum of a regular part plus singular terms, as described in classical regularity
results for PDE like those iGrisvard(1985 1992, Petzoldt(2001) andDauge(1988.

The first steps towards understanding the optimality of AFEM consisted of studying their conver-
gence. An analysis ofl(1) for linear, elliptic and symmetric problems in one dimension is presented
in Babuska & Vogelius(1984). The first multidimensional result is given Dorfler (1996, where it is
proved that, after a pre-adaptation of the datal)(reduces the error below any prescribed tolerance.
Proper convergence without conditions on the initial grid is provedanin et al. (2002, requiring the
so-calledinterior node propertyand an additional marking step driven dgita oscillation The latter
work has been generalized in various directions. Lately, convergence of adaptive methods with mark-
ing strategies other thandifler’s, for a large class of linear problems with differenposteriorierror
estimators and without requiring the marking due to oscillation or the interior node property, was proved
in Morin et al. (2007). The result only leads to asymptotic convergence without an error reduction in
every step, which seems to be essential to prove optimality thougls{eeenson2007, Cas®net al,,

2008.

Regarding complexity, an important result for an algorithm which is very similat.t) {s proved
in Stevensoii2007). The proof relies on techniques first develope8inev et al. (2004 and new ideas.

This result was later improved in several aspect€ason et al. (2008: the artificial assumptions of
interior node and marking due to data oscillation were removed and the result applies to more general
elliptic equations.

When considering adaptive methods, the notion of complexity differs from the previous one, which
was based on a uniform element sizét is now defined in terms of the number of elements (or degrees
of freedom) necessary to achieve a certain tolerance.

In order to be more specific at this point, we need to introduce some notation. Let us assume that
we have a functiom € H1(Q), whereQ is a polygonal domain ifR? (polyhedral inR3) and H1(Q)
denotes the Sobolev space of square integrable functions with square integrable weak derivatives of first
order.

We consider an initial triangulatiofp of the domain® into simplices, and we let thadmissible
triangulationsbe those obtained fron¥ using the bisection procedure Stevensor(2008 (which
coincides with the so-called newest vertex bisection wtiea 2), without hanging nodes. For each
admissible triangulatiot”, we consider the Lagrange finite-element space

Vo ={eH(Q):07e PP VT eT)

where forp € N, #2P denotes the space of polynomials of degree at mo3the best approximation
error with complexityN, for N € N, is defined as follows:

p . .
onU) = min inf JJu—o|lyi0),
N ) TeTnveV o H @)

whereTy = {7 admissible :(#7 — #7%) < N}; that is, the minimum over7 is taken over all
admissible triangulations obtained with at mbkbisections. We now define, far> 0, the approxima-
tion classes

Af ={v e HY(2) :3C suchthar () <CN™ VN e N}
or, equivalently,

AP = {1) € HY(@) : [olyp < oo} with [o],p == Supa()N®.
NeN
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The first complexity results for adaptive finite-element methods (AFEM) are preseniiden
et al. (2009 for an algorithm that needs coarsening, which seems unnecessary, at least for symmetric
elliptic problems. This and the aforementioned papers on optimality of AFEMSsmenson2007,
Cason et al, 2008 study adaptive algorithms for approximating the solutiento an elliptic
PDE. Essentially, the following fundamental result is proved: the adaptive algorithms generate a
sequencd(k, Uk) Jken Of triangulations and finite-element approximatianse th% that satisfy the
following:

if ue A, then|lu — Uklly1o) < CHZA)™ VkeN.

That is, the sequence of triangulations and approximate solutions have a complexity with the same decay
rate as the optimal ones. The interesting aspect of those results is the fact that such a (quasi-)optimal
approximation is obtained through a standard adaptive loop for the elliptic problem, wéttprigri
knowledge of the exact solution and with a number of operations proportional to the cardinality of the
meshes. Note that a simple-minded approach to compu}ﬁ{g) with precise knowledge afi could

lead to exponential work in terms of.

The question—already raised@as®n et al. (2009—that is still unanswered is what ragés to be
expected in different situations. From the results just described, it is clear that AFEM do a quasi-optimal
job among all possible adaptive meshes. What we present in this article is quantitative information
about the convergence rate of AFEM. In order to do so, we relate the membership of a function to
an approximation clasa® with its regularity, proving rigorously, through the construction of specific
meshes, that a certain class of functions is containédin

In Binev et al. (2002, an almost characterization of these classes is obtained for thepcasé
in terms of Besov regularity for Lipschitz polygonal domains; the proof is based on an adaptive tree
approximation algorithm. To illustrate the applicability of this result, we just mention—without giving
too much detail—that the Besov spaBé(L,(Q)) is contained in&%/2 forall ¢ > 1; seeBinevet al.

(2002 Theorem 5.1).

The regularity of solutions to Poisson’s problem on Lipschitz domains in terms of Besov regularity
is studied inDahlke & DeVore(1997). It is proved that for Poisson’s equatietAu = f in a Lipschitz
polygonal domain? ¢ R?, with homogeneous Dirichlet boundary valuase BTZ(LT(Q)), for % <
t < 2if f e HY(Q).

Combining these two results, we obtain that Ai/z if f € HY, but a stronger result holds. Using
the Sobolev regularity results fro@risvard(1985, we have that result by assuming orflye L2(Q),
ue Wg(Q), that is, all derivatives of order up to two areli?(Q) for all 1 < p < 4/3. This in turn
implies that for all 1< ¢ < 4/3, u belongs to the Besov spa@f(L,(Q)), and applying the result
from Binev et al. (2002, this impliesu e A%/z under the sole assumption bfe L2(Q).

The spirit of the results that we present in this article is a combination of the resiiisen et al.

(2002 and those irDahlke & DeVore(1997. However, our approach will not hinge upon regular-

ity in Besov terms but rather upon a decomposition of the functions as a sum of a regular part plus
singular terms, as stems from the classical regularity results for PDE like those staBtbvard

(1985 1992, Kellogg (1975 1992, Petzoldt(2001) andDauge(1988. We obtain results for polygonal
domains which are not necessarily Lipschitz (including slit domains) and we generalize to any polyno-
mial degreep > 1; the proof is elementary and does not make use of sophisticated thelotsphces

for g < 1, as seems necessary in the approadBinév et al. (2002. Moreover, our result is directly
applicable in some cases where the Besov regularity of the solutions to the PDE is not available; instead,
a decomposition into a regular plus a singular part is known to hold.
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In Grisvard(1985 1992, one can find some conditions on the element sizes relative to the distance
to the points where the singularities are located in order to obtain an error of drdét when using
linear elements in two dimensions. The difference between our result and those is that we present an
algorithm forconstructing those meshes using bisegtamd thus show that those meshes are attainable
by an adaptive algorithm. Moreover, in view of the resultStavensoif2007) andCasdnet al. (2008,

a consequence of our result is that the standard adaptive algorithms proposed there generate a sequence
of meshes and discrete solutiofiS, uk}k satisfying|lu — ukll1) < C(#%)~P4. A quantitative

answer regarding convergence rates of AFEMs is thus obtained for Lagrange finite elements of any
polynomial degree > 1.

The rest of the article is organized as follows: In Sectnve state the main result and present
some applications to solutions of elliptic PDE in Sect®rn Sectiond, we propose an algorithm for
constructing the desired mesh and prove some of its properties. We conclude the proof of the main result
by bounding the error in Sectidn

2. Main result

From now on, for any admissible triangulation of the domain®, we letV & denote the finite-element
space of continuous piecewise polynomials of degree at pjagherep is a fixed positive integer. The
following is the main result of this article which states that a large family of functions, such as those
obtained when solving elliptic and other PDE, belongAEgz.

THEOREM 2.1 LetQ c RY be a polygonald = 2) or polyhedral @ = 3) domain, not necessarily
Lipschitz, let.% be an initial triangulation of2 and suppose that

N
u= Z ui, (2.1)
i=0

where:
e Ug e HL(Q), with ug|t € HPTL(T), forall T € %,

e fori=12,...,N,u; can be expressed in polar coordinates aroyrabs
=
ui = c (@il e (6) .
where:

1. ¢ are constants arld are non-negative integers;
2. {X }iN:l =: ./ is a set of pointsn Q that are also vertices ofp;
3.1 dgnotes the distance %p and
— 6 =6 €]0,2r) is the angle coordinate of with respect tag; and a half line starting at
g whend = 2;
- 6 = (6;,¢i) €[0,27) x [0, z], whereg; is the angle coordinate of with respect ta;
and a half lineR starting atx;, and lettingP denote the plane orthogonal Rothat contains
Xi, 6; is the angle coordinate of the projectionxobn the plane and a half ling starting at
Xij contained intaP whend = 3;
4. y; are positive constants;
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5. the functiongy; satisfy the following assumptions depending on the dimendion
- g € W1 (0, 2r) satisfies the periodicity conditiag (0) = g; (27) and is piecewis@/Vo'i’;rl
in the following sense: there exists a partiti§¥n of [0, 27 ] into segments such that|s €
WE(S) for all S e ; whend = 2;
- g € WL((0,27) x (0, 7)) satisfies the periodicity conditiors (0, ¢i) = i (27, ¢i),
0 < ¢ < rm, andgi(0,0) = g (6,0, 0(0,2z) = ¢i6,27), 0 < 6 < 2z, and is
piecewis&Wo’fj+l in the following sense: there exists a partit#$n of (0, 2z) x (0, =) into
triangles such thagi|s € W2 (S) for all S € 5 whend = 3;
6. yi areC>®(Q) cut-off functions;
7. the jumps ofVy; (if any) are aligned with the edges of the initial megh

Then, for any given tolerance > 0, there exists a conforming triangulatichi, obtained by newest
vertex bisection, starting from¥ such that

1
inf u—u < and #7 —#9%<C —_, 2.2
L [ 7lie <e 0 < Cu%_arp (2.2)

whereC, # depends on all the parameters that enter the definition of the singulg¥ Parii, on J
and onu through the broken seminorm

1/2
o p+1,, 112
Uolp1 g = (X 1pP* o)z, )
TeD

but not one. Thereforey e Ag/d.

It is worth observing that ifi satisfies the assumptions of the theorem, then we can only ensure that
ue H*(Q)forall0 < ¢ < mini<i<n yi. Uniform global refinements would only lead tioe Af/d,
bute could be very small, and this rate is very pessimistic with respect to the one that can be obtained
with adaptivity.

REMARK 2.2 In order to shed some light on the assumptions of the theorem, we note that they imply
the following:

o Ifwelety = W we are able to control the singular terms through the following bound:

Cr/ > Inrpkir/! (2.3)
and similar ones. They imply that for each of the singular temms = 1, 2,..., N, there exists a
constanC such that
luil <Cr/, |Vuil < Criy_l and |DPTluj| < Criy_p_l, (2.4)

the last inequality holding only in the interior of the elementsZgfand thus also in the interior of
any element of any refinement 6%. The constan€ depends om;, k;, 7i, theWo’ZH-norm of xi,
the W -norm ofg; and the piecewis®.2"-norm ofg;, that is, on thenV.2™ (S)-norm ofg; for all
SePi.

The factor% in the definition ofy is imposed to control the logarithmic terms. If &l = 0,1 =
1,..., N, theny could be chosen equal to mip and the same bounds would hold.
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e If 7 is any refinement 0f% andT e .7 with T N .# = @, thenuj|t € HPTYT), i =
0,1,...,N.

e Sincep > 1 andd < 3, the Sobolev embedding theorem and trf factthat 0,i =1,2,..., N,
imply that each component;, i = 0,..., N, is continuousin 2, and consequently also is
continuous.

This consequences of the assumptions are the main ingredients that will be used in the proof of our
results below.

NOTATION 2.3 From now on, the lette€ will denote a constant, not always equal, depending on
the given functionu of the assumption of Theoregh1, through theH(£)-norm of ug, the broken
seminorm

1/2
— p+1,, 12
olypig) = (> 1DP ol )
Te%

and the parameters and functions defining the singular teyms= 1, 2, ..., N, of u as in the second
item of the previous remark. We will reserve the notatiorg b to denotea < cb with a constant
depending only on shape regularity or the geometry of the domaina&ad will indicate thata < b
andb < a.

3. Applications to elliptic PDE on polygons

In this section, we state two applications to elliptic PDE in two dimensions in order to illustrate the
applicability of our result.

3.1 Poisson equation

Let Q be a polygonal domain iR?, not necessarily Lipschitz. Letbe the (weak) solution to

—Au=f inQ,
(3.1)
u=0 o0noQ.

As a consequence of Theorem 3.1Kallogg (1992 (see alsddauge 1988 or Nochettoet al., 2008
Theorem 3.1), it holds that if € HP~12(Q) for somes > 0, thenu can be written as in the assump-
tions of Theoren?.1, where. /" = {x; }i’\‘:1 is the set of vertices a®, andk; = 0,i =1,2,..., N.

In the case op = 1, ¢ can be taken to be zero, i.e.e L2(Q), the set#” contains only the vertices
of Q with inner anglew; greater thamr (¢; = O for the other vertices) ang| (t) = sin(zt/w;) for all
i=12...,N.

In the case ofp > 1, the set# contains all the vertices aP. In order to avoid the pathological
cases where at least one inner anglef Q satisfiesap/z € N, we assume thaf € HP~1+¢(Q)
for somee > 0 instead ofH P~1(Q), but this is not such a big restriction in practice. Moreover, this
hypothesis can be weakened to ask that L2(Q) and f |t € HP~1*¢(T) forall T € %.

We conclude then that if € HP~1t¢(Q) (piecewise over%), then the solutioru to Poisson’s
equation 8.1) belongs tcAg/z.
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3.2 Interface problems for the Laplacian

Let © be a polygonal domain, not necessarily Lipschitz, that can be decomposed into disjoint
subdomaing?;, i = 1,..., ng, with polygonalboundaries? = Ui”il Qi . We define the interface

Ng
r=(Jea\ ).
i=1
Denote bya(x) = Zi”ilaixgi (x) the global weight function, which is constant and positive on
each subdomairp;.
We want to solve the following problem, written in variational form:

finduaV:/aVu~Vodx:/ fodx Vo eV, (3.2)
Q Q

wheref e L%(Q), V= H3(Q) = {v € HX(Q) : v, = 0} andIp C 82 is the Dirichlet boundary.
This problem is usually called thieterface problem for the Laplaciagind corresponds to the following
strong form:

—V.-@x)Vuy=f ing@, i=212,...,nq,
u=0 onI/p,
ou
— =0 onInN=0Q\ ID,
an N \ /b
oujo ou|Q;
M L = —q; 12 Oﬂ@Qiﬂé.Qj,
on; onj

wheren denotes the outer unit normal & andn; that of Q;.

Following the original ideas frorellogg (1992, Petzold{2001, Chapter 2, and references therein)
has proved that the solutianto (3.2) satisfies the assumptions of Theor2rhfor p = 1 if the mesh
o matches the boundaries of the subdomadsnd the points o2 where the boundary condition
changes are vertices ofy. The pointsx; correspond to the vertices of the interfateo Q2 and those
points ond Q2 where the boundary condition changes.

We conclude that iff e L2(£2), then by Theorer2.1the solutioru belongs to&%/z and the optimal
error decay is recovered.

It is worth mentioning that for certain singular pointg the value ofy, can be as close to zero as
desired, depending on the valuesagk) aroundx,, providing very singular examples for the classical
theory. In order to illustrate on this, we write down the formulas derivegeitiogg (1975 to construct
an exact solution of an elliptic problem with piecewise constant coefficients and vanishing right-hand
side f; for the particular cas® = (-1, 1)2, a = ay in the first and third gquadrants aad= ay in the
second and fourth quadrants. An exact solutiaio (3.2) for f = 0 (and nonhomogeneous Dirichlet
boundary values) is given in polar coordinatesugy; 8) = r’u(0), where

co(z/2—0)y)-cod(0 —x/2+ p)y) if0 <0 <m/2
©) = codpy)-co(@ —7 +o)y) ifr/2<60<r,
noy= cosoy) - cos(@ — w — p)y) if 7 <O <31/2,

coq(r/2—p)y)-cod@ —3r/2—0)y) if3n/2<0 < 2r,
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and the numbersg, p ando satisfy the nonlinear relations

Ri=ai/a = —tan((z/2—o)y) - cot(py),

1/R= —tan(py)-cot(ay),

R=—tan(oy) - cot((z/2— p)y), (3.3)
O<y <2,

max{0,zy —z} <2yp <minfzy,x},

max{0,7 —zry} < —2y0 <min{x,2x —xy}.

Choosingy = 0.1 and solving 8.3) for R, p ando using Newton’s method, we obtaR = a;/ay =
1614476,p = n/4 ando = —14.92256. A smallep would lead to a larger rati®, but in principley
may be as close to 0 as desired.

This functionu belongs to the Sobolev spad¢¢l*” (), and is thusbarely in HY(Q), but—
according to our results—is still iAS/Z for all p > 1. That is, an adaptive finite-element approxi-
mation to a solution like this, using Lagrange finite elements of depre®ill lead to a sequence of
meshes and discrete solutiop, U}k satisfying|lu — Uklly1g) < C(#7k)~P/2. On the other hand,
the Besov regularity of the solutions t8.2) is not well established, and thus the result8wofev et al.
(2002 are not yet applicable to the interface problem for the Laplacian. Until the Besov regularity of
solutions to PDE is further developed, our result—which is far from being a near characterization of the
class of functions that can be approximated with optimal dé¢a$/d—still provides a useful tool to
investigate the convergence rate of AFEM for PDE.

4. Construction

From now on, we assume thats as in the assumptions of Theor@m and we will present an algorithm
to construct, via newest vertex bisection, a mesh fulfilling the properties stated in the theorem.

Before we introduce the algorithm, we will present a heuristic idea with the ideal properties that the
optimal mesh should have. This will motivate the precise definition of the algorithm, which is rather
technical, but achieves with controlled complexity the goaadidistribution

4.1 Heuristic idea

Everything in this subsection will be heuristics, and is presented here—following the arguments in
Grisvard(1985, Liao & Nochetto(2003 andBabiskaet al. (1996— in order to motivate the choice
of properties that the optimal mesh should fulfil. The precise construction of the optimal mesh and the
rigorous proof of Theorer@.1will be given in the following sections after the algorithm for constructing
the mesh has been presented.

In order to introduce the basic idea, consider the simplest case of a functigiiten in polar
coordinates ag = r” sin(y ) on a two-dimensional domain with a re-entrant corner of inner angle
at the origin. Suppose that we approximateith continuous piecewise linear finite elemenps= 1)
on a meshZ. TheH1-seminormu — | zuly 1 of the error between and its Lagrange interpolaht-u
on each element is bounded byD2u||Lz(T) if0 ¢ T and by|[Dufl 21y if 0 € T. These quantities
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(squared) also satisfy the following:

h2||D? =hn2r20 AT 24207 ifogT,

UHEZ(T)

ht
||Du||fzmg/ r20-Drgr =2 if0eT,
0

wherert denotes the distance @fto the origin ancht := |T|2 = diam(T). In order to achieve the
equidistribution of the local error bounds, we then require for the n#ghat, given a small parameter
h > 0, the elements satisfy

hirf" 2 =h? if0¢T and hr=hifoeT.

Suppose now that this goal is achievable. More precisely, we can classify the elements into rings at
dyadic distance from the origin, by defining

Dk={TeT:2%1<rr <278

fork e N,k < K := [log,(1/h)] andDk = (T € 7 :r1 < 27K}

Then, on the one hand, the elemefite Dy have sizdT| = h2 = h7r; 772 = h72k0-2), and
thus #Dy = 2~ = h™7 2%, which implies that

T = Z #D = h™7 Zz—ky ~h7,
k<K k
On the other hand, the error satisfies
lu—unl2, =#ThY Xh7h? =h’ = #7)"L
This finally implies thatu — un|1,0 < #7)7Y/2, and thuss € Af .

In the casa = 3 if u has a singularity like” as in the previous example, the boynd- up|1,0 <
#7)~13 would be obtained if

h3r20=2 =2+l if0¢T and hr =hif0eT.
These conditions coincide with the grading assumptions presenggzkiret al. (1996 Section 3.1)

replacingh by h*, with i = % if d = 2 andu = 221 if d = 3.

4.2 Algorithm

In this section, we will introduce the algorithm that will achieve, using newest vertex bisection, a mesh
with the precise grading stated in Sectii, generalized to polynomials of degree
From now on, we will use the notation

rx = min dist(x, X)
Xi eN

defined forX compact; typicallyX is a triangleT or a pointx, where.#" denotes the finite set where
the singularities are located (as in the assumptions of TheBr&m
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We choose and fix = W This choice allows us to bound the singular terms agif) (

Let . be the given initial mesh and lét > 0 be a small parameter so thafg < ¢-9. Later,
é will be chosen such that® ~ ¢, wheree is the error to be achieved betweerandu o, a discrete
approximation tal in V &, and.7 is the mesh generated by the algorithm (see proof of The@r&im
Section5.3). Now, letK e N be such that

_ (K+)(2y+d—2) _ K@y+d-2)
27 <9 <2 2 (4.1)

Denoting, for any elemeri, the element size blgr = |T|¥/9, the constructive algorithm reads as
follows.
Too < %
j=0
% initial (global) refinement to control the error o
% FIRST LOOP
do
(///0,1' ={T e ‘70(,:] cht > o}
Jo,j+1 < refine(%‘fj , A0,)

%?H; « complet.7p,j+1)
< ]+1

until A j—1 =19

J=j

T ‘g(fj

=1

% Selective refinement according to distance to singularities
% SECOND LOOP
while (¢ < d(K + 1))

Qg:U{T|Te,7€° AT <278

2 —p-1)
My = {T C Q¢ : hy > 62 d@p+d) }
Try1 < refing TE, ;)
TS 1 < complet€ Ty 1)
{—{(+1
end
The algorithm makes use of two routines that need further explanation. The first one,

receives a meslgg, usually admissible, and a set of markedelements from%gq4. It returns a new

mesh Jhew that is obtained after bisecting once the marked elements according to the newest vertex
bisection rule. The new mesh is not necessarily admissible (it may have hanging nodes), but it clearly
holds that

#%ew = #«%Id + #///>

i.e. #new — #901 = A .
The second routine that is used,

T° « complet¢.7),
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receives a mesl that is not necessarily admissible, and returns a new m&swhich is made admis-

sible by refining the smallest number of necessary elements, again by the newest vertex bisection rule.
The study of complexity of this routine is not as easy as that of the previous one, and it is not true that
there exists a constaft such that

BT\ <HTE + CHTp1 — #T0).

The complexity result that holds—regarding thigreading of refinemeninplied by the completion
algorithm—is the following one, which is a little bit weaker, but is fundamental and sufficient for the
purposes of studying optimality of AFEM. It was first provedBimev et al. (2004 for triangles, later
extended to simplicial meshes of any dimensio8iavensor{2008 and requires the following.

DEFINITION 4.1 We say that an initial meshp is properly flaggedif besides being admissible it
satisfies the following condition, written in the languageStévensor§2008):

Any two neighboring tagged simplicds = (Xo, ..., Xn)type: T = (X, - - - » X)type from
Jp match in the sense thitXoXn or Xpx;, isonT N T’, thenT andT’ are reflected neigh-
bours. Otherwise, the pair of neighbouring childrerTadnd T’ are reflected neighbours.

In two dimensions, this is equivalent to requiring that whenever an interior edge is a refinement edge,
it is the common refinement edge for all adjacent elements. We refer the re&tevémsor§2009 for
details in the three-dimensional case, as well as for a proof that an initial mesh satisfying this condition
can always be obtained.

THEOREM 4.2 Let.% = .7 be an initial admissible mesh of a polygonal (polyhedral) dongaiim
R2 (R3), which is properly flagged. If the sequencg®},> is obtained by subsequent calls to

T < refing 7)),
5,1 « completé T 1),

then fork > 1 we have that

k
IS — 4Ty <G (Z(#%+1 - #zf)),
=1

where% is a constant depending only cfp.

As a consequence of this theorem, we have that if gy, %Cj Ty andZC are the meshes obtained
by our algorithm, it holds that

d(K+1)-1 J-1
#T4kan —#RB<E [ D, BT —#IO + D #oj—#T)) | - (4.2)
=1 j=0

REMARK 4.3 Before proceeding to the proof of our result, some remarks are in order.

e Theidea of the algorithm is to achieve an equidistribution of the error following the heuristics stated
in Sectiond.1 Since the refinement is stronger closer to the singularity points, our approach consid-
ers a sequence of regiof around them with geometrically decreasing radii given b§{/%. The
denominatod in the exponent is related to the fact that we perform only one bisection to marked
elements in ‘refine’, and are necessary to achieve a halvindef
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e The algorithm does not take into account the different sizes of the powetgust looks at a worst-
case scenario taking a unified valpe= %ﬂ As we will see later, the property > 0 is the
only one used in the proof. In the same manner, the distance to the singularitypaintsified by
taking the minimum distance symbolized by. It may look as though the simplification introduced
by thisunificationwill lead to suboptimal meshes, and it is true that the consIany, in (2.2) may
be bigger than necessary with this approach. But this &niori approach where we want to show

themembershipf certain functions to the spac&.ﬁ/d, not caring about the size of their norm.

o If an efficient construction of the mesh is desired, the algorithm could be improved by marking
separately according to the different strengths of the singularities. This would lead to a better constant
Cy, 7, butthe overall theoretical result will be the same. We decided to present this unified approach
for ease of presentation.

e One important property of the newest vertex bisection rule is that it leads to a sequence of meshes
with a uniformly bounded shape-regularity constant, which depends only on that from the initial
mesh.% and the new vertex flagging of the initial mesh. We thus have that all the me&hes
obtained by the application of our algorithm are shape regular with a uniform constant.

4.3 Properties of the algorithm

In this section, we will bound, through a series of lemmas, the complexity of the resultingﬂ@iﬁsﬁ),
and in Sectiord, we will relate this complexity to the error of the best approximation tiorough finite-
element functions oveﬁdcK+1 .

The following lemma is related to the termination of the first loop of the algorithm in a finite num-
ber of steps and a control on the number of elements added. The termination of the second loop is
straightforward, since it is justfar loop in disguise.

LEMMA 4.4 The firstloop of the algorithm terminates affieiterations withJ < log, (ﬂffoﬂ) +1

and there exists a constaiit = 2|Q2| such that
J-1
> #Toj11—#Ty;) < C1o79 (4.3)
j=0

This implies that for alll e 7, |T| < ¢9.

Proof. Observe first that if one bisects an elem&nt 7, J times withJ > log, (%‘%—m) +1,

then the measure of the resulting sub-elements will be strictly lesssthand the marking step will no
mark them longer. This proves the first part of the statement.
In order to prove the boundt(3), we define, foi > 0,

Fi = IT ITe Uyokaz‘(sd <|T| < 2‘+15d}.
k

It is easy to see that even though contains elements belonging to different meshes, they do not
overlap, and then

121> > TI> D 692 = o2 @,

Te% Te.%
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which implies that #7; < |Q]o~9271 .
Now, applying these estimates and using that

00 J J-1
U7 ={T|TeU%,k A |T|>5d}= U 0.
j=0

i=0 k=0

we obtain that

J-1 J-1 o0
DGR = #T) = D o = D #F < 22167
j=0 j=0 i=0
and the claim is proved. O

REMARK 4.5 This proof is a little complicated due to the way the algorithm was proposed in order to
take into account any previous grading of the mesh. Observe that in the first loop, we do not refine all
the elements, but only those which are bigger than the threghaidtead of doing just uniform global
refinements. If we did this, the proof would be simpler, but the number of elemenf would be
unnecessarily bigger.

The following lemma is just an observation of the fact that if a paiista vertex of a shape-regular
triangulation, then the distance of the elementg i® an upper bound to the diameter of the element,
unless of course the distance is zero. This means that the diameter of the elements can grow at most
linearly with the distance to a point.

LEMMA 4.6 Let7 be aregular mesh such thais a node; thelw T € .7 with dist(z, T) # 0, we have
that|T| < dist(z, T) orht < dist(z, T).

This result may be familiar to some practitioners, but it is not completely obvious. A stronger result
was proved iMNochettoet al. (1991 Lemma 5.1), but we decided to include its proof here for the sake
of completeness.

Proof. Let T be an element o7 and let us definet =U{T | T € 7 A TNT # 0}. If z ¢ T, then
by shape regularity, di&, T) > chr. If z€ wT\T, thenzis a vertex of a neighbouring elemehtand
thus distz, T) ~ ht/ ~ hy. O

The next result implies that the desired grading of the mesh was achieved by the algorithm.

LEMMA 4.7 LetT = ﬂdC(KH); then for 0< ¢ < d(K + 1), the following property holds:

W, d,2G=p=D
Teg and r1 <27d = |T| <d°2 2p+d

Proof. We first claim that for each 6< ¢ < d(K + 1), the following holds for the intermediate
triangulations7;,1:

c L g 2G=p-D)
TeJi, and rr <27d = |T| <62 2+, (4.4)

We prove this by induction ofi. by Lemmad.4, it holds for¢ = 0. Before proceeding, observe that if
T e 7fandT € Z° withk > ¢,

TcT = r1 >ry. (4.5)



14 of 20 F. D. GASPOZ AND P. MORIN

Suppose now that(4) holds for¢ and let us prove itfof+1.1fT € Z}iz andrt < 2‘%1 there exist
1
= %‘jrl such thafl c T/, whencert/ < 2~ H and by the inductive assumpti¢f’| < 5d2 29+pd .
2(6+1)(y 1
Now, if already|T’| < 042 2o , then the results hold becaudd < |T’|. Otherwise,T’ € .#;11

and we have that

d 2y —p=1
042" 2pta 4, 20 —p-1)
- < 5 2 2p+d

2

1
T < Z|T
T 2| | <

because > 0andd > 2. Thus, 4.4) is proved forf + 1.
We now proceed to prove the claim of the lemma: Tet .7 such thatt < 2 a; ; then there exist

TS T,T e 75, and then by4.5), rr < 2-4 and by ¢.4), |T| < [T'| < &2 e 0

The claim of the previous lemma could have been achieved by simple uniform refinement, but this
would have destroyed the complexity of the mesh. The next lemma shows that the number of marked
elements in each iteration is reasonably bounded in such a way that the overall complexity of the final

mesh is under control.

LEMMA 4.8 There exists a consta@b, depending only on shape regularity, such that foc ¥ <
d(K + 1),

c _d _ 2y +d—2)

HMlp =#Tp1 —#T, <Cpo "2 2p7d (4.6)
Proof. Recall that in the algorithm we defing, = U{T | T e ZP ATT < 2‘5}, and sinceZ41 is
obtained from7° by refinement only, we have thét; = U{T | T € 9,41 : T C Q/}, whence

d d d d
G- Y Mo X me Y e 3 w
TeTp1, TC TeJp\Tf° TeJpaNTS, TeJp\Tf°
TC.Q[

Butif T € Z;41\.7F, thenT is half of an elemenT’ € .#;, and thus by the definition o in the
algorithm,
ohd = hd, > 592" i

which in turn implies that

20(y —p-1) ((2y +d—2)
592t 0422 Zpra

[Q¢] > #Tp11 — #T)) = # T 11— #T0).

2 2

By Lemma4.6, we have thafQ,| < C2~¢ and then

£(2y +d—2)
#Tp41 — #TE < 20Qu|2L 5792 Fia < Cpomd2 e

and the lemma is proved. O
The next lemma makes use of the complexity reguf)(of the completion procedure for the newest
vertex bisection rule to bound the complexity of the final mesh.
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LEMMA 4.9 There exists a constafig, depending only on shape regularity, the polynomial degree
the dimensiord, the functionu throughy and.Zp such that

# Tk 1) — # T < Ca0 ™. 4.7)

Proof. Using @.2) and Lemmag.4and4.8, we have that

d(K+1)—1 -1
# T4k —HRB<E [ D BT —#IO) + D #To 11— #T5))
=1 =0
d(K+1)-1 —02y+d—-2)
<o > CuiaTHmT ey
=1
—((2y+d—2)
%5—d ((Cz 22 2};)+d + Cl) .
=1
_ o SSt@td-2 ; - o

Sincey > 0, the sum) ;2,2 2r+d s finite and the claim follows takings = ‘5(@2 2-1

2y +d—2)
) 0

2 24 4+ (Cq).

5. Error

In this section, we bound the best error with finite-element functions in terms of the complexity of the
mesh.

THEOREMS.1 There exist two constamdg andA» that may depend omthrough the broken seminorm

1/2
._ p+1,, 112
olyp1g) = (X 1pP*tuolZ))

Ten

Ci. ki, yis thellxillyyert o) 19 Twg (@) theW2!(S)-norm ofgi, Se Pi,i = 1,..., N, the polynomial
degreep, the dimensiord, shape regularity andp, but otherwise independent &f andd such that if
T = %C(KH), then

inf  [lu—uzlLe <AP, (5.1)
ugeVgo
inf lu—uzlLo < A#T —#%) 4. (5.2)

UgeVg

In order to prove this theorem, we will consider the regular pamf u and the singular part given

by ZiNzl uj.
Throughout this section, we will use the Lagrange interpolatpu; of u;j, which is the finite-
element function that coincides with at all the nodes and is well defined for eack- 0,1, ..., N,

since by the assumptions of Theordr, all theu; functions are continuotia Q; see RemarR.2
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5.1 Estimation of the regular part

THEOREM5.2 There exist two constanty andCs, depending on the broken seminorm

1/2
. p+1,, 112
Vol g) = (2 107 uoliZy)
) Te

the polynomial degre@, shape regularity andp, but otherwise independent & andé such that if
T = Tk 41y then

lup — | 7Upl1,0 < CadP,
_b
[up — lzuol,o < Cs(#T —#5) d.

Proof. Sinceug|]t € HPYLY(T) for all T € % and.Z was obtained only by refinemenig|t €
HP+L(T) for all T € .7 and standard interpolation estimates (Séarlet 1979 yield

2 2 2p 1 2
luo—17Uolf o = D Iuo—l7uolit S D hiPIDP uoli?
TeT TeT

2 2
< 0°PJug R
X | |H%1(Q)

where the last inequality is a consequence of LeMmand the first loop of the algorithm.
Then, by Lemma.9,

luo — I 7Upls. < CadP < Cs(®#T — #5) 4,
and the theorem is proved. O

5.2 Estimation of the singular part

Throughout this section, we will denote byone of the singular terms definingu in (2.1); that is, it
is defined in polar coordinates around a poinin Q2 as

=
u=a(nri)“r g (&) (5.3)
forsomei =1,2,..., N andc, ri, ki, yi, 0i, 5? xi as in the assumptions of Theorémi.

The three bounds oR(4) are the only features af that will be used in the proof of the following
theorem.

THEOREM5.3 There exist two constant® andC7 that depend on the parameters defininig (5.3),
shape regularity andp, but are otherwise independentkfands such that it = <7d°<K+1), then

lu—Ilzulo < Cedd,

U—17ulLe < C7#T — #%p) 4.
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Proof. Let D; = u{T ITe T A2 <distx,T) < 2—%’} for 0 < ¢ < d(K +1) andDyk 41 =
U[T | T €. 7 A dist(xj, T) < 2= K+D}, Then we obtain

2 2
u—lzufo= D lu—lzulf;

TeT
d(K+1)—1
2 2
= > Dllu-lgui;+u- | 7U1% by (5.4)
(=0 TcD;

The second term irb(4) can be bounded as follows:
2 2 2
lu-— Iyull,Dd(KH) S |u|1,Dd(K+1) + ||=7u|1,Dd(K+1)

=i pgy + 2, Nzulfr+ D llpuf; = Bi+B2+Bs

TCDd+1)> TCDdk+1)s
XieT Xi¢T
From @.4) and Lemmat.6, we obtain

c2—(K+D)
o , 2 -1 d-1
Bl = |U|1,Dd(K+l) < |u|1,B(Xi,C2_(K+1)) < 2777(:/0 r r dr

=27C r27+d=3gr ~ co~(K+D@y+d-2),
0

For the termBy, we use the fact that on a reference elenignt 7ul, + < [ITul Loty = 17Ul ().
By (2.4),if xi € T andT C Dgk+1), Il zullLeo(ry < Ch%. An appropriate scaling leads to

2 o d=2, /i _ 5712 2y +d—-2
Bo= > llgufr~ > hAUwirE.SC > by

TCDdk+1), TCDdk+1), TcDdk+1),
XieT XieT XieT

2y +d-2
<HT C Daky : Xi € THDak+pl™ .

Since for thesd valuesyt = 0, Lemmad4.7leads to

B SH#T C Dyk41) - Xi € '|'}(2_d(K+l))ZH"d_2 < 27 (K+D@y+d=2)

where we have used the fact that the number of elements whichxhasa vertex is bounded by a
constant depending only on mesh regularity.

The termB3 can be bounded using the fact that if ¢ist T) > 0, then by Lemmd.6, dist(x;, T) ~
X — x| VX € T and thus 2.4) yields

IVIzu(x)| < Cdist(xi, T 1 <Clx—x|”™t vxeT,
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which implies thatf; [VI zul? < C [; [x — x; |20 =D dx, and consequently

Bs = Z |V|yu|2§C/ X — % [27 =D dx
TcDdk+1), Dd(k+1)
Xi¢T
c2—(K+D)
S C/ r20-Dpd-lg ~ co-(K+D@+d-2)
0

Combining the three estimates fBi, B, and B3, we obtain the following bound for the second term
of (5.4):

U= 17Ul py,y S C27 V@ HI72 < Co?PH, (5.5)

Using the usual estimates for the Lagrange interpolator and the factithat HP*L(T) VT <
92\ Dg(k +1) (see RemarR.2), we can bound the first term d.¢4) by

d(K+1)-1 d(K+1)-1
2
> 2 lu-lgur s > > hPIDPHUE, . (5.6)
t=0 TcDy t=0 TcDy

Finally, by 2.4), if x e T, IDP*lu(x)] < CIx — x|”~P~1 and thus||Dp+1u||Lz(T)z < C

20(y —p-1
dist(xi, T)27 ~P~Yhd; by Lemma4.7, ht < 62 dd if T e D, and again by Lemm4.6, we
have that

d(K+1)-1 d(K+1)—1

u—lzulit S 2 ullf2t
2, 2 lu=lyulfy Z 2. hPIDP Uy,

t=0 TcD, {=0 TcDy

d(K+1)-1

<c > distx, T2 P-DRIPH

=0 TCD(

d(K+1)—1

20(y — P kY] 200y — P i)
se 3 3

=0 TcDe

d(K+1)-1
<Co?PHe D 4D, = CoPPHHT).
=0

Summing up, by%.4-5.6) and Lemm&4.9,
lu—Ilzul2 , < CoPPHHT) = COPPYYHT — #T) + #.T)

< Co?PHa(5—Y 4 #.9)
2 _2p
SCoPSCHT —#Tp)~ @,

where we have used the fact tidatvas chosen so that% < 679. O
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5.3 Proof of the main result
Proof of Theorenb.1 Using the estimates of Theorera® and5.3, we obtain

inf Jlu-uzlie S Inf [U-uzlLe SClu-IlzuUlie
ugeVg ugeVg
n
=C Z(ui —17u)
i=0
N
<C Y I —17u)lLo S CNGP,

i=0
and then, using Lemmé&9, we have that

inf lu—uzlio S CN#T —#%) .

UgeVg
|
Proof of Theoren2.1 This is a corollary of Theorer.1 It is sufficient to choose = A16P. This
implies the claim for small enough, which immediately implies the result forsa#t 0. O

REMARK 5.4 (Red-Green refinement) Regarding the other well-known algorithm for adaptive mesh
refinement in two dimensions, namely, the so-called red—green refinement, the main result presented in
this article is still open. However, the algorithm stated here can still be used for the construction of the
quasi-optimal mesh with obvious modifications due to the fact that a red subdivision splits the elements
into four sub-elements instead of two. The only remaining issue that needs to be solved is to determine
whether a complexity result bounding thpreadingof refined elements similar to Theoreh? holds.
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