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Abstract. Dephasing effects in electron transport in molecular systems connected between contacts average
out the quantum characteristics of the system, forming a bridge to the classical behavior as the size of the
system increases. For the evaluation of the conductance of the molecular systems which have sizes within
this boundary domain, it is necessary to include these dephasing effects. These effects can be calculated
by using the D’Amato-Pastawski model. However, this method is computationally demanding for large
molecular systems since transmission functions for all pairs of atomic orbitals need to be calculated. To
overcome this difficulty, we develop an efficient coarse-grained model for the calculation of conductance
of molecular junctions including decoherence. By analyzing the relationship between chemical potential
and inter-molecular coupling, we find that the chemical potential drops stepwise in the systems with
weaker inter-unit coupling. Using this property, an efficient coarse-grained algorithm which can reduce
computational costs considerably without losing the accuracy is derived and applied to one-dimensional
organic systems as a demonstration. This model can be used for the study of the orientation dependence
of conductivity in various phases (amorphous, crystals, and polymers) of large molecular systems such as
organic semiconducting materials.

1 Introduction

The study of charge transport through molecules became
an active research field in the last few decades. The most
widely used methods for calculation of conductance of
nanostructures and molecules connected between contacts
or electrodes are based on Landauer’s approach combined
with Green’s function formalism [1,2]. In a standard ap-
plication, this method only takes into account for coher-
ent tunneling which is identified with the conductance.
However, as the size of molecular structures reaches the
nanoscale, the effect of inelastic tunneling, dephasing and
disorder begins to be influential. Thus, for the integra-
tion of molecular devices, such effects have to be taken
into account. This requires to expand the study of elec-
tron transport through the large molecular systems such
as DNAs and organic semiconductors between contacts
where dephasing phenomena play essential roles.

One of major sources of dephasing is the interac-
tion of traveling electron with vibrational degree of free-
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dom, i.e. electron-phonon (e-ph) interaction. In order
to incorporate such dephasing and inelasticity mecha-
nisms, various methods such as density matrix approaches,
kinetic equations, and scattering matrix methods have
beed developed [3–24]. Among them, D’Amato-Pastawski
(DP) model is suitable for the analysis of the relation-
ship between molecular structures and its electrical re-
sponse under dephasing environment and weakly inelas-
tic processes [3–5]. In the DP model, local scattering
processes are introduced which, in full analogy to the
Büttiker’s description of voltage probes in a multiter-
minal device [25–27], must be complemented with fic-
titious reservoirs or “probes” that reinject locally each
particle lost from the coherent beam. At small voltage
bias, these lasts allow to impose the current conservation
providing a form of Markov equation relating the reser-
voirs from which the net steady state current is calcu-
lated. This results in an effective transmittance between
the actual external reservoirs which adds an additional
correction term to the coherent tunneling component. Al-
though the DP model was applied to a series of organic
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Fig. 1. A schematic model of (a) D’Amato-Pastawski (DP)
model and (b) coarse-grained D’Amato-Pastawski (CGDP)
model. In both cases, the molecules having N sites are coupled
between two contacts. In order to describe dephasing processes,
fictitious scattering probes (Büttiker probes) are attached ho-
mogeneously. In the coarse-grained model, the condition of zero
current is imposed not to each single scattering probe but to
each group of scattering probes.

molecular wires [7] and could successfully demonstrate the
well-known tunneling-to-hopping transition [8,9,28], it is
still too demanding for the study of electron transport
through large molecular systems such as organic semicon-
ducting materials or assemblies of nanoparticles connected
via organic molecules.

In this article, we investigate the relationship between
tight-binding parameters of one-dimensional (1D) molecu-
lar wires and the drop of chemical potential along the wires
embedded between contacts. After analyzing the stepwise
drop of chemical potential along the 1D chains with dif-
ferent inter-unit coupling, we derive a coarse-grained algo-
rithm that solves the DP model enabling to calculate con-
ductance of large molecular systems connected between
two contacts under dephasing environment efficiently with
the minimum loss of the accuracy. We show the condition
for the application of the coarse-grained model and present
that the effective transmission including dephasing for the
molecular wires can be calculated efficiently only if the in-
ter unit coupling is weak enough. We demonstrate the
coarse-grained DP (CGDP) model first using an 1D chain
with toy model basis and then apply to organic molecules
as a practical application.

2 Method

Figure 1 shows tight-binding scheme of (a) the DP model
and (b) the proposed CGDP model. The central molecu-
lar system having N sites is connected between two con-
tacts. In both models, effective Hamiltonians are identical
defined as Heff = HM + ΣL + ΣR +

∑N
m=1 ΣB,m, where

HM is the Hamiltonian matrix for the central molecule,
ΣL/R is the self-energy term for left/right contact, the last
term ΣB,m is the self-energy correction due to the mth
dephasing probes defined as ΣB,m = −iγe−ph/2 is the
dephasing parameter set from electron-phonon coupling.
Hence, the effective Green’s function in orthogonal basis is
given by:

G
R/A
eff (E) = [(E ± iδ)I − Heff ]−1. (1)

The CG model starts from the DP model described in de-
tail in reference [3]. Here we first give a brief derivation of
DP model for completeness. In the DP model (Fig. 1a),
N phenomenological scattering probes connected to ex-
ternal reservoirs are introduced in order to describe the
incoherent events that affect the transport properties of
the system.

The net current in each scattering probe is determined
by the chemical potentials μL = μ0, μi; i = 1, 2, . . . , N ,
and μR = μN+1, if the transmission and reflection prob-
abilities Ti,j and Ri,i are given. Ti,j is the transmis-
sion probability from jth to ith probe obtained from
a generalized form of the Fisher-Lee relation as Ti,j =
Tr[ΓB,iG

R
effΓB,jG

A
eff ], where the term ΓB,m is broadening

function defined as ΓB,m ≡ i[ΣB,m−Σ†
B,m], and Ri,i is the

reflection probability at ith channel. Taking μL > μR, the
condition of no current flow at each ith channel implies
following relations:

(1 − Ri,i)(μi − μR) −
N∑

j=1(j �=i)

Ti,j(μj − μR)

− Ti,L(μL − μR) = 0, ∀i = 1, 2, . . . , N. (2)

Chemical potentials μi, i = 1, 2, . . . , N, are determined
by imposing the current conservation in equation (2) for
all scattering probes simultaneously. Therefore, they are
given by:

(μi−μR)=
N∑

j=1(j �=i)

W−1
i,j Tj,0(μL − μR), ∀i = 1, 2, . . . , N,

(3)
where the Markov matrix W is defined as Wi,j = (1 −
Ri,i)δi,j − Ti,j(1 − δi,j). The dephased component is in-
cluded as an additional correction term to coherent com-
ponent. Therefore, the effective current within DP model
is obtained by I = e

h

∑N
i=0 TR,i(μi−μR) = e

hTeffδμ, where
δμ ≡ (μL −μR) and the effective transmission is given by:

Teff = TL,R +
N∑

i,j=1

TR,iW
−1
i,j Tj,L. (4)

In order to obtain effective conductance by DP model,
all transmission probabilites, Tij for all pairs of scatter-
ing probes needs to be calculated. However, this process
requires large computational time since the number of
the terms Tij increases quadratically. For overcoming this
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Fig. 2. Application of the DP and the CGDP model to 1D sys-
tems: (a) 1D polymer with inter-unit coupling (ts) is coupled
between contacts. Each monomer has 4 sites and the polymer
consists of 3 monomers. Thus, the number of whole sites is
set to N = 12. The fictitious probe is connected to each site.
γe−ph is the dephasing strength. The transfer integrals within
the monomer unit is set to t. For the CGDP model, 4 probes are
grouped. (b) Chemical potentials across the 1D molecule with
different inter-unit coupling calculated within conventional DP
model.

difficulty, we propose a coarse-grained version of the DP
model (see Fig. 1b).

Before proceeding to the derivation of the coarse-
grained version of the DP model, we examine the chemi-
cal potential drop along the one-dimensional (1D) tight-
binding systems coupled between contacts using DP model
in order to get an insight into the speeding up of the DP
model. Figure 2 presents the test system where a poly-
meric molecule having three unit cells is coupled between
contacts. The inter-unit couplings are set to ts (Fig. 2a).
For the simplicity, we assume that the monomer unit
consists of four sites and that intra-molecular transfer
integrals are set to t with nearest neighbor approxima-
tion. The bias voltage is set to small enough. The cou-
pling between left/right lead and the molecular system is
set to VL/R = 0.2t. All on-site energies are set to zero.
The left/right contacts are described by 1D tight-binding
chains within Newns-Anderson model where those self-
energy terms are given by ΣL/R(E) = V 2

L/Reiθ/tL/R and
cos θ = E/2tL/R. The transfer integral in the left/right
lead, tL/R, is set to t.

Figure 2b presents the drop of chemical potential
across the 1D system in Figure 2a with different inter-
unit coupling ts, which was calculated by using the DP
model. We can clearly see that the stepwise drop of the
chemical potential for weakly coupled 1D systems. This
result implies that the Büttiker probes can be grouped in

case of the molecular systems such as non-polymeric or-
ganic semiconductors having the weak inter-unit coupling.
Next we exploit this feature for the coarse-grained model.

If N scattering probes are divided into M groups as
Figure 1b, then, equation (2) can be written in the follow-
ing form as:

∑
m∈GPI

(1−Rm,m)(μm−μR)−
∑

m,n∈GPI ,m �=n

Tm,n(μn−μR)

−
∑

m∈GPI ,n∈GPJ ,m �=n

Tm,n(μn − μR)

−
∑

m∈GPI

Tm,L(μL − μR) = 0, ∀I = 1, 2, . . . , M. (5)

In the coarse-grained model, the condition of zero current
is imposed not to each single scattering probe as equa-
tion (2) but to each group of scattering probes. Then, the
effective conductance in the coarse-grained model, T̃eff ,
is derived from this condition. Apparently, this change
of imposition of zero current from the individual scatter-
ing probes in equation (2) to the group of the scattering
probes seems to give the different effective conductance
from the one obtained from equation (4). However, here-
after we show if we use the stepwise profile of the chemical
potentials of the fictitious probes for the weakly coupled
1D systems, the effective conductance T̃eff in the coarse-
grained model is the same as the one obtained from the
conventional DP model, Teff .

Since the chemical potentials of the intra-unit are
nearly identical for weakly coupled case as shown in Fig-
ure 2b, all chemical potentials μm in group I are the same:

μm = μI ; m ∈ GPI ; I = 1, 2, . . . , M. (6)

Thus, equation (5) can be simplified to the following form:

(R̃I,I)(μI − μR) −
M∑

J=1,I �=J

T̃I,J(μJ − μR)

− T̃I,L(μL − μR) = 0, ∀I = 1, 2, . . . , M, (7)

where R̃I,I =
∑

m∈GPI
(1 −Rm,m) +

∑
m,n∈GPI ,m �=n Tm,n

and T̃I,J =
∑

m∈GPI ,n∈GPJ ,I �=J Tm,n. Equation (7) can be
regarded as coarse-grained version of equation (2). There-
fore, chemical potentials μI satisfying both the restriction
of equation (6) and current conservation requirement si-
multaneously for all coarse grained scattering probes in
equation (7) are given by:

(μI − μR) =

⎡
⎣

M∑
J=1(J �=I)

W̃−1
I,J T̃J,0

⎤
⎦ δμ, ∀I = 1, 2, . . . , M.

(8)
The Markov matrix W̃ in coarse-grained form is defined
as W̃I,J = R̃I,IδI,J − T̃I,J(1 − δI,J). Finally, the effective
current within CGDP model is obtained by:

I =
e

h

M∑
I=0

T̃R,I(μI − μR) =
e

h
T̃effδμ,
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where T̃eff is the coarse-grained version of the effective
transmission in equation (4) given by:

T̃eff = TL,R +
M∑

i,j=1

T̃R,IW̃
−1
I,J T̃J,L. (9)

Using this coarse-grained model, the size of Markov ma-
trix W in the conventional DP model can be dramatically
reduced from N2 to M2 without substantial loss in accu-
racy. Therefore, computational time can be reduced to M2

N2

of the original DP model. Note that this coarse-grained
model does not reduce the size of the Hamiltonian matri-
ces itself as shown in equation (1). Therefore the bottle-
neck of the computation is the inversion in equation (1)
with O(N3). The approach to reduce the size of original
Hamiltonian itself is given elsewhere [28]. CGDP model
guarantees T̃eff = Teff if the condition in equation (6) is
satisfied i.e. for the molecular system with weak inter-
unit couplings. Another merit is that we do not need to
calculate all transmissions Ti,j for all pairs of the probes
but only need the transmissions T̃I,J for all pairs of the
group of the probes, which can be calculated at once by
T̃I,J = Tr[Γ̃B,IG

R
eff Γ̃B,JGA

eff ], where the term Γ̃B,I is broad-
ening function of the Ith group of the probes defined as
Γ̃B,I ≡ i

∑
m∈I [ΣB,m − Σ†

B,m].

3 Applications

3.1 Application to toy model

For checking the performance of the coarse-grained model,
we applied the CGDP model to 1D systems and com-
pared the calculated chemical potential along the sys-
tems, the effective conductance, and computational time
with the conventional DP model in toy model basis. First,
the chemical potential profiles along the 1D system in
Figure 2a are calculated by using both DP and CGDP
model for strong (Fig. 3a) and weak (Fig. 3b) inter-unit
couplings. We grouped four Büttiker probes as one effec-
tive probe as shown in Figure 2a, thus the CGDP model
has three phenomenological probes. As expected from the
analysis in Figure 2 and subsequent derivation of the
coarse-grained model, the chemical potential of the weakly
coupled system calculated by the CGDP model shows a
very good agreement with the one calculated by the con-
ventional DP model (see Fig. 3b). This result supports the
grouping of Büttiker probes and the simplification of the
DP model.

Next, we considered an 1D system having 96 sites
(24 unit cells) and applied both models to this system.
Then we examined how the effective transmission at the
Fermi energy obtained by the CGDP model dissociates
from the reference value calculated from the conventional
DP model depending on the inter-unit couplings. In Fig-
ure 4a, the relative error |T̃eff (EF )−Teff (EF )|

Teff (EF ) as a function of
inter-unit coupling ts/t is displayed. We clearly see small

Fig. 3. Comparison of the calculated chemical potentials of
Figure 2a between DP model and CGDP model for (a) weak
and (b) strong inter-unit couplings. The chemical potential
drop obtained by the CGDP model in weaker inter-unit cou-
plings shows a good agreement with the conventional one.

Fig. 4. Performance of CGDP model: (a) relative error |Teff −
T̃eff |/Teff of CGDP model as a function of inter-unit oupling ts

in the systems in an 1D chain having 96 sites (24 units and 4
sites in each unit cell), (b) comparison of computational time as
a function of the number of sites calculated by DP and CGDP
model. The employment of CGDP model in weakly coupled
system gives small errors with short time.

difference between two methods for smaller inter-unit cou-
plings. Thus, the CGDP method is suitable for the calcu-
lation of transmission for the weakly coupled systems such
as stacks of organic molecules where the transfer integrals
for intermolecular pairs of atomic orbitals is much smaller
than that of the intramolecular ones.

In order to evaluate the computational time reduction
with the CGDP model, we compared computational times
for CGDP model and conventional DP model. In Fig-
ure 4b, the comparison of computational time of these
models as a function of chain length is shown. In the
CGDP model, every four Büttiker probes is grouped into
one group as shown in Figure 2a. Although the computa-
tional time by CGDP model also increases quadratically,
still computational time for the CGDP model is signif-
icantly reduced from the conventional one. From these
analyses, we conclude that CGDP model applied to weakly
coupled systems can reduce computational time consider-
ably with small relative error.

3.2 Practical applications to organic molecules

To demonstrate the convenience of the coarse-grained
model with practical atomistic structures and also to
give a warning to the improper application of the
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Table 1. Comparison of the performance between DP model and CGDP model. The effective conductance at the Fermi energy in
the weakly coupled systems shown in Figure 5a with different number of stacked naphthalenes are compared with computational

time. The relative error |T̃eff (EF )−Teff (EF )|
Teff (EF )

, computational times, and the time gain due to the coarse-grained model are followed.

The CGDP model can reduce computational time significantly without essential loss of accuracy for the weakly coupled systems.

N
Effective transmission T (EF ) Relative Time (s)

Gain
DP CGDP error (%) DP CGDP

1 3.3209e-09 3.3210e-09 2.168e-02 372.85 0.316 1181
2 3.4879e-09 3.4879e-09 1.434e-04 1036.89 0.636 1631
4 3.7104e-09 3.7105e-09 8.085e-04 4476.10 2.342 1912
8 3.8131e-09 3.8132e-09 1.925e-03 37814.44 17.129 2208
12 1.9426e-10 1.9409e-10 8.766e-02 113729.27 51.627 2203

(b)
…

…

(a)

…

…

Fig. 5. Relaxed structures of (a) naphthalene stacks and (b)
polythiophene oligomers between GNR leads.

coarse-grained model to the strongly interconnected sys-
tems, we applied both DP model and CGDP model to two
types of systems; stacks of organic molecules with weak
inter-unit coupling and polymeric systems with strong
inter-unit coupling. Then we analyze the applicable scope
and limitation of the CGDP model by comparing ef-
fective transmissions at the Fermi energies, relative er-
rors |T̃eff (EF )−Teff (EF )|

Teff (EF ) , and computational times. For the
weakly coupled systems, we consider stacks of naphtha-
lene molecules where molecules are weakly bound with
van der Waals interactions, while for the strongly coupled
systems we consider polythiophenes where monomers are
covalently connected.

For the determination of the stable configurations
of the molecular systems between conductive graphene
nanorribon (GNR) contacts, conjugate-gradient geome-
try optimization of the extended molecule (stacks of
molecules plus one unit cell of the GNR on each side)
was performed using the density-functional tight-binding
method (DFTB). This DFT-parametrized semi-empirical
approach has been shown to be computationally highly ef-
ficient. First, we relaxed the stacks of organic molecules or
poly-thiophenes with periodic boundary conditions. Then
the structurally optimized unit cells of the molecules were
then placed between semi-infinite GNRs, and the extended
molecules were relaxed again to take into account local
structural modifications resulting from the interaction be-
tween the molecule and the electrodes. We use the param-
eterization of reference [29] for the carbon and hydrogen
atoms and reference [30] for the strongly coupled systems
using carbon, hydrogen, and sulfur atoms. Figure 5 shows
the relaxed structures of the stack and polymers between
GNR leads.

After the relaxation of the molecular junctions we cal-
culated the effective conductance of the systems between
the pair of GNR leads and compared the effective conduc-
tance at the Fermi energy in the CGDP model with con-
ventional DP model. The Fermi energy was estimated to

be −4.49 eV, which is the Fermi energy of the GNR leads.
Table 1 summarizes the effective conductance of naph-
thalene stacks between GNR leads at the Fermi energy
calculated by the CGDP model and DP model with com-
putation times and the relative errors. As expected from
the theory and toy model analysis in Figures 3 and 4, the
coarse-grained model can calculate the conductance with
small computational time and small error. Therefore, the
CGDP model can be used as a cost-efficient mean to esti-
mate the conductance including dephasing effect of weakly
coupled systems such as stacks of organic seimconducting
materials.

Next, we applied the same models to the poly-
thiophenes having strong inter-unit couplings. Table 2
presents the same contents as Table 1 but applied for the
polythiophenes. We can see that the calculation time is
largely reduced due to the CGDP model, while the relative
errors are large for all systems. This is typical violation of
the CGDP model. The large relative errors originates from
the non-stepwise drop of the chemical potential along the
polymers as discussed in the toy model in Figure 3a. Thus,
the CGDP model should not be applied for the polymeric
systems with strong inter unit coupling because of the
large relative errors, or should be used keeping the possi-
ble errors in mind1.

3.3 Practical application for isotropy analysis

To demonstrate the usability of the coarse-grained model,
we applied the CGDP model to organic semiconducting
materials in order to investigate the isotropy of dephased
electron transport through them. As an example we fo-
cused on the pentacene-derivative (TMS) [31,32]. We re-
laxed semiconducting organic crystals using DFTB+ pro-
gram and extracted a piece of organic crystal (3×3×3) and
attached a pair of gold leads to calculate the effective con-
ductance between the pair of gold leads. Figure 6 shows
the extracted molecular structure of the organic crystal

1 If the linearity of μi − μR with the position of site i holds
in the strong coupling regime, it is possible to describe the
effective current as I = 2e

h
[TLR(μL − μR) +

∑
i TiR(μi − μR)],

where the appropriate expression for μi − μR can be directly
used. The transmission between fictitious probes Ti,j need to
be evaluated anyway but one can avoid the inversion of the W
matrix speeding up the calculation.
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Table 2. Comparison of the performance between DP model and CGDP model. The table has the same structure as Table 1.
The systems of interest are polythiophene, one of those are shown in Figure 5b. The CGDP model can reduce computational
time significantly, while it gives relative errors over 10%.

N
Effective transmission T (EF ) Relative Time (s)

Gain
DP CGDP error (%) DP CGDP

2 4.8714e-03 5.8118e-03 19.304 562.42 0.430 1309
4 1.5982e-03 1.8383e-03 15.019 1268.39 0.937 1354
6 1.0267e-03 1.2003e-03 16.910 2862.00 1.962 1459
8 7.7654e-04 9.2408e-04 19.000 5172.72 3.722 1390
10 6.7352e-04 8.0776e-04 19.931 9134.71 7.533 1213

Fig. 6. A modeled structure for the calculation of anisotropy
of conductance in pentacene derivatives. The pentacene deriva-
tives are relaxed in advance using period boundary conditions.
27 monomers stacked in three layers are extracted from the
relaxed structures and the gold leads are attached for the eval-
uation of anisotropy of conductance.

Table 3. Orientation dependence of effective conductance of
organic crystal calculated by CGDP model. The effective con-
ductance at the Fermi energy (set to E = −4.5 eV) of piece of
organic crystal in Figure 6 between two leads are compared.

Case Pairs T̃eff (2e2/h)
1 0-1 8.541e-05
2 0-2 5.897e-06
3 0-3 6.212e-06
4 0-4 1.508e-04

after the relaxation. we compared the effective conduc-
tance between different pair of gold leads to investigate
the orientation dependence of the conductance.

Table 3 summarizes the effective conductance at the
Fermi energy (set to E = −4.5 eV) between pairs of gold
leads calculated by the CGDP model. The effective con-
ductance between 0th and 4th leads is the highest among
4 pairs of leads. This is easily expected from the shortest
distance and strong π-π stacking. On the other hand, in
spite of the long distance, the reduction of the effective
transmission between 0th and 2nd leads is small. This is
due to the decoherence assisted transport as discussed ever
in many other studies (for instance, [12,28]). This is how
we can apply the CGDP model for the study of the orien-
tation dependence of conductivity in the large molecular
systems in various phases (amorphous, crystals, and poly-
mers) with moderate computational cost. Although the
original DP model cannot be applied for large systems
because of computational costs, the CGDP model allows
one to investigate influence of the structural or environ-
mental factors such as disorders, defects, and doping, to
the transport [33].

4 Conclusion

In summary, for the study of electron transport through
large molecules coupled between contacts under dephas-
ing condition, we have derived the efficient coarse-grained
model starting from D’Amato-Pastawski model. Using
the stepwise chemical potential profile in weakly cou-
pled molecular wires, the effective conductance including
dephasing effect could be calculated efficiently reducing
computational time considerably without essential loss of
accuracy. This model would give an opportunity to investi-
gate the fundamental charge transporting process through
the nanostructures such as organic semiconducting devices
and DNAs, where dephasing effect plays an important
role.
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