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CENTRO-AFFINE INVARIANTS AND THE CANONICAL LORENTZ

METRIC ON THE SPACE OF CENTERED ELLIPSES

Marcos Salvai

Abstract

We consider smooth plane curves which are convex with respect to the origin. We

describe centro-a‰ne invariants (that is, GLþð2;RÞ-invariants), such as centro-a‰ne

curvature and arc length, in terms of the canonical Lorentz structure on the three

dimensional space of all the ellipses centered at zero, by means of null curves of

osculating ellipses. This is the centro-a‰ne analogue of the approach to conformal

invariants of curves in the sphere introduced by Langevin and O’Hara, using the

canonical pseudo Riemannian metric on the space of circles.

1. Introduction

Some years ago, Rémi Langevin and Jun O’Hara presented in [6] a new
approach to the classical subject of conformal length of curves in the sphere, in
terms of the canonical pseudo Riemannian structure on the space C of oriented
circles: The circles osculating a curve a in the sphere define a null curve in C,
whose 1

2-dimensional length provides, generically, a conformally invariant para-
metrization of a (for the two-sphere C is Lorentz, while it has signature ð4; 2Þ for
the three-sphere). See also [8]. This line of thought can be traced back to Lie,
Darboux and Klein (see [2]) and continued with the interpretation given by
Robert Bryant in [1] of the standard conformally invariant 2-form on a surface
M in R3 as the area of the surface in 5-dimensional Lorentz space, determined by
a certain family of tangent spheres to M.

In this paper we deal with an analogous situation: We consider smooth
plane curves which are convex with respect to the origin. The corresponding
curves of osculating ellipses centered at zero turn out to be null curves in E,
the three dimensional space of all ellipses centered at zero, provided that E is
endowed with a canonical Lorentz structure. We use this notion to describe
centro-a‰ne, i.e. GLþð2;RÞ-invariants.
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I would like to thank the referee for reading the paper very carefully and
finding several typos.

2. Centro-a‰ne invariants of 0-convex plane curves

By a path in the plane we understand an oriented embedded submanifold
included in R2 which is di¤eomorphic to R. Given a path c in the plane, an
embedding a : I ! R2 defined on the open interval I with image c, such that a 0

is positive with respect to the orientation of c, is called a parametrization of c.

For u; v A R2, denote u5v ¼ detðu; vÞ. All maps are supposed to be of class
C3, which we call smooth.

A curve a : I ! R2 is said to be convex with respect to 0 (or briefly, 0-
convex) if a5a 0 and a 05a 00 are both positive functions. In particular, aðtÞ0 0
for all t A I , a is regular, that is, a 0 never vanishes, and a is traversed coun-
terclockwise (we made this choice for the sake of simplicity). A path c in R2

is said to be 0-convex if some (or equivalently, any) of its parametrizations is
0-convex.

For instance, with a convenient orientation, a spiral centered at zero is 0-
convex, as well as an arc of the border of a strictly convex subset of the plane
containing the origin.

Let P be the set of paths in R2 which are 0-convex. This set is invariant by
the canonical action of the group G :¼ GLþð2;RÞ of linear isomorphisms of the
plane with positive determinant.

Any path c A P admits a standard centro-a‰ne parametrization a, that is, a
parametrization a such that

a 00 ¼ �aþ 1

2
Ka 0ð1Þ

for some smooth function K : I ! R, called the centro-a‰ne curvature of a, which
induces as usual a well defined notion of centro-a‰ne curvature on c. See [7,
10], where the centro-a‰ne curvature coincides up to a multiple with the one
given here and also 0-concave curves are considered simultaneously.

For the sake of completeness, we include the computation giving rise to
K. Let b a 0-convex curve and let a ¼ bðtÞ with t 0 > 0. Then a 0 ¼ b 0ðtÞt 0,
a 00 ¼ b 00ðtÞðt 0Þ2 þ b 0ðtÞt 00. We have b 00 ¼ ab þ bb 0 for some functions a, b with
a < 0. If the function t satisfies the equation ðt 0Þ2aðtÞ ¼ �1, then (1) holds
with K ¼ 2bðtÞt 0 þ 2t 00=t 0 and so a is a standard centro-a‰ne reparametrization
of b. It is an easy to verify fact that a 0-convex path is an arc of an ellipse if
and only if K1 0.

There is a broader notion of centro-a‰ne arc length: Suppose Po is a
subset of P closed under the action of G. Any map defined on Po assigning to
c A Po a nowhere vanishing positively oriented 1-form tc on c is called a centro-
a‰ne arc length element on Po, provided that tc ¼ g�tgc for any g A G. This
induces a G-invariant way of measuring length of arcs of 0-convex paths. In the
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analogous three dimensional conformal setting, the conformal arc length element
is not defined for any path, but only for the so called vertex free paths, having
parametrizations with ðk 0Þ2 þ ðktÞ2 > 0, where k and t denote the curvature and
torsion (see Definition 1.2 and Theorem 7.3 in [6]). Theorem 6 below involves
this notion.

3. The canonical Lorentz metric on the space of centered ellipses

A subset E of R2 is an ellipse centered at zero if there exist an orthonormal
basis u, v of R2 and positive numbers a, b such that

E ¼ xuþ yv

���� x
2

a2
þ y2

b2
¼ 1

� �
:ð2Þ

We will consider only ellipses centered at zero, so in the following we sometimes
call them just ellipses.

Let E be the set of all ellipses in the plane centered at zero (with axes not
necessarily parallel to the coordinate axes) and let Sþ be the manifold of all
positive definite symmetric 2� 2 matrices. Among the several ways of identify-
ing E with Sþ we choose the following:

F : Sþ ! E; FðAÞ ¼ EA;ð3Þ
where

EA ¼ fz A R2 j hA�1z; zi ¼ 1g ¼ A1=2S1 ¼ fA1=2z j jzj ¼ 1g;ð4Þ
since it is equivariant with respect to the canonical smooth transitive actions of
the group G on Sþ and E, given by g � A ¼ gAgT and g � E ¼ gðEÞ, respectively
(the superscript T denotes transpose). Notice that EA is equal to E as in (2)

provided that Au ¼ a2u and Av ¼ b2v.
Now, Sþ is an open set in the three dimensional vector space S of 2� 2

real symmetric matrices. We consider on Sþ the unique G-invariant Lorentz
structure on Sþ whose norm at the identity I is given by

hX ;Xi ¼def kXk ¼ �det X ; for X A TISþ GS:

Equivalently, kðA;XÞk ¼ �detðA�1X Þ for any ðA;X Þ A TSþ GSþ �S.
We define the future pointing cone in TISþ as the set of all X A S with

kXka 0 such that either X11 or X22 is positive. This induces a temporal
orientation on Sþ, which is invariant by the action of G.

A tangent vector X of a Lorentz manifold is called spatial, temporal or null
(or light-like), if kXk is positive, negative or zero, respectively.

Consider on the space of ellipses E the Lorentz metric copied from that in
Sþ above via the bijection (3).

Proposition 1. The G-invariant metric on E defined above is isometric to
H�� R, the warped product of the hyperbolic plane H of constant curvature �1
with R with warping function H ! R constant and equal to �1.
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Proof. Let H ¼ SLð2;RÞ ¼ fA A R2�2 j det A ¼ 1g endowed with the bi-
invariant Lorentz metric defined at the identity by kXkH ¼ 1

2 trðX 2Þ (tr X ¼ 0),
which is a multiple of the Killing form of H. It is well known that there is a
pseudo Riemannian submersion from H onto H with isotropy group SOð2Þ.

Now, F : H � R ! G defined by F ðA; xÞ ¼ exA is a Lie group isomorphism
satisfying

dFðI ;0Þ X ; x
d

dt

����
0

� �����
���� ¼ �detðX þ xIÞ ¼ 1

2
trðX 2Þ � x2 ¼ kXkH � x2:

Hence F is an isometry between H �� R and G. Considering the quotient by
SOð2Þ � f0gFSOð2Þ, the proposition follows. r

One can see E as the set of curves in the plane congruent to the circle via
the group G. Let K be a Lie group acting on a manifold N. Canonical
K-invariant pseudo Riemannian metrics on spaces of K-congruent curves in N
have proved to be useful in the study of foliations of N by such curves (see for
instance [9, 3, 4]).

Although the G-invariant metric on Sþ is relevant for the nature of the
results, for some computations it will be convenient to consider on Sþ the
constant Lorentz structure g whose associated norm is kXk ¼ �detðXÞ (notice
that Sþ is an open subset of the vector space S). The G-invariant metric g
defined above is conformally equivalent to g, and g ¼ f�2g, where f : Sþ ! R

is given by fðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðAÞ

p
.

Lemma 2. Let M be a smooth manifold and let g and g be two conformally
equivalent pseudo Riemannian metrics on M. If g is a smooth curve in M which is
null for g (or equivalently, for g), then

Dg 0

dt

����
���� ¼ Dg 0

dt

����
����;

where
D

dt
and

D

dt
denote the covariant derivatives along g associated with g and g,

respectively.

Proof. It su‰ces to show that k‘XXk ¼ k‘XXk for any null local vector
field on M. Now, we have from the proof of Proposition 2.2 in [5] that for any
vector field on M,

‘XX ¼ ‘XX � 2X ðlog fÞX þ kXk gradðlog fÞ;

where g ¼ f�2g, with f : M ! R. Hence, if X is null,

k‘XXk ¼ k‘XXk � 4X ðlog fÞh‘XX ;Xi ¼ k‘XXk;

as desired. The last equality follows from the fact that h‘XX ;Xi ¼ 0 since kXk
is constant. r
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4. Null curves of osculating ellipses

Given a regular curve a : I ! R2, the (Euclidean) curvature of a is the real
function k on I defined by k ¼ ða 05a 00Þ=ja 0j3. This induces a well defined
notion of curvature on a path in R2.

For each z on a 0-convex path c there exists exactly one ellipse E osculating
c at z. This means the following: Suppose that a is a parametrization of c with
aðtoÞ ¼ z, then E is the ellipse having a counterclockwise parametrization e such
that eð0Þ ¼ z, e 0ð0Þ is a multiple of a 0ðtoÞ and keð0Þ ¼ kaðtoÞ, where ke and ka are
the curvatures of e and a, respectively.

The first assertion of the next theorem is the centro-a‰ne analogue of
Theorems 5.1 and 7.2 in [6], within the conformal setting, for S2 and S3,
respectively.

Theorem 3. Let a : I ! R2 be a parametrization of a 0-convex path c. For
each t A I , let EðtÞ be the ellipse centered at the origin osculating a at t. Then
the curve E : I ! E is light-like.

If a is a standard centro-a‰ne parametrization of c and K : I ! R is the
centro-a‰ne curvature of a, then

K2ðtÞ ¼ D

dt
E 0ðtÞ

����
����ð5Þ

for all t A I . Moreover, K is positive or negative depending on whether E is future
or past directed.

Proof. If a � s is a reparametrization of a, then E � s is the curve of
osculating ellipses to a, which is null if and only if E is null. Hence, we may
suppose that a is a standard centro-a‰ne parametrization, that is, a satisfies (1).

Given to A I , we verify that kE 0ðtoÞk ¼ 0. We may assume additionally,
without loss of generality, that to ¼ 0,

a0 ¼ e1; a 0
0 ¼ e2ð6Þ

(by considering aðtÞ ¼ Aaðt� toÞ, where A A G satisfies Aato ¼ e1 and Aa 0
to
¼ e2

and using the G-invariance of the statement).
Given t in the domain of a, we see first that

u 7! etðuÞ ¼ ðcos uÞat þ ðsin uÞa 0
t

parametrizes EðtÞ. Clearly et is a counterclockwise parametrization of an ellipse.
We have that

e 0tðuÞ ¼ �ðsin uÞat þ ðcos uÞa 0
t

and so e 00t ¼ �et. In particular, etð0Þ ¼ at, e
0
tð0Þ ¼ a 0

t and e 00t ð0Þ ¼ �at. So, for
EðtÞ to osculate a at t it su‰ces to check that ketð0Þ ¼ kaðtÞ, where the left
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and right hand side are the curvatures of et and a at u ¼ 0 and t, respectively.
Indeed,

kaðtÞ ¼
a 0
t5a 00

t

ja 0
t j
3

¼
a 0
t5ð�at þ 1

2 Kta
0
tÞ

ja 0
t j
3

¼ at5a 0
t

ja 0
t j
3

¼ e 0tð0Þ5e 00t ð0Þ
je 0tð0Þj

3
¼ ketð0Þ:

Now we find the curve in Sþ associated with the curve EðtÞ in E, according
to the isometry (3). Let At ¼ ðat; a 0

tÞ A R2�2, where at and a 0
t are column vectors.

We have that EðtÞ ¼ AtS
1. For simplicity, in the following we omit writing t.

The polar decomposition of A is given by

A ¼ ðAATÞ1=2O

for some O A SOð2Þ. Hence E ¼ ðAATÞ1=2S1 and so, by (4), the curve g in Sþ
associated with E is g ¼ AAT ¼ aaT þ a 0ða 0ÞT . Therefore,

g 0 ¼ a 0aT þ aða 0ÞT þ a 00ða 0ÞT þ a 0ða 00ÞT :

Evaluating at t ¼ 0 one has, using (6) and (1), that

g 00 ¼
0 0

0 K0

� �
:ð7Þ

In particular, kg 00k ¼ �detðg 00Þ ¼ 0. Since to was arbitrary, E is a null curve in E.
In order to prove the second assertion we compute

g 00 ¼ a 00aT þ 2a 0ða 0ÞT þ aða 00ÞT þ a 000ða 0ÞT þ 2a 00ða 00ÞT þ a 0ða 000ÞT :

Now, (1) yields a 000 ¼ � 1
2 Kaþ ð 14 K2 þ 1

2 K
0 � 1Þa 0. From this and (6) we have

that the first component of a 000
0 equals � 1

2 K0 and

g 000 ¼ 0 �K0
�K0 x

� �

for some number x. Since EðtÞ and gt correspond under the isometry (3), we
have by Lemma 2 that

DE 0

dt

����
0

����
���� ¼ kg 000 k ¼ �detðg 000 Þ ¼ K2

0 ;

as desired. The last assertion follows from (7) and the definition of the temporal
orientation on Sþ. r

Lemma 4. Let A A Sþ and let v, w two vectors in R2 such that v5w > 0,

hAv; vi ¼ 1 and hAv;wi ¼ 0, and let L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hAw;wi

p
. Then the curve e : R ! R2

defined by

eðsÞ ¼ cos s Avþ sin s Aw=Lð8Þ
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parametrizes the ellipse EA counterclockwise and its curvature at s ¼ 0 is

kð0Þ ¼ v5w

ðv5AwÞjvj :ð9Þ

Proof. We verify that eðsÞ A EA for all s. Indeed,

hA�1eðsÞ; eðsÞi ¼ hcos s vþ sin s w=L; cos s Avþ sin s Aw=Li

¼ cos2 s hv;Aviþ sin2 s hAw;wi=L2 þ 2 sin s cos s hw;Avi

¼ cos2 sþ sin2 s ¼ 1:

We have that e5e 0 ¼ ðdet AÞv5w=L and so e parametrizes EA counterclockwise.
We compute

kð0Þ ¼ e 05e 00

je 0j3
ð0Þ ¼ Aw=L5ð�AvÞ

ðjAwj=LÞ3
¼ ðAv5AwÞhAw;wi

jAwj3
:

Since A is symmetric we have that hAw; vi ¼ 0 and we may suppose that Aw ¼
imv for some m A R. Here i denotes counterclockwise rotation through a right
angle. Therefore

kð0Þ ¼ ðAv5imvÞhimv;wi
jimvj3

¼ hv;Aviðv5wÞ
mjvj3

¼ v5w

jvj3

and (9) holds since v5Aw ¼ v5imv ¼ mjvj2. r

The following theorem is a partial converse of Theorem 3.

Theorem 5. Let g : ða; bÞ ! Sþ be a regular null curve with spatial accel-

eration, that is,
Dg 0

dt

����
���� > 0, and let Et be the ellipse associated with gðtÞ via the

bijection (3). Then there exists a 0-convex curve a : ða; bÞ ! R2 such that either
t 7! Et or t 7! E�t osculates a at t, for all t A ða; bÞ.

Proof. We have kg 0k ¼ �det g 0 ¼ 0. Since g 0 0 0, for each t, the kernel of
g 0ðtÞ has dimension one. Let v be a smooth curve such that g 0ðtÞvðtÞ ¼ 0 for all
t, normalized in such a way that hgv; vi ¼ 1, and let aðtÞ ¼ gtvt. In particular,
a 0 ¼ g 0vþ gv 0 ¼ gv 0.

By di¤erentiating 1 ¼ hgv; vi and using that g is symmetric we have

0 ¼ hgv 0 þ g 0v; viþ hgv; v 0i ¼ hgv 0; viþ hgv; v 0i ¼ 2hgv; v 0i:ð10Þ

Now we verify that a is 0-convex. Since g 0 0 0 is symmetric and singular,
and g 0v ¼ 0, there exist a nowhere vanishing smooth function l : ða; bÞ ! R such
that

g 0 ¼ luuT ;
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where u ¼ iv (a column vector). We compute

g 00 ¼ l 0uuT þ lðuuTÞ0 ¼ l 0

l
g 0 þ lðBþ BT Þ;

where B ¼ u 0uT . On the other hand, hg 0; g 0i ¼ 0 implies hg 00; g 0i ¼ 0. Hence,

0 ¼ hg 00; g 0i ¼ l 0

l
hg 0; g 0iþ lhBþ BT ; g 0i ¼ lhBþ BT ; g 0i:

Therefore, by Lemma 2,

0 <
D

dt
g 0

����
���� ¼ kg 00k ¼ l2kBþ BTk ¼ �l2 detðBþ BT Þ ¼ l2ðu5u 0Þ2 ¼ l2ðv5v 0Þ2:

Consequently, v5v 0 0 0. We may suppose that v5v 0 > 0 (otherwise, we can
substitute gðtÞ and vðtÞ with gðtÞ ¼ gð�tÞ and vðtÞ ¼ vð�tÞ, respectively, and in
this case t 7! EðtÞ ¼ Eð�tÞ will be the curve of ellipses we were looking for).

We know that a 0 ¼ gv 0. Hence,

a5a 0 ¼ gv5gv 0 ¼ ðdet gÞðv5v 0Þ > 0

and so a is parametrized counterclockwise. By (10), since g is symmetric, we
have a 0 ¼ liv for some nowhere zero function l. Hence, a 00 ¼ l 0ivþ liv 0. Thus,

a 05a 00 ¼ liv5ðl 0ivþ liv 0Þ ¼ l2ðiv5iv 0Þ ¼ l2ðv5v 0Þ > 0:

Therefore a is 0-convex. Let e be as in (8), with A ¼ gðtÞ and w ¼ v 0ðtÞ, and
let EðtÞ be the ellipse parametrized by e. Then eð0Þ ¼ aðtÞ and e 0ð0Þ is a positive
multiple of gðtÞv 0ðtÞ ¼ a 0ðtÞ. Thus, in order to prove that EðtÞ osculates a at t it
remains only to see that the curvature of Et at aðtÞ coincides with the curvature
of a at t. The latter is a 0ðtÞ5a 00ðtÞ=ja 0ðtÞj3. We compute

a 05a 00

ja 0j3
¼ liv5ðl 0ivþ liv 0Þ

jlivj3
¼ iv5iv 0

ljvj3
¼ v5v 0

ðv5gv 0Þjvj

(the last equality follows since v5gv 0 ¼ v5a 0 ¼ v5liv ¼ ljvj2), which coincides
with the curvature of Et at aðtÞ by Lemma 4. Consequently EðtÞ is the oscu-
lating ellipse to a at t. r

The following theorem is the centro-a‰ne analogue of Theorems 5.2 and 7.3
in [6]. In the context of the last paragraph of the introduction, we consider as
Po the set of all 0-convex paths with nowhere vanishing centro-a‰ne curvature
and give the centro-a‰ne arc length element as the 1

2-dimensional length of the
curve of osculating ellipses.

Theorem 6. Let c be a 0-convex path in R2 with nowhere vanishing centro-
a‰ne curvature. Let a : I ! R2 be any parametrization of c (not necessarily

28 marcos salvai



standard centro-a‰ne). For each t A I , let EðtÞ be the ellipse centered at the origin
osculating a at t. Then the null curve E in E has spatial acceleration, that is
D

dt
E 0

����
���� > 0 and the 1-form tc on c is well defined by

a�tc ¼
DE 0

dt

����
����
1=4

dt:

Moreover, the map c 7! tc is invariant under the action of G.

Proof. Notice that the curve E is null by the first assertion of Theorem
3. Suppose that bðsÞ ¼ aðfðsÞÞ is a reparametrization of a and let FðsÞ ¼ EðfðsÞÞ
be the osculating ellipse of b at s. We compute F 0ðsÞ ¼ E 0ðfðsÞÞf 0ðsÞ and

DF 0

ds
¼ DE 0

dt
ðfÞðf 0Þ2 þ E 0ðfÞf 00:

Now hE 0;E 0i ¼ 0 and this implies
DE 0

dt
;E 0

� 	
¼ 0. Hence

DF 0

ds

����
���� ¼ DE 0

dt
ðfÞ

����
����ðf 0Þ4:ð11Þ

If b is a standard centro-a‰ne reparametrization of a, we have by hypothesis and

the second assertion of Theorem 3 that
DF 0

ds

����
���� is positive, and by (11)

DE 0

ds

����
���� is

also so. Therefore

DF 0

ds
ðsÞ

����
����
1=4

ds ¼ DE 0

dt
ðfðsÞÞ

����
����
1=4

f 0ðsÞ ds;

and this implies that the 1-form tc on c is well defined, since

b�ða�1Þ� ¼ ða�1bÞ� ¼ f� and f� dt ¼ f 0ðsÞ ds:

Finally, we show that tc is G-invariant. We have to check that tc ¼ A�tAc
for any A A G, or equivalently, that a�tc ¼ ðAaÞ�tAc for a parametrization a of c,
that is,

DE 0

dt

����
����
1=4

dt ¼ DðAEÞ0

dt

����
����
1=4

dt;

(AEðtÞ osculates Aa at t) and this is true since A acts by isometries on E.
r
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