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A local excitation in a quantum many-spin system
evolves deterministically. A time-reversal procedure,
involving the inversion of the signs of every energy
and interaction, should produce the excitation revival.
This idea, experimentally coined in nuclear magnetic
resonance, embodies the concept of the Loschmidt
echo (LE). While such an implementation involves
a single spin autocorrelation M1,1, i.e. a local LE,
theoretical efforts have focused on the study of
the recovery probability of a complete many-body
state, referred to here as global or many-body LE
MMB. Here, we analyse the relation between these
magnitudes, with regard to their characteristic time
scales and their dependence on the number of spins
N. We show that the global LE can be understood,
to some extent, as the simultaneous occurrence of
N independent local LEs, i.e. MMB ∼ (M1,1)N/4. This
extensive hypothesis is exact for very short times
and confirmed numerically beyond such a regime.
Furthermore, we discuss a general picture of the decay
of M1,1 as a consequence of the interplay between the
time scale that characterizes the reversible interactions
(T2) and that of the perturbation (τΣ ). Our analysis
suggests that the short-time decay, characterized by
the time scale τΣ , is greatly enhanced by the complex
processes that occur beyond T2. This would ultimately
lead to the experimentally observed T3, which was
found to be roughly independent of τΣ but closely tied
to T2.
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1. Introduction
If an ink drop falls into a pond, the stain diffuses away until no trace of it remains whatsoever.
One may naturally say that such a process is in fact irreversible. In the microscopic world, similar
phenomena are also ubiquitous. For instance, let us consider a many-spin quantum system in
thermal equilibrium where a local polarization excess is injected. Then, this excitation would
spread all over as a consequence of spin–spin interactions. Such an apparently irreversible process
is known as spin diffusion [1,2] and it can lead the system back to equilibrium. However, this naive
picture has its limitations. On the one hand, spreading is not always the rule, as there are physical
situations where the initial excitation does not vanish. This is the case of Anderson localization
[3,4] or when the excitation remains topologically protected [5]. On the other hand, even in cases
where the system seems to have reached an equilibrium state, the unitarity of quantum dynamics
ensures a precise memory of the non-equilibrium initial condition. Then, if some experimental
protocol could reverse the many-body dynamics, it would drive the system back to the initial
non-equilibrium state [6]. Such a general idea defines the Loschmidt echo (LE), which embodies
the various time-reversal procedures implemented in nuclear magnetic resonance (NMR) [7–9].

The first NMR time-reversal experiment was performed by Hahn in the 1950s [10]. The
procedure, known as spin echo, reverses the precession dynamics of each independent spin
around its local magnetic field by inverting the sign of the Zeeman energy. However, the sign
of the energy associated with the spin–spin interactions is not inverted and, accordingly, the
echo signal is degraded. Such a decay occurs within the time scale T2 that characterizes the
spin–spin interactions. Indeed, these interactions determine the survival of a spin excitation at
short times as ∼ 1 − (t/T2)2 and its later complex dynamics generating a diffusive spreading. By
the early 1970s, Kessemeier, Rhim, Pines and Waugh implemented the reversal of the dynamics
induced by the spin–spin dipolar interaction [11,12]. This results in the ‘magic echo’, which
indicates the recovery of a global polarization state. Two decades later, Ernst and co-workers
introduced the ‘polarization echo’ [13]. There, a local excitation injected in a many-spin system
is allowed to evolve, then time-reversed and finally detected locally at the initial spot. While the
success of these time-reversal echoes unambiguously evidenced the deterministic nature of spin
dynamics in NMR, it is clear that the reversal is unavoidably degraded by uncontrolled internal
or environmental degrees of freedom or by imperfections in the pulse sequences. Furthermore,
the degradation seems to occur in a time scale, say T3, much shorter than a naive estimation
of the characteristic scale of these perturbations, say τΣ . Then, the question that arises is whether
the complexity inherent to a large number of correlated spins would enhance the fragility of the
procedure under perturbations.

The next generation of experiments in organic crystals [14–16] seemed to confirm that the
experimental T3 never exceeds a few times T2. In other words, T3 remains tied to the time
scale that characterizes the reversible many-body interaction. This led to the postulate that, in
an infinite many-spin system, the complex dynamics could favour the action of any small non-
inverted interaction that perturbs the reversal procedure. Thus, reversible interactions become
determinant for the irreversibility rate. This constitutes our central hypothesis of irreversibility.
Such wisdom is further reinforced by the natural association of many-body complexity with a
form of chaos [17,18] and the confirmation that quantum dynamics of classically chaotic systems
should manifest a dynamical instability [19] which leads to an environment-independent decoherence
rate [20,21].

During the last decade, solid-state NMR has kept on providing a versatile testing bench
to study time reversal in large spin arrays [22–26]. In fact, a standard experiment involves a
crystalline sample with an infinitely large number of spins. By contrast, the numerical test of
many-spin dynamics has to be restricted to strictly finite systems [27,28]. While this appears to
be a major limitation, it allows the analysis of a situation that the experiments cannot achieve:
moving progressively from small systems to larger ones with a fully controlled perturbation. The
expectation is that a sort of finite size scaling may allow one to identify an emergent mechanism
that rules reversibility in the thermodynamic limit [29]. As in the experiments, the witness for such
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a transition should be the LE as measured by a single spin autocorrelation function M1,1, i.e. a local
polarization. For short, we call M1,1 the local LE. It is not difficult to prove that Π1,1 ≡ (M1,1 + 1)/2
is the probability that a given spin, say the first, remains up after the whole procedure. Besides, in
a case of a spin excitation in a one-dimensional chain with XY interactions [30–32], M1,1 precisely
coincides [27] with the global overlap of two one-body wave functions as defined for semi-
classical systems [20,33,34]. The square of the overlap between the initial and final many-body
wave functions, MMB, defines a global or many-body LE. It is important to note that MMB has not
been addressed experimentally, but nevertheless it is a natural magnitude in theory [35–37]. Thus,
we are left without a precise relation between the object of theoretical studies and experimental
ones, i.e. MMB and M1,1, respectively. This missing link is the central question we address in
this paper.

Here, we consider a system of N spins whose initial state is given by a local excitation injected
in a high-temperature state. First, we discuss the formal relation between MMB and M1,1, which
is derived exactly at least for very short times. In particular, we assess how the N dependence or
extensivity of MMB is evidenced in the time scales involved. This leads us to hint that the revival
of a many-spin state results from the recovery of each individual spin configuration, much as if
they were statistically independent events. Because in the initial high-temperature state there are
N/2 spins up, their rough statistical independence would lead to a behaviour of the sort MMB ∼
(Π1,1)N/2 ∼ (M1,1)N/4. This is confirmed by the numerical evaluation of the LE in a specific spin
model.

Furthermore, we discuss a general picture beyond the short-time regime, where the decay of
M1,1 results from the interplay between the time scale that characterizes the reversible interactions
(T2) and that of the perturbation (τΣ ). This would ultimately lead to the experimentally observed
T3. In such a sense, our analysis provides a conceptual link between the theoretical and the
experimental realms.

The paper is organized as follows. In §2, we introduce the LE framework: the initial state and
the time-reversal procedure. Here, we define both the local and global LEs. In §3, we compute
the short-time expansions for the local LE and its non-local contributions (in particular, the many-
body LE). This allows us to discuss a general picture of the LE decay in terms of the times scales
that characterize MMB and M1,1. The dependence on N is discussed in terms of the extensivity of
MMB and statistical independence of the local autocorrelations. In §4, we assess our expectations
by a numerical evaluation of the LE in a spin system. Section 5 summarizes our main conclusions
and some of the important open questions in the field.

2. The Loschmidt echo in spin systems
Let us first specify the initial condition of a ‘local excitation in a many-spin system’. We consider
N spins 1

2 in an infinite-temperature state, i.e. completely depolarized mixture, plus a locally
injected polarization,

ρ̂0 = 1
2N (Î + 2Ŝz

1). (2.1)

Here, the spin 1 is polarized while the others are not, i.e. tr[Ŝz
i ρ̂0] = 1

2 δi,1. Such an initial state can
be experimentally implemented not only in NMR [38] but also in cold atoms [39].

As in the early LE experiments [14–16], our numerical evaluation focuses on an imperfect
time-reversed evolution of the excitation, followed by a local measurement. The procedure is
depicted in figure 1. A many-spin Hamiltonian Ĥ0 rules the forward evolution of the system
up to a certain time tR. At that moment, an inversion of the sign of Ĥ0 is performed, leading
to a symmetric backward evolution. Nevertheless, there are unavoidable perturbations, denoted
by Σ̂ , that could arise from the incomplete control of the Hamiltonian, acting on both periods.
Thus, evolution operators for these tR periods are Û+(tR) = exp[−(i/h̄)(Ĥ0 + Σ̂)tR] and Û−(tR) =
exp[−(i/h̄)(−Ĥ0 + Σ̂)tR], respectively. It is quite practicable to define the LE operator as

ÛLE(2tR) = Û−(tR)Û + (tR), (2.2)
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time time0 tR 2tR

exp[–i(H0 + S )tR/�] exp[–i(–H0 + S )tR/�]

(b)(a) (c)

Figure 1. The scheme of the local LE,M1,1(t). (a) The initial state is given by a local excitation in a high-temperature spin system,
as stated in equation (2.1). The system is allowed to evolve under the Hamiltonian Ĥ0 + Σ̂ and the excitation diffuses all over
until a time t = tR (b). At that time, a time reversal is performed, leading to a backward evolution ruled by−Ĥ0 + Σ̂ . At time
t = 2tR (c), a local measurement is performed at the initial spot. (Online version in colour.)

which produces an imperfect refocusing at time 2tR. A local measurement of the polarization,
performed at site 1, defines the local LE:

M1,1(t) = 2 tr[Ŝz
1ÛLE(t)ρ̂0Û†

LE(t)] = 2 tr[Ŝz
1ρ̂t]. (2.3)

Here, we choose as free variable t = 2tR, the total elapsed time in the presence of the perturbation.
The time dependence of ρ̂t in the Schrödinger picture is

ρ̂t = ÛLE(t)ρ̂0Û†
LE(t). (2.4)

Using equation (2.1), and after some algebraic manipulation, the LE can be explicitly written
as a correlation function:

M1,1(t) = 1
2N−2 tr[Û†

LE(t)Ŝz
1(0)ÛLE(t)Ŝz

1(0)] = tr[Ŝz
1(t)Ŝz

1(0)]

tr[Ŝz
1(0)Ŝz

1(0)]
. (2.5)

Here, the time dependence is written according to the Heisenberg picture,

Ŝz
1(t) = Û†

LE(t)Ŝz
1(0)ÛLE(t). (2.6)

Note that equation (2.5) is an explicit correlation function at the same site but different times, i.e.
an autocorrelation. This kind of correlation has been recently employed to address localization
phenomena in spin systems [4,40,41], and it generalizes the standard one employed to assess
spin diffusion [42]. In terms of the Hilbert–Schmidt inner product between the initial and the
time-evolved density matrices, i.e. equations (2.1) and (2.4) respectively, the LE can be written
as [15,43,44]

M1,1(t) = 2N tr[ρ̂0ρ̂t] − 1 = 2
tr[ρ̂0ρ̂t]
tr[ρ̂0ρ̂0]

− 1, (2.7)

which, in the present case, progressively decays from 1 to 0, as occurs with the statistical overlap
between two wave packets in the standard LE definition [20].

Equivalent expressions for the LE can be derived by decomposing the statistical state into
a simpler basis. In order to proceed with the pure state decomposition of ρ̂0, we consider the
computational Ising basis {|βi〉}, also known as the Sz-decoupled basis. Additionally, we define
the set A of indices j that label basis states which have the first spin pointing up, i.e. j ∈A⇔
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Ŝz
1|βj〉 = + 1

2 |βj〉. It is straightforward to verify that ρ̂0 =∑
j∈A 2−(N−1)|βj〉〈βj|. Then, as introduced

in [30],

M1,1(t) = 2

⎡
⎣∑

i∈A

∑
j∈A

1
2N−1 |〈βj|ÛLE(t)|βi〉|2 − 1

2

⎤
⎦= 2

[
Π1,1(t) − 1

2

]
. (2.8)

Here, Π1,1(t) denotes the probability that the first spin keeps pointing up after a time t. After some
manipulation,

M1,1(t) = 2

⎡
⎣∑

i∈A

∑
j∈A

1
2N−1 |〈βj|ÛLE(t)|βi〉|2 − 1

2

⎤
⎦

=
⎡
⎣∑

i∈A

1
2N−1

⎛
⎝|〈βi|ÛLE(t)|βi〉|2 +

∑
j∈A (j�=i)

|〈βj|ÛLE(t)|βi〉|2 −
∑
j∈B

|〈βj|ÛLE(t)|βi〉|2
⎞
⎠
⎤
⎦ . (2.9)

Here, B stands for the complement of A, i.e. j ∈B ⇔ Ŝz
1|βj〉 = − 1

2 |βj〉. One can naturally identify
and define the two terms that contribute to the local polarization M1,1(t). The first sum in
equation (2.9) stands for the average probability of revival of the many-body states, denoted by
MMB(t),

MMB(t) =
∑
i∈A

1
2N−1 |〈βi|ÛLE(t)|βi〉|2. (2.10)

The second sum in equation (2.9) represents the average probability of changing the configuration
of any spin except the first. The third sum stands for the average probability that the first spin has
actually flipped, i.e. of all those processes that do not contribute to M1,1(t). Then, the processes
that contribute to M1,1(t) but not to MMB(t) are denoted as

MX(t) =
∑
i∈A

1
2N−1

⎛
⎝ ∑

j∈A (j�=i)

|〈βj|ÛLE(t)|βi〉|2 −
∑
j∈B

|〈βj|ÛLE(t)|βi〉|2
⎞
⎠ . (2.11)

This balance of probabilities leads to the appropriate asymptotic behaviour of M1,1(t) according
to the symmetries that constrain the evolution. The identification

M1,1(t) = MMB(t) + MX(t) (2.12)

is a crucial step for the following discussions.
If we use the identity Ŝz

1 = Ŝ+
1 Ŝ−

1 − 1
2 Î in equation (2.5), the invariance of the trace under

cyclic permutations ensures that tr[Ŝz
1(t)Ŝz

1(0)] = tr[Ŝ−
1 (0)Ŝz

1(t)Ŝ+
1 (0)] − 1

2 tr[Ŝz
1(t)]. As tr[Ŝz

1(t)] =
tr[Ŝz

1(0)] = 0, then

M1,1(t) = 2
∑

i

1
2N−1 〈βi|Ŝ−

1 (0)Û†
LE(t)Ŝz

1(0)ÛLE(t)Ŝ+
1 (0)|βi〉

= 2
∑
i∈A

1
2N−1 〈βi|Û†

LE(t)Ŝz
1ÛLE(t)|βi〉, (2.13)

which is indeed an explicit way to rewrite equation (2.3) in the form of an ensemble average.
Remarkably, as Ŝz

1 is a local (one-body) operator, its evaluation in equation (2.13) can be replaced
by the expectation value in a single superposition state [45],

M1,1(t) = 2〈Ψneq|Û†
LE(t)Ŝz

1ÛLE(t)|Ψneq〉, (2.14)

where

|Ψneq〉 =
∑
i∈A

1√
2N−1

eiϕi |βi〉. (2.15)
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Here, ϕi is a random phase uniformly distributed in [0, 2π ). In fact, the state defined in
equation (2.15) is a random superposition that can successfully mimic the dynamics of ensemble
calculations and provides a quadratic speed-up of computational efforts [45–47].

3. The Loschmidt echo dynamics

(a) Short-time expansions and beyond
In order to analyse the N dependence of the LE and its time scales, we compute here the short-time
expansion of the magnitudes M1,1(t), MMB(t) and MX(t). Up to second order in time,

M1,1(t = 2tR) = 2
∑
i∈A

1
2N−1 〈βi|Û†

LE(t)Ŝz
1ÛLE(t)|βi〉

= 1 −
(

t
h̄

)2 ∑
i∈A

1
2N−1 (〈βi|Σ̂2|βi〉 − 2〈βi|Σ̂ Ŝz

1Σ̂ |βi〉) + O
((

t
h̄

)3
)

. (3.1)

Similarly, the leading contributions to MMB(t) and MX(t) are

MMB(t) =
∑
i∈A

1
2N−1 |〈βi|ÛLE(t)|βi〉|2

= 1 −
(

t
h̄

)2 ∑
i∈A

1
2N−1 (〈βi|Σ̂2|βi〉 − 〈βi|Σ̂ |βi〉2) + O

((
t
h̄

)3
)

(3.2)

and

MX(t) =
∑
i∈A

1
2N−1

⎛
⎝ ∑

j∈A (j�=i)

|〈βj|ÛLE(t)|βi〉|2 −
∑
j∈B

|〈βj|ÛLE(t)|βi〉|2
⎞
⎠

=
(

t
h̄

)2 ∑
i∈A

1
2N−1 (2〈βi|Σ̂ Ŝz

1Σ̂ |βi〉 − 〈βi|Σ̂ |βi〉2) + O
((

t
h̄

)3
)

. (3.3)

Let us consider a generic secular (i.e. polarization-conserving) perturbation Σ̂ given by a
Hamiltonian with an arbitrary anisotropy α,

Σ̂ =
N∑
i,j

(JΣ )ij[2αŜz
i Ŝz

j − (Ŝx
i Ŝx

j + Ŝy
i Ŝy

j )]. (3.4)

This is still quite general, as even a double quantum perturbation (Ŝ+
i Ŝ+

j + Ŝ−
i Ŝ−

j , which does not
conserve polarization) can be reduced to a secular one by the truncating effects of radiofrequency
fields [29]. In addition, we do not consider here the case [Σ̂ , Ŝz

1] = 0 (e.g. pure Ising or on-
site diagonal disorder), as in such a condition the first non-trivial order in time is the fourth
(see Appendix). Then, the following identities hold:

∑
i∈A

1
2N−1 〈βi| Σ̂2|βi〉 = 2Nσ 2

(
α2

4
+ 1

8

)
, (3.5)

∑
i∈A

1
2N−1 〈βi|Σ̂ Ŝz

1Σ̂ |βi〉 = 2Nσ 2

(
α2

8
+ 1

16

)
− 1

2
σ 2 (3.6)

and
∑
i∈A

1
2N−1 〈βi|Σ̂ |βi〉2 = 2Nσ 2 α2

4
. (3.7)
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Here, σ 2 stands for the average local second moment of Σ̂ ,

σ 2 = 1
N

N∑
i=1

σ 2
i = 1

N

N∑
i=1

⎡
⎣ N∑

j (�=i)

( (JΣ )ij

2

)2
⎤
⎦ . (3.8)

Being a perturbation, we note that σ 2 is much smaller than the average local second moment σ 2
0 of

the unperturbed Hamiltonian Ĥ0. In terms of time scales,

T2 = h̄√
σ 2

0


 h̄√
σ 2

= τΣ . (3.9)

The identities in equations (3.5)–(3.7) lead to

M1,1(t) = 1 −
(

t
τΣ

)2
+ O

((
t
h̄

)3
)

, (3.10)

MMB(t) = 1 − 1
4

N
(

t
τΣ

)2
+ O

((
t
h̄

)3
)

(3.11)

and MX(t) =
(

N − 4
4

)(
t

τΣ

)2
+ O

((
t
h̄

)3
)

. (3.12)

These expansions hold for t < (τΣ/N). Beyond such a very short-time regime, a general term in
the expansion of M1,1(t) will be of the form

c(N,n)tn

(τ k
ΣTn−k

2 )
(3.13)

with k ≥ 2 and the coefficient c(N,n) described by combinatorial numbers of increasing size
that depend on the topology of the interactions (e.g. see [25,48]). As the experimental set-up
corresponds to the limit described by equation (3.9), this expansion will be dominated by terms
with the lowest possible order in the weak interaction, i.e. k = 2:

(
t

τΣ

)2
[

1 +
∑

n
c(N,n)

(
t

T2

)n−2
]

. (3.14)

Equation (3.14) indicates that, beyond the very short-time expansion, i.e. (τΣ/N) < t < τΣ , the
dependence on τΣ becomes superseded by the diverging terms in the scale T2. This could lead to
the new time scale T3, which was seen experimentally to be tied to T2 as

T2 � T3 
 τΣ . (3.15)

In that sense, T3 becomes characteristic of the complexity or ‘chaos’ of the many-spin system
that amplifies the small effect of the perturbation. In addition, it is important to stress that,
being an experimental fact, equation (3.15) corresponds to a system composed by infinitely many
interacting spins. In other words, equation (3.15) stands for the relations of time scales in the
thermodynamic limit. Quite on the contrary, any numerical simulation involves a finite, very
small indeed, number of spins where the irreversibility rate T3 would be essentially given by
τΣ . Then, the LE decay rate evaluated in a finite system would ultimately be perturbation-
dependent [28]. Thus, our central hypothesis of irreversibility would mean that equation (3.15) is
an emergent property. It should rely on the thermodynamic limit, which implies taking the limit
N → ∞ first, and then τΣ → ∞. The non-uniformity of these limits plays a crucial role to yield
quantum phase transitions, as discussed in the context of Anderson localization [49–51].

The physical picture described above is schematically represented in figure 2. There, we
show the expected interplay between MMB(t) and MX(t) leading to M1,1(t). Indeed, as stated in
equations (3.11) and (3.12), the very short-time dependence of both contributions is extensive in
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M
1,1

(t) ~ 1 – (t/tS)2

M
1,

1(
t)

 =
 M

M
B
(t

) 
+

 M
X
(t

)

T
3

time

0

0.2

0.4

0.6

0.8

1.0

M
MB

(t) ~ 1 – ¼N(t/tS)2

M•

M
X
(t) ~ ¼(N – 4)(t/tS)2

Figure 2. A pictorial scheme of the time dependence of M1,1(t) (black dotted line) and its contributions, as indicated by the
labels, MMB(t) (blue solid line) and MX (t) (green solid line). Their short-time expansions, as stated in equations (3.10)–(3.12),
are indicated with arrows. In particular, the expansion corresponding to the short-time behaviour of M1,1 (t) is plotted with a
black dashed line. (Online version in colour.)

N: MMB(t) decreases as 1 − Nσ 2t2/4 and MX(t) increases as (N − 4)σ 2t2/4. Such a precise balance
provides for the short-time decay of M1,1(t) given by equation (3.10), i.e. 1 − σ 2t2. Note that
there is no reason to assume that the decay of MMB(t) would remain ruled by τΣ . Beyond the
very short times, we expect that the time scale T3 should also show up as T3/Nν with ν ∼ 1
in the decay of MMB(t) (see below). Furthermore, while MMB(t) goes monotonically to zero,
MX(t) displays a highly non-trivial behaviour. Indeed, MX(t) first increases by feeding from the
decay of MMB(t) until it reaches a maximum. This growth indicates a progressive divergence
of long-range correlations. Thereafter, MX(t) should decay, accounting for the fact that the state
remains properly normalized. This is precisely what M1,1(t) measures: a conserved polarization
that ultimately distributes uniformly within the spin system. In an isolated finite system this
implies the asymptotic plateau M∞ ∼ 1/N. As pointed out above, the decay of both M1,1(t) and
MX(t) occurs in a time scale T3, which, according to equation (3.14), is somewhat longer than but
close to the ‘diffusion’ time T2. This is the regime captured experimentally.

(b) The extensive decay hypothesis
The previous short-time expansions provide a hint on the scaling relation between the local
LE, M1,1(t), and the global one as embodied by MMB(t). In particular, let us first compare the
probability of refocusing the configuration (up or down) of a single spin, i.e. Π1,1(t), and the
probability of refocusing a complete many-spin state MMB(t). If the refocusing of each individual
spin could be treated as an independent event, then the scaling between Π1,1 and MMB would be
extensive in N,

(Π1,1(t))N/2 � MMB(t). (3.16)

Here, the factor 1
2 in the exponent comes from equation (2.1), i.e. the initial high-temperature

state, where basically half of the spins point up, and half of them point down. Then, one can
resort to the picture of a lattice gas where N/2 particles jump among N lattice sites. As in the
well-known Jordan–Wigner transformation [52], a fermion is associated with a spin pointing up
and a vacancy corresponds to a spin pointing down. Thus, the microstate of the gas is completely
described by the position of N/2 particles.

Strictly speaking, the notion of extensiveness corresponds to standard thermodynamic
quantities such as the entropy of the system. In addition, as discussed in [16], S = − ln(M1,1(t))
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is precisely a measure of the entropy. Then, the validity of equation (3.16) implies an extensivity
relation between the entropy per spin and the total entropy of the system.

According to equations (2.8) and (3.10),

Π1,1(t) = 1 − 1
2

(
t

τΣ

)2
+ O

((
t
h̄

)3
)

, (3.17)

which, in turn, up to second order in time, implies Π1,1(t) � (M1,1(t))1/2. Thus, equation (3.16)
yields

(M1,1(t))N/4 � MMB(t). (3.18)

This is precisely the relation verified between equations (3.10) and (3.11).
One might expect that, beyond the very short-time decay, individual spin autocorrelations

deviate from statistical independence. However, this deviation will still have a local nature and,
therefore, the N-extensivity would remain valid. Indeed, we propose

(M1,1(t))η � MMB(t), (3.19)

where the exponent η would be some appropriate function η = η(N, t). Our ‘extensive decay
hypothesis’ implies that η factorizes,

η(N, t) = N × f (t), (3.20)

where f (t) stands for a function that encloses information of the correlations originated by the
system dynamics. Additionally,

lim
t→0+

f (t) = 1
4 (3.21)

is required in order to recover equation (3.18), i.e. statistical independence.

4. A one-dimensional model
The physical picture described above is discussed here in the light of a specific model. In
particular, we assess the validity of equations (3.18) and (3.20). We consider a one-dimensional
spin chain with an anisotropic interaction described by

Ĥ0 =
N−1∑
i=1

J0

(
1
2

Ŝz
i Ŝz

i+1 + Ŝx
i Ŝx

i+1 + Ŝy
i Ŝy

i+1

)
(4.1)

with periodic boundary conditions, i.e. a ring configuration. Here, J0 stands for the natural units
of the spin–spin interaction energy. As a perturbation Σ̂ , we choose a next-nearest-neighbour
interaction described by

Σ̂ =
N−2∑
i=1

JΣ

(
1
2

Ŝz
i Ŝz

i+2 + Ŝx
i Ŝx

i+2 + Ŝy
i Ŝy

i+2

)
. (4.2)

Such a perturbation appears naturally when one attempts to build an effective one-body
dynamics from linear crystals with dipolar interactions [53]. This is also the case in a regular
crystal, when the natural non-secular dipole–dipole terms are truncated by the Zeeman energy of
the radiofrequency irradiation, which ultimately leads to effective secular two-body next-nearest-
neighbour interactions [29].

The local second moments σ 2 and σ 2
0 of Σ̂ and Ĥ0, respectively, can be evaluated as in

equation (3.8) as
σ 2 = 1

2 (JΣ )2 (4.3)

and
σ 2

0 = 1
2 (J0)2, (4.4)

and constitute the main energy scales of our problem.
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Figure 3. The local LE and its non-local contributions.M1,1(t),MMB(t) andMX (t) correspond to the black, blue and green solid
lines, as indicated by the labels; N = 14, JΣ = 0.1 J0. The short-time expansions given in equations (3.10)–(3.12) are shown as
black, blue and green dashed lines, respectively. (Online version in colour.)
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N = 12 (squares), N = 14 (diamonds) and N = 16 (stars). For JΣ = 0.2 J0, the sizes plotted are: N = 10 (solid line), N = 12
(dashed line),N = 14 (dash-dotted line) andN = 16 (dotted line). For JΣ = 0.3 J0, the sizes plotted are:N = 10 (up triangles),
N = 12 (down triangles), N = 14 (plus signs) and N = 16 (right triangles). (Online version in colour.)

In figure 3, we plot M1,1(t), MMB(t) and MX(t) for the particular choice JΣ = 0.1J0. The
short-time expansions given in equations (3.10)–(3.12) are evaluated according to equation (4.3).
It is observed that MMB(t) vanishes for long times. Actually, a close observation shows that
MMB(t → ∞) ∼O(2−N) (data not shown). In addition, note that MX(t → ∞) ∼ 1/N. Such an
asymptotic contribution provides for the equidistribution of the spin polarization M1,1(t → ∞) ∼
1/N. This long-time saturation corresponds to the equilibration of a finite system.

In contrast with our schematic plot in figure 2, here MX(t) does not get too close to 1 and
MMB(t) does not decay much faster than M1,1(t). As MX(t) provides for the whole M1,1(t) once
MMB(t) has fully decayed, the contribution of MX(t) is considerable only at long times. These
effects are a consequence of the relatively small size of the system considered. Indeed, the case
in figure 3 corresponds to N = 14 spins, and thus the exponent that relates M1,1(t) and MMB(t)
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is quite small, (N/4) = 3.5. The need for larger systems indicates that revealing the dominant
orders in equation (3.14) is a major numerical challenge that may go beyond the state-of-the-art
techniques [54].

In order to assess the accuracy of the ‘extensive decay hypothesis’, in figure 4, we address
the scaling relation between M1,1(t) and MMB(t) discussed in §3b. In particular, we try out the
factorization stated in equation (3.20). By plotting log(MMB(t))/(log(M1,1(t))N) as a function of
time, we observe a unique function which does not depend on N or JΣ , but it has a weak
dependence on time. Such a unique curve is indeed f (t) as defined in equation (3.20). This
means that the extensivity relation between M1,1(t) and MMB(t) is confirmed. The statistical
independence, in turn, fails progressively once f (t) departs from the 1

4 factor of the ideal relation in
equations (3.18) and (3.21). As beyond the short-time regime f (t) decreases with time, we conclude
that the recovery of a single spin is tied to the recovery of its neighbours. Thus, the spins are
positively correlated and the revival probability of the complete N-spin state is enhanced. This
argument is particularly relevant in one-dimensional systems.

After the onset of the saturation regime, where M1,1 ∼ 1/N and MMB ∼O(2−N), the universal
scaling naturally becomes noisy and the curves for different N and JΣ separate from each other.
As the decay is faster for larger perturbations, the appearance of such a spurious behaviour is
observed to occur first for the largest value of JΣ considered (JΣ = 0.3J0, plus signs and triangles).

5. Conclusion
We presented a detailed analysis of the LE in interacting spin systems. As in the NMR
experiments, a local version of the LE, M1,1, is defined as a single spin autocorrelation function.
Simultaneously, we define a global LE, MMB, as the average of the square of the overlap between
many-body wave functions that evolved under perturbed Hamiltonians. While the former
constitutes a specific experimental observable, the latter has only been assessed theoretically.
Here, we showed the formal relation between both magnitudes, as far as their characteristic time
scales and N dependence are concerned.

By analysing a short-time expansion of M1,1 and MMB, we derived a precise relation between
their time scales. In this regime, the decay of M1,1 is given by the average local second moment
of the perturbation (h̄/τΣ =

√
σ 2), and the decay of MMB by N times the local scale (Nh̄/τΣ ). This

relation hints at a scaling law MMB ∼ (M1,1)N/4 that accounts for the extensivity of MMB. In such a
case, the recovery of a many-spin state results from the recovery of each individual spin, much as
if they were independent events. The numerical evaluation in a specific spin model shows that the
exponent slightly diminishes with time, starting from the initial N/4. This means that the recovery
of a single spin is positively correlated with the probability of recovery of its neighbours, and
thus it improves the probability of the revival of the complete N-spin state. A precise control of
these correlations may hint at experimental access to the global autocorrelation, i.e. MMB, just by
measuring a single spin (local) autocorrelation M1,1. This would require an experimental protocol
capable to encode a local excitation into a correlated many-spin state.

In addition, we discussed a general dynamical picture beyond the very short-time regime.
There, the decay of M1,1 results from the interplay between the time scale that characterizes
the reversible interactions (T2) and that of the perturbation (τΣ ). This would ultimately lead to
the experimentally observed T3, which was found to be roughly independent of τΣ but closely
related to T2. The theoretical quest for the emergent T3 time scale remains open and it may be
beyond the reach of current numerical approaches. Assessing a fair estimate analytically would
require a detailed account of the higher-order processes that dress the quadratic term in the
perturbative expansion.

Note that our discussion led us to identify T3, and hence the spin–spin interaction time
T2, as the time scales characterizing the complexity or many-spin chaos. As such, they show
up not only in the decay of M1,1 and MMB, but also in the growth of MX = M1,1 − MMB.
Indeed, in the field of anti-de Sitter/conformal field theory (AdS/CFT) correspondence there
is an increasing interest in characterizing the role of chaos in quantum dynamics [55–58].

 on May 2, 2016http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


12

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150163

.........................................................

There, chaos manifests in the growth of four-body correlation functions, following an early
suggestion by Larkin & Ovchinnikov [59]. They employed semiclassical arguments to address
disordered superconductors and probed that the square dispersion of momentum should
grow exponentially in a time scale determined by the collisions with impurities, i.e. with
the unperturbed Hamiltonian (in our physical picture, T2). Similarly, our average multi-spin
correlation MX would ultimately diverge within a time scale T3/N, i.e. independent of the
perturbation. This is indeed a measure of the decoherence, and hence of irreversibility, induced
by many-spin chaos. Of course, we do not have a precise characterization of this time scale or the
specific mathematical dependence on time. Thus, this is a puzzling issue to explore in the field
of many-body chaos. Besides the obvious relevance for statistical mechanics and experimental
physics, this might also contribute to a possible pathway between quantum mechanics and
gravity.
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Appendix A
It is worth mentioning that the very short-time expansions in equations (3.10)–(3.12) do not
depend on the anisotropy α of the perturbation. In general, it can be proved that if [Σ̂ , Ŝz

1] = 0
then

M1,1(t) = 1 − (t/h̄)4

2N+3

∑
i∈A

(2〈βi|[Σ̂ , Ĥ0]Ŝz
1[Σ̂ , Ĥ0]|βi〉 − 〈βi|[Σ̂ , Ĥ0]2|βi〉) + O

((
t
h̄

)5
)

. (A 1)

This is precisely the case of a perturbation Σ̂ enclosing Anderson disorder and Ising
interactions [40] or interactions with a fluctuating field [60].
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