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Force-Free Flectrodynamics (FFE) is a non-linear system of equations modeling the evolution
of the electromagnetic field, in the presence of a magnetically dominated relativistic plasma. This
configuration arises on several astrophysical scenarios, which represent exciting laboratories to un-
derstand physics in extreme regimes.
We show that this system, when restricted to the correct constraint submanifold, is symmetric hy-
perbolic. In numerical applications is not feasible to keep the system in that submanifold, and so,
it is necessary to analyze its structure first in the tangent space of that submanifold and then in
a whole neighborhood of it. As already shown [1], a direct (or naive) formulation of this system
(in the whole tangent space) results in a weakly hyperbolic system of evolution equations for which
well-possednes for the initial value formulation does not follows.

Using the generalized symmetric hyperbolic formalism of Geroch [2], we introduce here a covariant
hyperbolization for the FFE system. In fact, in analogy to the usual Maxwell case, a complete family
of hyperbolizers is found, both for the restricted system on the constraint submanifold as well as
for a suitably extended system defined in a whole neighborhood of it. A particular symmetrizer
among the family is then used to write down the pertaining evolution equations, in a generic (3+1)-
decomposition on a background spacetime. Interestingly, it turns out that for a particular choice of
the lapse and shift functions of the foliation, our symmetrized system reduces to the one found in
[1]. Finally we analyze the characteristic structure of the resulting evolution system.
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I. INTRODUCTION

Force-Free Electrodynamics (FFE) describes a particular regime of magnetically dominated relativistic plasmas
which are believed to play a key role in the physics of pulsars and active galactic nuclei (AGN’s). In those regimes,
the electromagnetic field dominates over the matter interactions and effectively decouples its dynamics from the matter
degrees of freedom. Thus the electromagnetic field obeys a modified (non-linear) version of Maxwell equations, while
the plasma only accommodates as to locally cancel-out the Lorentz force.
There are two main conditions for the force-free approximation to be a good description of a particular astrophysical
situation: in the first place, it is necessary to justify the presence of the plasma on the surroundings of the central
object; and secondly, it has to be shown that the plasma mass density is much lower (by orders of magnitude) than the
electromagnetic field energy density. Such requirements are indeed fulfilled in certain realistic astrophysical settings.
Is a seminal paper, Goldreich-Julian [3] analyzed the vacuum solution for a rotating neutron star with a dipolar

magnetic field aligned with the rotation axis. They argued that the rotationally induced electric field was strong enough
to pull charged particles from the stellar surface, and thus, fill the surrounding space with plasma. Pursuing these ideas
and motivated by an observation of Wald [4], who showed that immersing a spinning black hole in a magnetic field

gives rise to a electric field with non-zero ~E · ~B, Blandford and Znajek [5] argued, that a pair production mechanism
could operate to produce a force-free magnetosphere near a spinning black hole with a magnetized accretion disk.
Moreover, they argue that vacuum solutions were unstable to such pair production cascade under typical astrophysical
situations.
The idea was that this mechanism for generating the plasma regulates itself: the produced charges will act to screen

the component of electric field along magnetic lines, thus eventually shutting-off production when ~E · ~B becomes small
enough. This assumption allows to estimate a characteristic density of particles (the so-called Goldreich-Julian density
[3]), and hence, to infer that (under typical conditions) the inertial effects should be negligibly small. This was later
supported by numerical simulations of the full MHD systems (see e.g. [6–8]), which suggest that the plasma density
is very low away from the disk (and especially in the jet region), so that the dynamics there is effectively force-free.
In spite of the fact that the Force-Free equations have been around for several years, their causal structure have

been only recently started to be uncovered [1, 9, 10]1. We now know that this system of equations is not only strongly
hyperbolic, but also symmetric hyperbolic, since a suitable system has been found in a particular (3+1) decomposition
[1]. In the present work, we shall fully analyze this system in a covariant fashion, and, following the lines of [2], find its
hyperbolizations and constraints. Our interest is not only mathematical, but rather practical, for in many instances,
when numerically implementing these equations, this knowledge is needed.
FFE has two constraints which are very different in nature: a differential one, in common with Maxwell’s equations

(i.e: the divergence-free character of the magnetic field); and an algebraic one, particular to the theory: namely,
the vanishing of the invariant G := F ∗

abF
ab. The differential constraint is easy to deal with, either analytically or

numerically, and in particular it fits well into Geroch’s theory. So we shall deal with it in what is now a days a
standard form (see sectionn III-B.), and we shall not discuss it here any further. The algebraic one, on the other
hand, is in a way more subtle and we shall devote to its treatment a more careful analysis.
The condition G = 0 implies the Maxwell field is degenerate, so the FFE system consists of 5 evolution equations
for 5 unknowns. Thus, in principle one could find variables adapted to the submanifold G = 0 so that the set
of equations is intrinsic to it and there is no algebraic constraint left 2. In this variables one should analyze well
posedness of the initial value formulation. We show, by geometrical constructions which avoid the task of finding
adapted variables, that the restricted system is well posed. This conclusion is reached by finding a symmetrizer for
the restricted system: that is, when we only allow perturbations (vector fields in the appropriate fiber) to be tangent
to the G = 0 submanifold. But this restricted scheme might not be useful in many practical situations. It requires the
choice of new variables different from the Maxwell tensor, and those might not be global as sections of the restricted
fiber. Thus it is important to extend the system just outside of the restricted submanifold in some way so that it
remains well posed in a whole neighborhood of G = 0.3

We shall perform this program in two steps. We shall first analyze the equations at the submanifold G = 0
but allow for equations in the whole tangent space (in fact in a slightly larger space to accommodate also for the
divergence free constraint). We shall find there families of symmetrizers, in the sense of Geroch, that not only show
that the system is well-posed, but also provide with covariant symmetrizers to be used to evolve the equations in any
(3 + 1) space-time decomposition. However, this is not enough for that presupposes evolution would remain at the
G = 0 submanifold, while numerically this is never the case. In other situations, where the equations are smooth in a

1 To the best of our knowledge, very little is known about the initial-boundary value formulation, and most of what is done concerning
boundary conditions seems to rely on Maxwell characteristic structure instead of the genuinely Force-Free one (see e.g. [11, 12]).

2 As it can be the case of the Euler-potential formulation of the FFE theory, for example. See ref’s [13–15].
3 This observation has been also raised in ref. [10], where an alternative system (AU2) was proposed to that end.
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whole manifold there is not much of an issue for extending the result to a whole neighborhood outside the constraint
submanifold, this is so because the set of positive matrices (symmetrizers) is open. Here the situation is different
and a straightforward extension would mean the Maxwell field would change from having a kernel to being invertible
and so effectively changing the system from two equations to four (e.i. going to Maxwell’s equations outside G = 0).
To overcome this problem we have extended the system by an appropriate field redefinition, so that outside the
constraint submanifold only two equations are enforced, resembling even there the Force-Free condition. Even more,
the principal part of system has the same algebraic structure than the restricted one, thus symmetric hyperbolicity
for such extended system follows trivially from the previous result.

This article is organized as follows: We begin in Section II with a brief description of the Force-Free theory,
particularly, we discuss three different set of equations which we shall refer to as the Restricted, Augmented and
Extended systems; In Section III, following Geroch, we start by providing a formal definition of an hyperbolization
and symmetric hyperbolicity. While in subsections III B-C-D, we present suitable hyperbolizations for each of the
three systems. Section IV is devoted to perform a generic (3 + 1)-decomposition on a given background spacetime,
for the extended version of the FFE system, corresponding to a particular symmetrizer. We shall make contact here
with the evolution equations found in [1]; We end with some conclusions and further comments in Section V.
Appendix A provides a brief, though complete, study of the characteristic structure of our evolution system; and
finally, in Appendix B, a complete analysis of the constraints in their covariant version is included.

II. FORCE-FREE ELECTRODYNAMICS

We begin with Maxwell equations,

∇bF
∗ab = 0 (1)

∇bF
ab = ja (2)

where Fab is the electromagnetic field and F ∗
ab is the Faraday tensor. When both the electric and magnetic susceptibility

of the medium vanish, like in vacuum or highly ionized plasma, the Faraday tensor is simply the Hodge dual of the
Maxwell tensor [16],

F ∗
ab :=

1

2
ǫabcdF

cd (3)

where ǫabcd ≡ √−g eabcd, is the volume element associated with the metric (eabcd, being the Levi-Civita symbol).
The energy momentum tensor for the field is given by,

TEM
ab = FacFb

c − 1

4
gabFbcF

bc (4)

So the exchange of energy when interacting with charged matter is expressed by ∇bTEM
ab = −Fabj

b, in which Fabj
b is

the 4-force density. Force-free electrodynamics (FFE) describes the electromagnetic field interacting with a plasma in
a regime in which the transfer of energy and momentum from the field to the plasma can be neglected, not because
the current is unimportant, but because the field energy momentum overwhelms that of the plasma. FFE is thus
governed by Maxwell’s equations modified with the force-free condition

Fabj
b = 0 (5)

Notice that this condition, for a non-zero current jb, implies the Maxwell field to be degenerated (non-invertible)
which in turns implies that

G := F abF ∗
ab = 0 (6)

Indeed, detF a
b = G2 so that when G = 0 the kernel of F a

b has dimension two or four. In the case of physical interest,
namely, when the magnetic field is much bigger than the electric field

F := F abFab > 0, (7)

the G = 0 condition means that there is a time-like vector, ua (proportional to ja) for which Fabu
b = 0, that is, in

the corresponding frame the electric field vanishes. Therefore, there exists a 4-vector va such that:

F ∗
ab = 2v[aub].
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Notice that any linear combination of ua and va can also be taken to define F ∗
ab as long as some condition on the

relative norms is fixed. So, the individual vectors are not important, but the plane they define is. Thus, in the
degenerate case, the Maxwell field corresponds geometrically (up to its overall strength) to a two-plane in space-time.
Since one of the vectors is time-like the plane is also time-like. It is customary to take ua time-like and normalized,
and va perpendicular to it (so space-like), in that case va represents the magnetic field in that frame and F = 2v2.

A. Restricted System

Quite remarkably in a force-free regime, that is when G = 0 and F > 0, the electromagnetic field can be evolved
autonomously, that is, without keeping track of any plasma degrees of freedom. This is achieved by eliminating the
plasma current ja by combining together equations (2) and (5),

F a
b∇cF

bc = 0 (8)

Notice that the double degeneracy of F a
b means that these are just two equations, instead of the customary four of

Maxwell’s; and together with (1), they make a set of six equations. But one of them is just the ∇ · ~B = 0 constraint,
so it should be the case that the remaining five equations are evolution equations for the surviving five components of
Fab. And we see that this is indeed the case. We shall call this the Restricted System, and study how to hyperbolize
it along the lines of Geroch’s formalism in the next section.

B. Augmented System

We now want to enlarge the system in a way that guarantees that if we allow for evolution in the full field manifold,
that is without restricting it to the degenerated submanifold, then at least at points along that submanifold, the
evolution flow will remain tangent to it. The natural strategy seems to be the promotion of the algebraic constraint
(6) into a differential equation like ∇aG = 0. This is what essentially is done in [9], and constitutes what they call
the Augmented System. Thus, we shall consider:

F ab∇cFbc = 0 (9)

∇bF
∗ab = 0 (10)

F ∗bc∇aFbc = 0 (11)

Notice this enlargement provides the ‘missing’ evolution equation for the sixth Maxwell tensor degree of freedom, but,
at the same time, introduces three new constraints into the system. We shall refer the reader to Appendix B, for a
more detailed discussion on constraints, where it is shown that they are integrable.

C. Extended System

As discussed at the introduction, in any numerical simulation, the constraints will only be satisfied to truncation
error, or round-off error at best. Hence, we would like to extend the system beyond the constraint submanifold G = 0.
In doing so, we dont want to alter the structure of the equations and constraints dramatically: the subtlety arises on
equation (9), where we see that a extension to a neighborhood of the constraint submanifold is by no means trivial.
Here we present one possible extension which has the property that gives simpler equations and resemble what

people usually impose in the non-covariant versions. It is worth notice in performing these extensions there is a sig-
nificant freedom, since physically, the equations are only relevant at the submanifold. We want to ensure two things
which we consider very important: first, we want to keep covariance so that regardless of the (3 + 1) decomposition
used to evolve the equations, one is evolving the same set of equations; and second, we want to keep the equations
well-posed, so that they evolve in a controlled and unique fashion.

We start defining a background tensor field extension, namely,

F̃ab := Fab + σF ∗
ab ; σ =

G

F +
√
F 2 +G2

, (12)
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Notice that at the G = 0 submanifold it coincides with the original field. This tensor is now degenerate and mag-
netically dominated by construction. In fact, using that F ∗∗

ab = −Fab, and F ∗
abF

∗ab = −FabF
ab it is easy to see

that,

G̃ ≡ F̃ abF̃ ∗
ab = 0 ; F̃ ≡ F̃ abF̃ab =

2(F 2 +G2)

F +
√
F 2 +G2

≥ F > 0

Analogously to the previous construction4, we can define now vectors (ũa, ṽa) as satisfying,

F̃abũ
b = 0 ; ũaũa = −1 ; ṽa = −F̃ ∗

abũ
b ; F̃ ∗

ab = 2ṽ[aũb]

The extended system may be written explicitly,

F̃ ab∇cFbc = 0 (13)

∇bF
∗ab = 0 (14)

F̃ ∗bc∇aFbc = 0 (15)

In the next section, we shall study the possible hyperbolizations of these three formulations.

III. HYPERBOLIZATION

A formal definition of a symmetric hyperbolic system can be cast in an intrinsic geometrical formulation of PDEs.
The main goal of such a geometric treatment is to get a better control on the structural features of the partial
differential equations of physics while keeping explicit the covariant nature of them. More specifically, following
Geroch [2], it is convenient to write first order quasi-linear systems of equations in a unified manner as,

Kc
Aα∇cΦ

α + JA(Φ) = 0 (16)

where Kc
Aα is called the principal symbol of the system, which generically will depend on some background tensor, like

for instance the background metric gab, and on point-wise values of the set of fields Φα. Here capital Latin indices,
A, stands for the space of tensorial equations, lower Latin indices c stand for space-time index, and Greek indices for
multi-tensorial unknowns. Typically, solutions of the PDE (16) are interpreted as cross-sections Φα(x) over a smooth
fiber bundle B with points κ = (xa,Φα). We interpret the fiber over xa as the space of allowed physical states at
the space-time point xa, i.e., as the space of possible field-values at that point. In the case of electromagnetic fields,
we have κ = (xa, Fab), dim(B)=10, and a cross-section over a submanifold of M becomes the electromagnetic field
Fab(x) at that region.

Following Geroch’s definition, by a hyperbolization of (16), we mean a smooth symmetrizer hα
A such that:

1. the field hα
AKc

Aβ is symmetric in α, β;

2. there exists a co-vector wc in M such that the tensor wchα
AKc

Aβ is positive-definite.

If a system of PDE’s admits a symmetrizer satisfying the above conditions, we say that it is symmetric hyperbolic.
In that case such a system admits a well posed initial value formulation along surfaces whose normals satisfies condition
(2) above.
In what follows, we are going to construct a family of such symmetrizers for the restricted and augmented FFE

systems, similarly to what is done in the usual Maxwell theory and in ref. [17], for non-linear electrodynamics theories.
Then, we will show that for the extended system, it can be easily generalized from the results on the augmented case.

4 provided the original field is magnetically dominated, i.e: F > 0.
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A. Hyperbolization of the Restricted System

The system we want to start with, is the one defined by equations (1) and (8). The fields are smooth tensor fields
(cross sections) Φα ↔ {Fab|F∗ · F = 0}. Notice that there is no current in this case. The principal symbol is,

Km
Aα ↔

(

F a[bgc]m ,
1

2
ǫambc

)

(17)

Contracting with a variation δF bc (which we shall denote by Xbc for convenience) one gets,

Km
AβδΦ

β =
(

F abX m
b , X∗am) (18)

We now introduce our symmetrizer, like in Maxwell theory it depends on an arbitrary vectorial parameter ta,

δΦ̂αhα
A =

(

X̂∗
abF

∗b
ct

c , X̂∗
abP

b
ct

c
)

(19)

where we have denoted X̂ab ≡ δΦ̂α and P a
b := 1

2Fδab + F acFcb (proportional to the projector onto the dual plane).
Recalling A∗∗

ab = −Aab, with Aab any anti-symmetric tensor, and using of the following important identity:

A∗aqB∗
am = −1

2
(A ·B)δ q

m −AmaB
aq (20)

one can show that the full contraction reduces to,

δΦ̂αhα
AKm

AβδΦ
β = tcP b

c

[

X̂maXba +XmaX̂ba −
1

2
(X̂ ·X)δmb

]

− 1

2
taF ∗

abX
bm(F∗ · X̂) (21)

Since the fields are restricted to the degeneracy surface, the variations must be orthogonal to the dual field. That is,

0 = δG = 2F∗ · X̂. (22)

And therefore, expression (21) becomes symmetric under the exchange of X ⇄ X̂ .
It only remains to check whether the second condition of the definition also holds, namely: positive definiteness of
the bilinear form Hαβ := hα

AKc
Aβwc,

δΦαHαβδΦ
β = 2t̃awb

[

X(a
cXb)c −

1

4
(X ·X)gab

]

(23)

which is just the Maxwell energy momentum tensor contracted with the projected t̃a ≡ P abtb and co-vector wb. This
expression is positive definite for arbitrary antisymmetric tensors provided both t̃a and wb are time-like and future
directed.
But notice that whenever the field is magnetically dominated (i.e: F > 0), for some choice of pairs of vectors in the

kernel of Fab, (u
a, va), with uaua = −1, vaua = 0, vava = v2,

Pab = [vavb − v2uaub],

and so t̃a = Pabt
b is time-like future-directed whenever ta is. Thus the above expression, is positive definite for any

time-like future directed pair (ta, wa).

B. Hyperbolization of the Augmented System

The system we want to symmetrize is (9)-(11). We shall incorporate at this point an extra dynamical scalar field
φ, in order to handle the divergence-free constraint. The idea is not to enforce the constraint exactly but to promote
a natural evolution towards a divergence-free state; equation (10) is then modified as in Refs. [16, 18–20],

∇bF
∗ab +∇aφ = κnaφ (24)
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Notice the constraint and the new variable will satisfy a telegraph equation of the form,

�φ+ κ∂tφ = 0 (25)

which both fields will propagate like waves and at the same time dissipate away, thus dynamically enforces the
divergence-free condition.

Is important to remark that, contrary to the case in ideal magnetohydrodynamics, the inclusion of this divergence-
cleaning field is by no means essential for the hyperbolization itself. We have decided to include it at this point,
because its presence is important when discretizing the system. Hyperbolizations for the original system follows by
essentially setting φ = 0 and few minor rearrangements.

The fields are the same as before, but we now allow for the whole tangent space at each point, namely δΦα ↔
{δFab, δφ}; and the principal symbol reads,

Km
Aα ↔

{(

F a[bgc]m ,
1

2
ǫambc , F ∗bcgam

)

, (0 , gam , 0)

}

(26)

where parenthesis divide between different components of the equation index A, and brackets distinguish tensorial
index α of the field variables. The current is now, JA ↔ (0 , − κnaφ , 0)
As before, we have constructed a family of symmetrizers with parameter ta. Contracted with a general variation
{

X̂ab, δφ̂
}

≡ δΦ̂α it looks,

δΦ̂αhα
A =

(

X̂∗
abF

∗b
ct

c , X̂∗
abP

b
ct

c − Pabt
bδφ̂ , − 1

2
X̂abF

∗b
ct

c − 1

2
kta(F

∗ · X̂)

)

(27)

where k is an extra free parameter of the symmetrizer. Then the full contraction results in,

δΦ̂αhα
AKm

AβwmδΦβ = taPa
bwm

[

X̂cmXcb +XcmX̂cb −
1

2
(X̂ ·X)δmb

]

−1

2
taF ∗

abwm

[

Xbm(F∗ · X̂) + X̂bm(F∗ ·X)
]

− 1

2
ktawa(F

∗ · X̂)(F∗ ·X)

+Pabt
bwm

[

X̂∗maδφ+X∗maδφ̂
]

− (taPa
mwm)δφδφ̂ (28)

which is clearly symmetric under the exchange: δΦ̂ ⇄ δΦ.

To see if our symmetrizer constitutes a positive definite bilinear form, we are going to assume the background
electromagnetic field is degenerate and magnetically dominated. This will allow us to find a particular symmetrizer
(among the family) where we can explicitly ensure positivity.
When a tensor Fab satisfy conditions (6)-(7), then a unit timelike vector ua exist, such that:

Fabu
b = 0

that is, it belongs to the kernel of Fab. Thus, Pabu
b = 1

2Fua.
A second (spacelike) vector can be build from ua as,

va := −F ∗abub

Notice va is also in the kernel of Fab by construction, and its norm is given by vava = 1
2F . Furthermore, the dual

tensor can be expressed in terms of these two vectors like,

F ∗
ab = 2v[aub]

Fixing a symmetrizer by choosing ta = ua and setting the co-vector to wa = ua, (28) reduces to,

δΦαhα
AKm

AβnmδΦβ =
1

2
Fuaub

[

2Xa
cXbc −

1

2
(X ·X)gab

]

− 2(vaubXab)
2 + 2k(vaubXab)

2 +
1

2
Fδφ2

=
1

2
F
(

δE2 + δB2 + δφ2
)

(29)

where the free parameter was set to unity (i.e: k = 1) and we have defined δEa := Xabu
b and δBa := −X∗

abu
b, the

electric and magnetic components of the field variation. Clearly, it is a positive quantity for any nonzero variation
δΦα, and therefore, the system is symmetric hyperbolic.
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C. Hyperbolizations for the Extended System

The above positivity result relies on the degenerate character of the background electromagnetic field. Thus, what
we have proved so far is that the system (9)-(11) is symmetric hyperbolic when restricted to the constraint submanifold.
Since the extended system has a principal part which by construction incorporates a degenerate Maxwell field5, all
the previous positivity results for the augmented system follows naturally. We will simply use such degenerate (tilde)
field in the construction of the symmetrizer like the one of expression (27) in the augmented case.
Now, in preparation for the next section’s results, we will explicitly write down a particular hyperbolization for

the extended system, and then apply it to the set of equations. Splitting hα
A on its fields index, as a couple of

antisymmetric spacetime index ‘cd’ and a scalar component ‘φ’,

hα
A =

{

hA
[cd] , h

A
φ

}

the particular symmetrizer with ta = ũa reads,

hpq
A =

(

−1

2
ṽbǫabcd , − 1

2
ṽ2ũbǫabcd , − 1

2
(ṽ[cgd]a + ũaF̃

∗
cd)

)

(30)

hφ
A =

(

0 , − ṽ2ũa , 0
)

(31)

where we have used P̃ a
b ũ

b ≡ F̃ ∗acF̃ ∗
cbũ

b = ṽ2ũa, and ṽ2 = 1
2 F̃ .

When applied to the extended system (with the divergence-cleaning field φ included), we obtain the following
equations:

ǫabcd
[

ṽcld + ṽ2ũcpd
]

= ṽ[arb] + F̃ ∗
abu

crc (32)

ṽ2ũap
a = 0 (33)

where we have denoted,

la ≡ F̃ ac∇b(Fcb) ; pa ≡ ∇b(F
∗ab) +∇aφ− κφna ; ra ≡ F̃ ∗bc∇aFbc.

Written in this way, it is straightforward to see these equations are equivalent to the original ones within the
constraint submanifold. Indeed, suppose we are in a region of space-time over which the background electromagnetic
field is degenerate and magnetically dominated. Thus, in that region, it must happen that G = 0 and ∇aG = 0; and
therefore ra = 0. Moreover, the vectors ũa and ṽa coincides there with ua and va, respectively. It is not hard to
see from these observations, that in such case, equations (32)-(33) enforce la = 0 and pa = 0. But these are exactly
the initial force-free equations we start with, namely, (8) and (24). In other words, the solutions of our evolution
equations will satisfy the original covariant system of equations.

IV. 3+1 DECOMPOSITION AND EVOLUTION EQUATIONS

In order to present a system suitable for numerical discretization and subsequent evolution we perform an initial
value formulation for the symmetrized version of the augmented system. Among all possible symmetrizers we shall
stick to the most natural one, namely the one given by taking ta = ũa. It turns out that, under certain circumstances,
this choice gives the (3+1) evolution equations found in [1].

A. Foliation and frames

Following [21] we consider a spacetime region foliated by the level hypersurfaces of a smooth time function t,
{Σt}t∈R

, and an everywhere transversal vector field ta which we normalize so that ta∇at = 1. Given any local

5 Namely, F̃ab, as defined in equation (12). Which coincides with the original field Fab at the G = 0 submanifold.
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coordinate patch in Σ0, {xi}, we can extend it to a local coordinate patch in {Σt}t∈R
by constantly propagating the

values of the coordinates at Σ0 along the integral curves of ∂
∂t
.

∂

∂t
· dxi = 0,

∂

∂xi
· dxj = δji . (34)

In this way, we get a complete set of coordinates
{

t, xi
}

for which the “spatial” coordinates xi are preserved along
the vector field ta := (∂t)

a (time vector).
The normal to the surface is obtained by promoting ∇at to a vector using the spacetime metric and normalizing it

to (minus) unity.

na := −αgab(dt)b. (35)

The normalization factor α is called the lapse function. It is useful to define the shift vector as the departure of ∂
∂t

to
the normal vector,

βa = ta − αna.

The vector βa lies at the tangent spaces of the foliations.
In the so constructed coordinate systems the metric can be written,

ds2 = (β2 − α2)dt2 + 2βidx
idt+ hijdx

idxj , (36)

where hij is the spatial metric induced on the hypersurfaces Σt. Notice also a useful relation that follows from the
construction above,

√−g = α
√
h.

In components the normal vector reads,

na = (−α, 0, 0, 0) ; na =
1

α

(

1,−βi
)

.

We shall define the electric and magnetic components of the electromagnetic field with respect to this normal,

Ea := Fabn
b (37)

Ba := −F ∗
abn

b (38)

From where one can obtain the useful relations,

Fab = 2n[aEb] + ǫabcdn
cBd, (39)

F ∗
ab = 2B[anb] + ǫabcdn

cEd. (40)

Finally we define the Poynting vector :

Sa := neǫ
eabcEbBc. (41)

It plays an important role in what follows as the third member of a preferred orthogonal tetrad. Notice, identical
definitions Ẽa, B̃a, S̃a are valid for the degenerate tensor F̃ab. But now, since F̃ab is degenerate, these three spatial
vectors are orthogonal to each other and orthogonal to na as well. Thus, the four of them constitute an orthogonal
basis which is going to be very useful in whats follows. The relations between the spatial vectors with and without
tilde goes as follows,

Ẽi = Ei − σBi, (42)

B̃i = Bi + σEi, (43)

S̃i = (1 + σ2)Si. (44)

In terms of this ’tilde’ frame we can also express ũa and ṽa in a unique way,

ũa := λ(na +
S̃a

B̃2
), λ :=

√

2B̃2

F̃

ṽa := −F̃ ∗abũb =
1

λ
B̃a,

where λ is just a dimensionless normalization factor chosen so that ũaũ
a = −1.
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B. Evolution Equations

The task now, reduces to extract the evolution equations from the covariant expressions (32)-(33). Basically, we

shall take their components using the orthogonal tetrad {na, Ẽa, B̃a, S̃a}, which is naturally adapted to the foliation.
This results in a set of equations involving the projections of the fields temporal derivatives along the three (orthogonal)

spatial directions {Ẽi, B̃i, S̃i}. After a tedious but rather straightforward calculation, we get the evolution system:

∂tφ = βk∂kφ− α2dj(B
j/α)− ακφ− α

F̃
Ẽkrk

∂t
(

Ei/α
)

=

(

δik −
B̃iB̃k

B̃2

)

[

βkdj(E
j/α) + dj(F

kj)
]

+
B̃i

B̃2
Ẽkdj(F

∗kj)− αS̃i

B̃2
dj(E

j/α)

− B̃i

B̃2

[

Ẽβdj(B
j/α)− βk

2α
rk − Ẽk∂kφ

]

∂t
(

Bi/α
)

= −dj(F
∗ij) + βidj(B

j/α) +
1

F̃
ǫ̂ijkrjB̃k +

Ẽi

F̃ B̃2
S̃krk − hij∂jφ

where

ri :=
α2

2

(

∂i(G/α2) + σ∂i(F/α
2)
)

(45)

Also, we have denoted ǫ̂ijk ≡ naǫ
abcd (the induced volume element on the hypersurface), and dj(·) ≡ 1√

−g
∂j(

√−g · )

Naturally, F ij and F ∗ij can be rewritten in terms of electric and magnetic fields through equations (39)-(40). Notice
that all derivatives are acting on untilde fields, while the (non-linear) structure is written in terms of the tilde variables.

C. Comparison with Pfeiffer’s result

We shall now show that our system reduces to the one obtained in Ref. [1], under certain conditions. Assuming we

are within the constraints submanifold, namely: G = 0 and ∇ · ~B = 0. Then it is easy to see the tilde vectors reduces

to the untilde (original) ones, that is:
(

Ẽa, B̃a, S̃a
)

→ (Ea, Ba, Sa).

Further, we can set φ = 0 and fix the lapse and shift to α = 1, βi = 0. Taking all these conditions together one gets,

∂tE
i = ǫ̂ijk∇jBk +

Bi

B2

[

Elǫ̂
ljk∇jEk −Blǫ̂

ljk∇jBk

]

− Si

B2

1√
h
∂k(

√
hEk) (46)

∂tB
i = −ǫ̂ijk∇jEk − Si

B2

1√
h
∂k(

√
hEk)− 1

B2
ǫ̂ijkBj∂k(ElB

l) (47)

These are exactly equations (48)-(49) appearing in [1], also referred as the AU system in ref. [10]. Comparison with
the AU2 system in [10] is however more involved and thus we will not pursue it here.

V. FINAL COMMENTS

The Force-Free approximation has been vastly used (analytically and numerically) on the description of several
astrophysical scenarios. Curiously, the mathematical details regarding the initial/boundary value formulation of the
theory are not yet fully developed. Moreover, it has been shown [1] that a direct (or naive) formulation of the system
renders a weakly hyperbolic set of evolution equations, and hence, an ill-posed problem. However, in that same paper
and in a subsequent work [10], the authors have found suitable reformulations of the theory in a particular (3 + 1)-
decomposition6, in which the systems are shown to be, not only strongly hyperbolic, but symmetric hyperbolic. In

6 basically, by recombining the evolution equations with the constraints in an appropriate way.
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this paper to tackle the problem in a fully covariant fashion, relying to that end, on a framework developed by Geroch
[2]. It is worth mentioning here, that in ref. [17], this program was applied successfully to non-linear electrodynamics
(NLE) theories arising from general Lagrangians. Unfortunately, FFE does not fit (at least directly) into the theories
included there, mainly due to the fact that the underlying causal geometry of both set of theories are quite different.
Unfortunately, FFE does not fit (at least directly) into the theories included there, mainly due to the presence of the
algebraic constraint G = 0. This constraint might be translated into the addition of a Lagrange-multiplier term to
the Action (see [15] and references therein). In any case, the underlying causal geometry on both types of systems
seems to be rather different. But, instead of trying to adapt the FFE into this more general category of NLE theories,
we opt here to treat the problem separately, though following a similar strategy. Following the framework above
mentioned we have shown it is possible to construct families of symmetrizers for both the Restricted and Augmented
FFE systems. For some symmetrizers, namely those closed to that having ta = ua, we manage to prove the positive
definiteness within the constraint G = 0 submanifold. Thus establishing well posedness of the force free equations.
We further argue that this is not enough for most practical applications, and so we show a way to extend these results
beyond this constraint submanifold. This is done in two steps, in the first we extend the tangent space of the fiber
at each point beyond the G = 0 submanifold. This allows to use the complete Maxwell tensor and the resulting
evolution equations for all its components. Thus, ordinary variables can be used in the evolution, which is important
when coupling this system with others. In the second step we extend the evolution system to Maxwell’s fields not
satisfying the constraint G = 0. This second step is very important for numerical simulations for it is never the case,
due to numerical errors, that the evolution stays in the submanifold. This is done by redefining in a covariant way the
Maxwell tensor outside that surface so that the new tensor remains degenerate even outside G = 0 and it is identical
to the original one at G = 0. This redefined tensor is then used in the principal part of the equations. Thus, the
new system, since it has the same algebraic properties as the original one, is also (trivially) symmetric hyperbolic,
and coincides with the original one on G = 0. We then write down the explicit set of evolution equations for a
particular symmetrizer, in an arbitrary 3 + 1 splitting of spacetime. Interestingly, the system found in [1] appears
as a particular limiting case from the evolution equations that symmetrizer. Finally, in preparation for its use in
discussing boundary conditions and some aspects related to our future numerical implementations, we performed the
characteristic decomposition of our evolution system, and then, analyzed the possible degeneracy’s in the eigensystem.
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Appendix A: Characteristic Structure

In this appendix, we perform a characteristic decomposition of the extended system with respect to a generic wave
front propagation direction, given by ka = (λ,mi) where mi is a normalized unit vector. That is, we look for the

linearized perturbations (φ̂, Êi, B̂i), over a fixed background solution (Ei, Bi) 7.
To this end, we first introduce some convenient notational abbreviations:

Am ≡ miA
i ; Ai

p ≡ Ai −Ammi ; Ai
ℓ ≡ mkǫ

kijAj (A1)

for any given vector Ai.
The characteristic system then reads,

(λ− βm)/α φ̂ = −B̂m − Ẽm

∆2
(ẼkB̂

k + B̃kÊ
k)

(λ− βm)/α Êi = −B̂i
ℓ +

B̃i

B̃2

[

B̃kB̂
k
ℓ − ẼkÊ

k
ℓ + Ẽmφ̂

]

− S̃i

B̃2
Êm

(λ− βm)/α B̂i = Êi
ℓ −

1

∆2

[

B̃i
ℓ −

S̃m

B̃2
Ẽi

]

(ẼkB̂
k + B̃kÊ

k)−miφ̂

7 with their associated tilde fields, namely: (Ẽi, B̃i).
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where ∆ :=
√

B̃2 − Ẽ2.

The solution to this eigenvalue/eigenvector problem is:

U±
1 =

{

1 ,
±Ẽm

(B̃2
p ± S̃m)

B̃i
p ,

Ẽm

(B̃2
p ± S̃m)

B̃i
ℓ ∓mi

}

, λ±
1 = βm ± α

U±
2 =

{

0 , Ẽi
p ± B̃i

ℓ , B̃
i
p ± Ẽi

ℓ

}

, λ±
2 = βm ± α

U±
3 =

{

0 , B̃2ni − σ±
A

(

S̃i ±∆B̃i
)

, S̃i
ℓ ±∆B̃i

ℓ

}

, λ±
3 = βm − ασ±

A

U4 =
{

0 , B̃i , − Ẽi
}

, λ4 = βm − α
S̃m

B̃2
,

where σ±
A := 1

B2 (S̃m ±∆B̃m). And we have expressed the eigenvectors generically by, U ≡
{

φ̂ , Êi , B̂i
}

.

The first set of eigenvectors correspond to the unphysical modes associated with the magnetic divergence-free con-
straint coupled to φ. The second pair are identified as the fast magneto-sonic modes, and they also belong to the
same subspace with light-speed propagation velocities. The third pair, represents the force-free limit of the MHD
Alfven waves. While the last one is related with the algebraic constraint G = 0, and thus, unphysical as the first pair.

Since generically the eigenvalues of these subspaces are different among each other, the above set form a complete
basis of the full solutions tangent space . The associated co-basis is,

Θ±
1 =

1

2

{

1 , ∓ Ẽm

∆2
B̃i , ∓ Ẽm

∆2
Ẽi ∓mi

}

Θ±
2 =

1

2(Ẽ2
p + B̃2

p ± 2S̃m)

{

a± , (B̃m ± a±)
Ẽm

∆2
B̃i − Ẽpi ∓ B̃ℓi , (B̃m ± a±)

(

Ẽm

∆2
Ẽi +mi

)

− B̃pi ∓ Ẽℓi

}

Θ±
3 =

1

2∆B̃2
(

1− (σ±
A )2
)

{

∓Ẽm , ∆mi +
B̃m

∆
B̃i ∓ Ẽℓi ,

B̃m

∆
Ẽi ± B̃ℓi

}

Θ4 =
1

∆2

{

0 , B̃i , Ẽi

}

where we have defined, a± =
∓B̃mẼ2

m

(B̃2
p
±S̃m)

.

1. Degenerate Cases

Here we analyze in detail those cases in which some of the above subspaces degenerate and mix with the others.
That is, the cases where two (or more) eigenvalues of different subspaces coincide, and their associated eigenvectors
become singular or linearly dependent. Since the system is symmetric hyperbolic, hence strongly hyperbolic, we
know at each point we can choose a complete set of eigenvectors, but as subspaces cross some become singular and a
different choice needs to be made.
The three possible degeneracy’s are:

1. σ+
A = σ−

A =
S̃m

B̃2

2. σ+
A = ±1 or σ−

A = ±1

3. σ+
A = ±1 and σ−

A = ∓1 (simultaneously)

1. Here the Alfven subspace collapse with itself and with the unphysical mode U4 (algebraic constraint). Since we

are considering magnetically dominated background fields, ∆ > 0, such degeneracy only occurs if B̃m = 0. It is
easy to see, from the general eigenvector expressions, that the corresponding vectors remain linearly independent
in this limit; and hence, we still have a full basis for the characteristic system.
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2. The second possibility is whenever one of the Alfven speeds coincides with one of the fast magneto-sonic. It can
be seen that the two corresponding eigenvectors collapse to zero in all of the four possible cases.
We shall start the analysis from the following general observation:

1− (σ±
A)

2 =
1

B̃4
(S̃i

p ±∆B̃i
p)

2.

Thus, using the orthogonality of Ẽi, B̃i, S̃i and the magnetically dominance condition, whenever there is an
eigenvalue coincidence, it follows that:

Ẽm = 0 , Ẽi
p ⊥ B̃i

p , Ẽ2
p = B̃2

p and ∆ ≡ |B̃m|

In all the possible coincidence cases, it can be found the following general structure for the characteristic system,

U±
1 =

{

1 , 0 , ∓mi
}

; Θ±
1 =

1

2
{1 , 0 , ∓mi}

U±
2 =

{

0 , B̃i
ℓ , ∓ B̃i

p

}

; Θ±
2 =

1

2B̃2
p

{

0 , B̃ℓi , ∓ B̃pi

}

U4 =
{

0 , B̃i , − Ẽi
}

; Θ4 =
1

B̃2
m

{

0 , B̃i , Ẽi

}

while the two remaining eigenvectors (and co-vectors) might be cast into two different groups:

i) σ+
A = 1 or σ−

A = 1:

U
(1)
3 =

{

0 , B̃i
p , B̃i

ℓ

}

; Θ
(1)
3 =

1

2B̃2
p

{

0 , B̃pi , B̃ℓi

}

+
1

2B̃2
m

{

0 , − B̃mmi − B̃i , B̃ℓi

}

U
(2)
3 =

1

B̃2
p

{

0 , B̃i
p , B̃i

ℓ

}

+
1

B̃2
m

{

0 , B̃mmi + B̃i , B̃i
ℓ

}

; Θ
(2)
3 =

1

2

{

0 , − B̃pi , B̃ℓi

}

with eigenvalues λ
(1)
3 = βm − α and λ

(2)
3 = βm − α(1− 2

B̃2

m

B̃2
), respectively.

ii) σ+
A = −1 or σ−

A = −1:

U
(1)
3 =

{

0 , − B̃i
p , B̃i

ℓ

}

; Θ
(1)
3 =

1

2B̃2
p

{

0 , − B̃pi , B̃ℓi

}

+
1

2B̃2
m

{

0 , B̃mmi + B̃i , B̃ℓi

}

U
(2)
3 =

1

B̃2
p

{

0 , B̃i
p , B̃i

ℓ

}

+
1

B̃2
m

{

0 , − B̃mmi − B̃i , B̃i
ℓ

}

; Θ
(2)
3 =

1

2

{

0 , B̃pi , B̃ℓi

}

with eigenvalues λ
(1)
3 = βm + α and λ

(2)
3 = βm + α(1− 2

B̃2

m

B̃2
), respectively.

3. The final case is when the two degeneracies above appear simultaneously, namely: each Alfven mode collapses
with one of the fast modes. It is not hard to see that this case is only possible when Ẽi = 0 and B̃i

p = 0. But
then the resulting structure is exactly that of Maxwell theory, i.e: transversal modes at light speed. While the
remaining unphysical modes related with constraints will propagate along normal directions.

Therefore we corroborate that, as long as the background electromagnetic field remains magnetically dominated,
there will always exist a complete eigen-basis for the characteristic system.
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Appendix B: Constraints

According to [2], a constraint at a point (xa, Fbc) of the bundle manifold B is a tensor CAn such that:

CA(nK
m)
Aα = 0. (B1)

The set of all constraints form a vector space.
For the Augmented System of FFE, we obtain a space of constraints characterized by a scalar C2 and an arbitrary

antisymmetric tensor Cab
3 ,

CAn = {0, C2δ
n
a, C3

n
a} (B2)

To check that (B2) does indeed satisfy (B1), we contract it with the principal symbol to obtain,

CAnKn
Aα =

C2

2
ǫnmbc + Cnm

3 F ∗bc (B3)

which is clearly anti-symmetric in the indices n and m.

1. Completeness

The main role played by constraints is that they signal the presence in (16) of differential conditions that must
be imposed on initial data. Indeed, let Σ be any hypersurface, with normal na. Then, it is easy to see that the
combination,

naC
AaKm

Aα∇mΦα = 0, (B4)

only contains derivatives tangent to Σ. In the (vacuum) Maxwell case, for example, there are two independent
constraints which gives rise, via (B4), to the vanishing of the divergence of the electric and magnetic fields.
For our case, (B4) imply that the vanishing of the divergence of the magnetic field is still a constraint in FFE,

1√
h
∂k(

√
hBk) = 0, (B5)

where h here is the determinant of the induced metric of the hypersurface. Furthermore it also implies a vector
constraint,

∂i(EkB
k) = 0, (B6)

which states that the scalar product of the magnetic and electric fields (the Lorentz invariant quantity F ∗
abF

ab) has
to be constant along spatial hypersurfaces.
Completeness, in the sense of Geroch, means that the dimension of evolution equations (provided by the sym-

metrizer) plus the dimension of the constraints, must equal to dimension of original PDE system.
In the case of force-free electrodynamics, we see that the space of constraints is four-dimensional; there are six evo-
lution fields (i.e: Ei and Bi); and the original space of equations is 10-dimensional. Therefore, the constraints in the
Augmented System are indeed complete.

2. Integrability

For the cases where JA = 0, like ours, the general integrability condition, [2], reduces to

CAn(∇nK
m
Aα)(∇mΦα) = 0 (B7)

If it holds as a trivial algebraic consequence of the equations of motion we say that our constraint is integrable. To
show that this is indeed the case for FFE, we explicitly compute it obtaining,

CAn(∇nK
m
Aα)(∇mΦα) = Cnm

3 ∇n(F
∗ab)∇m(Fab) =

1

2
Cnm

3 ǫabcd∇n(Fcd)∇m(Fab) (B8)
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Now, because Cnm
3 is antisymmetric in n and m, this quantity is identically zero. Thus, equation (B7) holds and the

constraints are therefore integrable in the sense of Geroch.
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