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Abstract 
Models describing energy consumption, heating, and cooling of buildings usually impose difficulties 
to the numerical integration algorithms used to simulate them. Stiffness and the presence of 
frequent discontinuities are among the main causes of those difficulties, that become critical 
when the models grow in size. Quantized State Systems (QSS) methods are a family of numerical 
integration algorithms that can efficiently handle discontinuities and stiffness in large models. For 
this reason, they are promising candidates for overcoming the mentioned problems. Based on this 
observation, this article studies the performance of QSS methods in some systems that are relevant 
to the field of building simulation. The study includes a performance comparison of different QSS 
algorithms against state-of-the-art classic numerical solvers, showing that the former can be more 
than one order of magnitude faster. 
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1 Introduction 

Models in building simulation usually combine phenomena 
from different domains evolving on very different time 
scales, leading to stiff systems. Additionally, the continuous 
time submodel representing the physical phenomena often 
interacts with digital controllers, opening valves, and other 
discrete dynamics leading to hybrid systems. This interaction 
implies the presence of discontinuities in the differential 
equation systems. Also, the models sometimes contain several 
instances of similar components (air conditioning units, 
for instance), resulting in large scale systems.  

Classic numerical integration methods have problems 
in all these cases. First, stiffness enforces the usage of implicit 
algorithms since explicit methods must significantly reduce 
the integration step in order to satisfy stability requirements 
(Hairer and Wanner 1996; Cellier and Kofman 2006). This is 
the reason why most simulation tools use DASSL (Petzold 
1983) or one of its variants as the default ODE or DAE 

solver. Second, the presence of discontinuities requires that 
the algorithms detect them and restart the simulation at the 
point of their occurrence in order to avoid unacceptable 
errors caused by the integration across discontinuous 
functions (Cellier and Kofman 2006). Implicit methods and 
discontinuity detection algorithms make use of iterative 
routines, whose computational cost significantly grows with 
the model size. In consequence, the simulation of large stiff 
and discontinuous systems is computationally expensive.  

A way to reduce these computational costs is given by 
the Quantized State Systems (QSS) methods (Kofman and 
Junco 2001; Cellier and Kofman 2006), that replace the 
time discretization of classic numerical algorithms by the 
quantization of the state variables. State quantization implies 
that QSS methods work in an asynchronous way, and they 
only perform computations when and where changes occur. 
In large sparse models with localized changes, this fact 
provides significant advantages.  

QSS algorithms are also characterized by a very efficient 
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handling of discontinuities (Kofman 2004), as they are 
detected without performing iterations and their treatment 
does not require to re-initialize the simulation. There is 
also a family of QSS methods called Linearly Implicit QSS 
(LIQSS) (Migoni et al. 2013), that can efficiently simulate 
certain stiff systems without performing iterations at all.  

Taking into account their advantages in the simulation 
of stiff, discontinuous and large scale models, QSS algorithms 
appear as promising candidates to integrate large scale sparse 
hybrid systems as those appearing in many applications 
related to building simulation. In fact, preliminary work has 
shown that QSS methods offer enormous benefits in the 
simulation of systems with similar features. In particular,  
in the simulation of a district cooling system the results 
showed that QSS algorithms were more than two orders of 
magnitude faster than classic methods (Floros et al. 2014). 

Based on the previous remarks, the goal of this paper is 
to demonstrate the appropriateness and effectiveness of QSS 
integration algorithms for building simulation in presence 
of frequent discontinuities, stiffness, and large scale models. 
Towards this goal, the use of QSS integration methods in 
four case studies and their computational performance are 
discussed and compared against classic ODE solvers like 
DASSL, CVODE, and IDA, the last two belonging to the 
SUNIDALS library (Hindmarsh et al. 2005). The first case 
study corresponds to an air conditioning systems composed 
of several AC units together with their control, as described 
in Perfumo et al. (2012). This model is analyzed and then 
extended in order to include the heat capacitance in the 
room walls and some fast dynamics in the actuators. Then, 
two models of a district cooling systems composed of a 
chiller plant operating over a large number of cooling 
zones, based on a model taken from Ceriani et al. (2013), 
are considered. All these cases exhibit the different simulation 
challenges before mentioned (large scale, frequent dis-
continuities, stiffness).  

The article is organized as follows: Section 2 introduces 
the main concepts used along the article. Then, Section 3 
describes the case studies in detail outlining their features 
and the challenges they impose to the numerical integration 
methods. After that, Section 4 presents the simulation results 
and performance comparisons. Finally, Section 5 concludes 
the article and proposes different lines for future work.  

2 Background 

In this section we present the main concepts used along the 
article. We first discuss about the use of classic numerical 
integration algorithms in building simulation and introduce 
the family of quantized state systems methods. Then, we 
briefly describe the Modelica language and analyze some 
previous and related work.  

2.1 Classic numerical integration in building simulation 

Building simulation involves dynamical systems usually des-
cribed by Ordinary Differential Equations (ODEs) of the form 

( ) ( ( ), )t t t=x f x                                   (1) 

where x(t) is the vector of state variables and ( )tx  are their 
time derivatives.  

Classical numerical integration methods (Hairer et al. 
1993; Hairer and Wanner 1996; Cellier and Kofman 2006) 
discretize the time variable computing the whole state vector 
for certain time points tk, using explicit formulas like  

1( ) ( ( ) )k k kt t t+ = ,x F x                               (2) 

or implicit equations like  

1( ( ) ( ) ) 0k k kt t t+ , , =F x x                             (3) 

that require iterations at each step. The time advance is 
ruled by a parameter called step size h= tk+1− tk, that is usually 
adapted during the simulation in order to fulfill certain 
accuracy settings.  

Explicit algorithm steps are usually cheaper than those 
of implicit algorithms as the later require performing 
iterations. However, when the step size h becomes large 
with respect to the fastest dynamics of the system, explicit 
methods produce unstable numerical results. For that reason, 
in stiff systems (i.e., in presence of simultaneous fast and 
slow dynamics) implicit methods must be used in order to 
be able to increase the step size.  

Besides their implicit or explicit nature, classic numerical 
algorithms can be classified as one-step methods, where the 
value of x(tk) is computed using only the information in tk−1, 
and multi-step methods, where the computations use values 
from previous steps. One-step methods are usually referred 
to as Runge–Kutta (RK) algorithms. The most used and well 
known multi-step methods, in turn, are those of Adams- 
Bashforth, Adams-Moulton, and Backward Difference 
Formulae (BDF).  

There are several ODE solvers implementing different 
algorithms. Among the most popular and efficient we can 
mention the implementation of Dormand-Prince (DOPRI) 
(Dormand and Prince 1980), an explicit fifth-order variable 
step RK algorithm, and DASSL (Petzold 1982), an implicit 
variable step and variable order BDF method. Due to its 
robustness and its capability to integrate stiff systems, DASSL 
is the default solver in most modeling and simulation tools.  

As we mentioned earlier, building simulation introduces 
some challenges to classic numerical integration solvers. First, 
the models usually contain discontinuities (an opening 
window, a person entering a room, an air conditioner  
turning on and off, etc.). Since the numerical algorithms 
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cannot integrate across discontinuities without introducing 
unacceptable errors, they must detect the occurrence of 
those events, go back to the exact time point at which the 
event took place, process the discrete changes and restart 
the simulation from that point (Cellier and Kofman 2006). 
These processes of event detection—also called zero crossing 
detection—and simulation restart slow down the simulations, 
especially in presence of frequent discontinuities, as the time 
elapsed between consecutive events imposes an upper limit 
to the step size h. In addition, building models usually 
involve components with noticeable time scale separation 
(thermal sub-models, for instance, evolve very slowly in 
comparison with electrical components). As it was mentioned 
above, the simultaneous presence of slow and fast dynamics 
is called stiffness and it normally enforces the usage of implicit 
integration algorithms, with their additional computational 
costs related to the iterations performed to solve the implicit 
equations involved.  

These issues become more problematic when the models 
are large. Regarding discontinuities, the density of events 
over time usually grows with the model size, enforcing the 
numerical integration methods to take tiny global steps. 
For this reason, even in a non-stiff case using explicit solvers, 
the computational cost grows at least quadratically with the 
model size (Cellier et al. 2013). When it comes to stiffness, 
implicit algorithms require to perform iterations at each 
step, where each iteration must solve a linear system of 
equations of the size of the entire model. Even using efficient 
sparse techniques for those operations, the computational 
costs grow at least quadratically with the model size, leading 
to very slow simulations.  

While in most applications it is preferable to use higher 
order solvers with step size control, recent results showed 
that some performance improvements can be achieved for 
the simulation of some building simulation models through 
the use of fixed-step low-order explicit numerical integration 
methods (Jorissen et al. 2015). Anyway, the usage of these 
algorithms requires knowing a correct value for the step size, 
that in many situations may be very difficult to estimate. 
Additionally, they can introduce unacceptable errors in 
presence of discontinuities.  

2.2 Quantized state system integration methods 

Quantized State System (QSS) methods replace the time 
discretization of classic numerical integration algorithms 
by the quantization of the state variables.  

Given the ODE of Eq. (1), the first order Quantized 
State System method (QSS1) (Kofman and Junco 2001) 
approximates it by  

( ) ( ( ) )t t t= ,x f q                                  (4) 

Here, q is the quantized state vector. Its entries are 
component-wise related with those of the state vector x by 
the following hysteretic quantization function:  

( ) if ( ) ( ) Δ
( )

( ) otherwise
j j j j

j
j

x t x t q t Q
q t

q t

-

-

ì | - |³ïï= íïïî
            (5) 

where Δ jQ  is called quantum and ( )jq t-  denotes the left 
hand limit of qj at time t.  

It can be easily seen that qj(t) follows a piecewise 
constant trajectory that only changes when the difference 
between qj(t) and xj(t) becomes equal to the quantum. After 
each change in the quantized variable, it results that qj(t) = 
xj(t). Due to the particular form of the trajectories, the solution 
of Eq. (4) is straightforward and can be easily translated into 
a simple simulation algorithm.  

For …1j n= , , , let tj denote the next time at which 
( ) ( ) Δj j jq t x t Q- = . Then, the QSS1 simulation algorithm 

works as follows:  

 

The QSS1 method has the following features:  
 In the solution, the quantized states qj(t) follow piecewise 

constant trajectories.  
 The state variables xj(t) follow piecewise linear trajectories.  
 The state and quantized variables never differ more than 

the quantum Δ jQ . This fact ensures stability and global 
error bound properties (Kofman and Junco 2001; Cellier 
and Kofman 2006).  

 Each step is local to a state variable xj (the one that reaches 
the quantum change), and it only involves evaluations of 
the state derivatives that explicitly depend on that state. 
This fact implies that QSS1 performs intrinsic sparsity 
exploitation in large systems.  

 If some state variables do not change significantly, they 
will not trigger any simulation step or function evaluation. 
This feature reinforces the efficient sparsity exploitation.  

 The fact that the state variables follow piecewise linear 
trajectories simplifies the detection of discontinuities. 
Moreover, after a discontinuity is detected, its effects are 
not different from those of a normal step (because changes 
in qj are discontinuous). Thus, QSS1 is very efficient in 
simulating discontinuous systems (Kofman 2004).  
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In spite of these advantages, QSS1 only performs a first 
order approximation and good accuracy cannot be obtained 
without a significant increment in the number of steps. This 
limitation was solved with the introduction of higher order 
QSS methods like QSS2 (Kofman 2002) and QSS3 (Kofman 
2006).  

Another problem is that QSS algorithms are not suitable 
to simulate stiff systems, as they introduce spurious 
oscillations in the numerical solution that result in additional 
simulation steps (Cellier and Kofman 2006). For this reason, 
a family of linearly implicit QSS methods (LIQSS) of 
order 1 to 3 was also developed (Migoni et al. 2013). 
Although the formulation of LIQSS methods is implicit, 
their implementations are explicit and do not require per-
forming iterations. LIQSS methods share the advantages of 
QSS methods and, additionally, they are able to efficiently 
handle stiff systems, provided that the stiffness is due to the 
presence of large entries in the main diagonal of the system 
Jacobian matrix1.  

Consequently, in the simulation of systems that are large, 
sparse, discontinuous or exhibit the type of stiffness that is 
properly handled by these algorithms, the usage of Quantized 
State solvers can offer a better performance than that of 
classic discrete time methods.  

2.3 Stand-alone QSS solver 

The implementation in software of QSS algorithms is more 
involved than that of classic numerical integration methods. 
The reason is that each QSS step involves a change in a single 
variable and only some components of the right hand side 
of the ODE must be computed. The first implementations 
of these algorithms were based on the fact that the behavior 
of the QSS approximation given by Eq. (4) can be easily 
described by a discrete event system using the DEVS 
formalism (Zeigler et al. 2000). Thus, QSS algorithms were 
originally implemented inside DEVS simulation engines. 
Unfortunately, DEVS-based implementations of QSS methods 
are inefficient as DEVS simulation engines waste a large 
amount of the computational load attending the DEVS 
simulation mechanism.  

Recently, the complete family of QSS methods was 
implemented in a stand-alone QSS Solver coded in plain C 
language (Fernández and Kofman 2014). This tool simulates 
models that can contain discontinuities represented as:  

( ) ( )t t= , ,x f x d                                  (6) 

where d is a vector of discrete variables that can only change 
when a condition  
                                                        
1 When the stiffness obeys to other reasons, LIQSS methods may also 
introduce spurious oscillations in the numerical solution. 

( ) 0iZC t, , =x d                                  (7) 

for some {1 }i zÎ , ,  is met. The components ZCi form a 
vector of zero-crossing functions ( )t, ,ZC x d . When a zero- 
crossing condition of Eq. (7) is verified, the state and discrete 
variables can change according to the corresponding event 
handler:  

( ( ) ( )) ( ( ) ( ) )it t H t t t- -, = , ,x d x d                      (8) 

These models are simulated using QSS methods that 
approximate Eq. (6) by  

( ) ( )t t= , ,x f q d                                  (9) 

where each component qi(t) is a piecewise polynomial 
approximation of the corresponding component of the 
state xi(t).  

The simulation is performed by three modules interacting 
at runtime: 
(1) The Integrator, that integrates Eq. (9) assuming that 

the piecewise polynomial quantized state trajectory q(t) 
is known.  

(2) The Quantizer, that computes q(t) from x(t) according 
to the QSS method in use and their tolerance settings 
(there is a different Quantizer for each QSS method). 
That way, it provides the polynomial coefficients of 
each quantized state qi(t) and computes the next time at 
which a new polynomial section starts (i.e., when the 
condition ( ) ( ) Δi i iq t x t Q| - |= is met).  

(3) The Model, that computes the scalar state derivatives 
( )i if tx = , ,q d , the zero-crossing functions ( )iZC t, ,x d , 

and the corresponding event handlers ( )iH t, ,q d . Besides, 
it provides the structural information required by the 
algorithms.  
The structure information of the Model is automatically 

extracted at compile time by a Model Generator module. 
This module takes a standard model described in a subset 
of the Modelica language called μ-Modelica (Bergero et al. 
2012) and produces an instance of the Model module as 
required by the QSS solver.  

The Stand Alone QSS Solver also offers a front-end to 
classic numerical solvers like DASSL, DOPRI, and CVODE. 
Taking into account that the current implementation of 
QSS methods requires that the models are described in 
Modelica, we provide below a brief introduction to this 
modeling language.  

2.4 Modelica and μ-Modelica 

Modelica (Mattsson et al. 1998; Fritzson 2015) is an object- 
oriented declarative modeling language that allows the 
combination of models belonging to different physical and 
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technical domains in a unified way. Elementary Modelica 
components are usually described by means of differential- 
algebraic equations, with the eventual presence of discon-
tinuities and discrete evolutions. These elementary com-
ponents can be connected to compose more complex models.  

Making use of the object-oriented features of the language, 
a repository of models from different domains (thermal, 
mechanical, electrical, etc.) called Modelica Standard Library 
(MSL) was developed. Derived from the MSL, a specific 
library for building simulation called Modelica Buildings 
Library was also developed and applied to several problems 
in the discipline (Wetter and Haugstetter 2006; Wetter   
et al. 2014, 2016; Fuchs et al. 2015; Nytsch-Geusen et al. 
2013; Baetens et al. 2015).  

From a mathematical point of view, Modelica models 
are collections of differential algebraic equations (DAEs). 
Modelica compilers translate these descriptions into a 
programming language2 piece of code that allows to evaluate 
the right hand side of an equivalent ODE. The conversion 
from DAE to ODE requires reducing the DAE index (in 
presence of structural singularities), solving the algebraic 
loops (or producing the iterative code that solves them), and 
sorting the system of equations.  

Several Modelica software tools are available, both 
commercial (like Dymola (Brück et al. 2002) and Wolfram 
SystemModeler) and open source (like OpenModelica 
(Fritzson et al. 2005) and JModelica (Åkesson et al. 2009)). 
These tools combine user-friendly modeling environments 
with Modelica compilers and different ODE solvers.  

There exists also a reduced subset of Modelica language 
called μ-Modelica (Bergero et al. 2012), that contains only 
the minimal statements and functions that are necessary to 
describe plain systems of ODEs with discontinuities. As it 
was mentioned earlier, this language is used by the stand- 
alone QSS Solver to describe the models. Anyway, models 
described in general Modelica language can be also simulated 
by this tool making use of automatic translators from 
Modelica to μ-Modelica like that of OpenModelica (Bergero 
et al. 2012) and ModelicaCC, a new Modelica compiler 
optimized for large scale models (Bergero et al. 2015).  

The mentioned Modelica to μ-Modelica translators are 
in fact Modelica compilers like those described above that 
convert the DAEs to ODEs reducing the DAE index, solving 
the algebraic loops (or producing the iterative code that 
solves them), and sorting the system of equations. Unlike 
the regular Modelica compilers, these translators write 
μ-Modelica code instead of the C language code. Thus, 
complex Modelica models containing algebraic loop or 
structural singularities can be simulated using the QSS 
methods through these translations.  
                                                        
2 C language is used in most Modelica tools. 

2.5 Previous and related work 

Some previous work has been done regarding the usage of 
QSS methods in the field of building simulation. Preliminary 
results reported in Floros et al. (2014) showed the advantages 
of using QSS in some problems related to building per-
formance simulation. Anyway, the examples analyzed in that 
work used unrealistic parameters for the context of buildings. 
Also, the experiments were performed using different simula-
tion tools for QSS and DASSL, leading to unfair comparisons 
(DASSL simulations were run with OpenModelica while 
QSS simulations were run on the stand alone QSS solver that 
produces more efficient simulation code).  

QSS simulations of heat transfer in multi-layered walls 
were studied by Frances et al. (2014, 2015). The results were 
compared against those of EnergyPlus (Crawley et al. 2001) 
and found to be in concordance. As these works were limited 
to performing an early feasibility study, QSS simulations 
were carried on using PowerDEVS (Bergero and Kofman 
2011), a DEVS-based implementation of QSS that is not 
optimal in terms of efficiency. Anyway, the discontinuity 
handling features of QSS allowed the simulation of hybrid 
systems including some phenomena that could not be 
simulated in EnergyPlus. Motivated by these results, some 
work is currently being done in order to include the QSS 
methods into EnergyPlus (Wetter et al. 2015).  

3 Case studies 

In this section, we present four case studies that are then 
simulated in the next section. The models exhibit one or 
more features that impose difficulties to classic numerical 
integration algorithms: stiffness, frequent discontinuities, 
and all of them have a parameter that defines the model 
size, so they can become of large scale type.  

The first two cases correspond to a centralized control 
of the total power consumed by a population of air conditioner 
(AC) units. Both models contain frequent discontinuities 
caused by the AC units turning on and off. In addition, the 
second case has more realism including the modeling of a 
wall that increases the system size, and an actuator that 
introduces stiffness.  

The remaining two cases represent a District Cooling 
System. Here, the models have a more complex structure 
than that of the first cases. In addition, the models are stiff 
due to the local cooling controllers and the heat exchangers. 
Moreover, one of these models involves frequent dis-
continuities.  

3.1 Case study I. Air conditioner population 

This model, taken from Perfumo et al. (2012), allows the 



Bergero et al. / Building Simulation / Vol. 11, No. 2 

 

410 

study of a centralized system that controls the power 
consumed by the AC population of a building.  

The model considers that each AC unit refrigerates one 
room, so that the temperature of the i-th room, θi(t), follows 
the equation  

a
1( ) [ ( ) ( )]i i i ii

i i
t θ t θ R P m tθ C R
=- - + ⋅ ⋅

⋅
            (10) 

Here, Ri and Ci are parameters representing the thermal 
resistance and capacity of the i-th room, respectively. Pi is 
the power of the i-th air conditioner in on state and θa is the 
ambient temperature.  

The variable mi(t) represents the state of the i-th air 
conditioner, where mi(t)=1 is the on state, and mi(t)=0 is the 
off state. This variable evolves according to the hysteretic 
on–off control law:  

r

r

0 if ( ) 0 5 and ( ) 1
( ) 1 if ( ) 0 5 and ( ) 0

( ) otherwise

k
i i

k
i i i

i

θ t θ m t
m t θ t θ m t

m t

+

ì £ - . =ïïïï= ³ + . =íïïïïî

    (11) 

where r
kθ  is the global reference temperature calculated by 

the centralized control system. 
The power consumption of the entire AC population is 

computed as:  

1
( ) ( )

N

i i
i

P t m t P
=

= ⋅å                                  

and a centralized digital control system regulates it, so that 
it follows a desired power profile Pr(t). This centralized 
control system uses a discrete time Proportional Integral 
(PI) law to compute the reference temperature r

kθ  as:  

1

r 0 P r I r
1

[ ( ) ( )] [ ( ) ( )]
k

k j j

j
θ θ K P t P t K P t P t

-

=

= + ⋅ - + -å         

where KP and KI are the parameters of the PI controller.  
In the experiments, the power profile Pr(t) follows a 

pulse trajectory that starts at the 50% of the total power, 
then it falls to the 40% from t=1000 until t=2000, when it 
comes back to its original value. The complete model contains 
N AC units with the set of parameters listed in Table 1. The 
parameters corresponding to the room dimensions and AC 
power have a 25% variation around the reported mean value.  

Simulation issues 

This model contains N rooms with one AC unit each having 
different parameters (heat capacitance, power, etc), so the 
temperature in the different rooms evolves at different pace 
and the on/off events occur at different time points. That 
way, as N increases, the number of on/off events per time  

Table 1 Model parameters—AC population example 
Parameter Value 

Room interior 
Room dimension 3 m × 3 m × 3 m 
Heat capacitance of air 1.012 kJ/(kg·K) 
Mass of air 35 kg 
Room heat capacitance 35.4 kJ/K 
Initial temperature 22°C 

Room walls 
Brick conductivity 0.89 W/(m·K) 
Brick capacitance 0.840 kJ/(kg·K) 
Wall thickness 0.3m 
Wall resistance 9.363 × 10−3 m2·K/W 
Wall capacitance 1.52 × 106 kJ/K 
Initial temperature 26°C 

Control 
KI 1 
KP 1 
θ0 20 °C 

AC unit 
AC power 1 kW 

Environment 
θa 32 °C 

 
unit also grows. Since the time between consecutive events 
impose an upper limit to the step size of classic numerical 
algorithms, the number of simulation steps grows with   
N while the complexity of evaluating the right hand side of 
Eq. (1) also grows. In consequence, we expect that the 
computational cost grows quadratically with the model size.  

This model is not stiff. Taking N=50, for instance, the 
Jacobian matrix eigenvalues are located in the interval 
[−0.00275, −0.00198]. Thus, the usage of implicit algorithms 
will only increase the computational costs due to the com-
putation of the Jacobian matrix and the iterations on a 
system of N equations.  

3.2 Case study II: A more realistic room 

The second case study adds more realism to the previous 
model, including the heat capacitance of the brick walls 
and the dynamics of the AC actuator. That way, the i-th 
room temperature θi(t) evolves as follows:  

[ ]

w

w w
w a

w w

1 ( ) ( )( ) ( )

1 ( ) ( ) ( )( )

1( ) ( ) ( )

i i
ii

i i

i i i
i

ii i

i i ii

θ t θ tt p tθ C R
θ θ t θ t θ ttθ RC R

t m t P p tp τ

é ù-ê ú= -
ê úë û
é ù- -ê ú= -
ê úë û

= ⋅ -







             (12) 

Here, w ( )iθ t  represents the temperature of the i-th room 
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walls and pi(t) is the cooling power of i-th AC unit. The 
parameters w

iC  and w
iR  are the thermal capacitance and 

resistance of the wall, and τ is the time constant of the AC 
actuator. The remaining parameters and variables coincide 
with those of the previous case and their values are listed in 
Table 1.  

Simulation issues 

This modified model has three times as many state variables 
as the previous one, so the evaluation of the right hand side 
of the ODE is more expensive. Additionally, the actuator 
dynamics imposes a fast dynamics, so the model becomes 
stiff. In fact, the Jacobian eigenvalues are located in the 
interval [−1000, −0.000047]. On the other hand, the presence 
of heat storage at the brick walls attenuates the temperature 
changes in the room slowing down the frequency of on–off 
events in the AC units. In conclusion, we expect that the 
simulation of this model has more computational costs 
associated to the size and stiffness, but less discontinuities 
than the previous one.  

3.3 Case study III: A district cooling system 

The following case, adapted from Ceriani et al. (2013), 
represents a centralized system used to distribute cooling 
power to several rooms (zones) through a water circuit as 
shown in Fig. 1.  

 
Fig. 1 (a) District cooling system, and (b) detail of a zone submodel 

The model is formed by the following components:  
 The Water Chiller that cools the water that is then pumped 

to the cooling circuit.  
 The Chilled Water Tank consisting of a reservoir connected 

to the Water Chiller, from which the water is pumped to 
the water circuit.  

 The Chilled Water Circuit that forms a circular network 
of incompressible fluid, where the water flows from the 
Chilled Water Tank, arriving then to the first zone, and 
passing through the successive zones until arriving back 
to the tank. The circuit is divided in sections, so that the 
i-th circuit section exchanges heat with the i-th zone.  

 The Zones, that are modeled as rooms that exchange heat 
with the outside ambient and with the Heat Exchangers. 
They also receive heat from internal sources such as 
occupants and office equipment.  

 The Heat Exchangers, that exchange heat between each 
section of the Chilled Water Circuit and the corresponding 
room.  

 The Zone Temperature Controllers, that regulate the 
opening and closing of each Heat Exchanger valve in order 
to control the temperature of the corresponding zone.  

 The Chilled Water Temperature Controller, that computes 
the Cooling Plant power that is necessary to regulate the 
temperature in the water tank at a specified set-point.  

The mathematical representation of these components 
are described below:  

The Water Chiller is simplified in this article, so it delivers 
exactly the power C SP ( )Q t required by the Chilled Water 
Temperature Controller.  

The Chilled Water Tank contains water at the tem-
perature TTANK(t), that evolves according to:  

0
TANK CW C SP CWTANK( ) ( ) ( ) ( )NC t Q t Q t Q tT = - -          (13) 

where CTANK is the tank heat capacitance, CW ( )NQ t  is the heat 
flow entering the tank from the last section of the Chilled 
Water Circuit and  

0
CW TANK W FLOW( ) ( )Q t T t ρ C q= ⋅ ⋅ ⋅                    (14) 

is the heat flow going from the tank to the first section of 
the water circuit. Here, qFLOW is the constant water flow 
impulsed by the water pump.  

The Chilled Water Circuit dynamics at the i-th section 
obeys the equations  

1
CW CW CW W EXC CWCW

EXC

CW CW W FLOW

( ) ( ) ( ) ( ) ( ( )
( ))

( ) ( )

ii i i i i

i

i i

C t Q t Q t ρ C q t T tT
T t

Q t T t ρ C q

-= - - ⋅ ⋅ ⋅

-

= ⋅ ⋅ ⋅



(15) 

where CW
iT  is the water temperature at i-th section, CW

iC  is 
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its thermal capacity, CW ( )iQ t  is the heat flowing from the i-th 
circuit section to the next one, EXC ( )iT t  is the temperature 
of the water in the i-th Heat Exchangers, and EXC ( )iq t  is the 
controlled water flow entering the heat exchanger. Notice 
that the first circuit section receives the heat flow 0

CW ( )Q t  
coming from the chilled water tank.  

The Zones are represented by the following equations:  

ZA ZA OA ZAZA
out

ZA ZA EXC
cw

1( ) ( ) ( ( ) ( ))

1( ) ( ( ) ( ))

ii i i
i

i i i
i

C t Q t T t T tT R

Q t T t T t
R

=- + ⋅ -

= ⋅ -


        (16) 

where ZA ( )iT t  is the i-th room temperature, ZA
iC  is its thermal 

capacity, TOA(t) is the external temperature, out
iR  is a constant 

parameter representing the thermal resistance with the 
environment, and cw

iR  is the thermal resistance between 
the zone and the heat exchanger.  

The Heat Exchangers are modeled as:  

EXC ZA W EXC CW EXCEXC

EXC c MAX

( ) ( ) ( ) ( ( ) ( ))
( ) ( )

ii i i i i

i i

C t Q t ρ C q t T t T tT
q t X t q

= + ⋅ ⋅ ⋅ -

= ⋅


   

(17) 

where c ( )iX t  is the valve opening fraction (computed by the 
Zone Temperature Controller) and qMAX is the maximum 
water flow through the heat exchanger.  

The Chilled Water Temperature Controller is a PI 
controller with an anti-windup scheme that computes the 
cooling power set point C SP ( )Q t  that is necessary to regulate 
the chilled water tank temperature TTANK(t) around its set 
point CW SP ( )T t :  

( )
C,max

C,CW TANK CW SP

I,CW I,CW
, C,CW C SP

P,CW P,CW

C SP [0, ] P,CW C,CW C,CW

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

C CW

Q

e t T t T t
k k

t z t Q tz k k
Q t Φ k e t z t

= -

=- ⋅ + ⋅

= ⋅ +

              

Here, [ ]( )a bΦ , ⋅  is a saturation function:  

[ , ]( ) [ , ]a b

a x a
Φ x x x a b

b x b

ì <ïïïï= Îíïïï >ïî

                             

modeling the actuator limits. eC,CW(t) is the error in the 
regulated temperature, and zC,CW(t) is the integral state that, 
in a non saturated situation, is proportional to the integral 
of eC,CW(t). When the controller saturates, this anti-windup 
scheme clamps the integrator state to an equilibrium value 
instead of experiencing a linear growth with the error. 
Finally, kP,CW and kI,CW are the proportional and integral 
gains of the PI controller. 

The Zone Temperature Controller of the i-th zone is 
also a PI controller with anti-windup, that attempts to control 
the zone temperature ZA ( )iT t  around a set-point ZA SP ( )T t . 
The control variable is the heat exchanger valve opening 

c ( )iX t , which spans the range [0,1]. The controller is 
modeled as:  

( )

C,Z ZA ZA SP

I,Z I,Z
C,Z C,Z c

P,Z P,Z

c [0 1] P,Z C,Z C,Z

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i i

i i i

i i i

e t T t T t
k k

t z t X tz k k
X t Φ k e t z t,

= -

=- ⋅ + ⋅

= ⋅ +

                      

with identical definitions to those of the Chilled Water 
Temperature Controller.  

Model parameters 

Table 2 shows the parameters for this case. In order to obtain 
a realistic behavior as the number of zones N changes, 
some parameters are proportional to the model size as it is 
expressed in the table.  

Table 2 Model parameters—district cooling zone 

Parameter  Value   

Water tank and circuit 

Water temp. set point ( CWSPT )  10 °C   

Water density ( ρ )  998 kg/m3  

Water capacity (CW)  4.18 × 103 J/(kg·°C)  

Tank volume (VolTANK)  0.1 × N (m3)  

Tank capacity (CTANK)  CW ρVolTANK (J/(kg·°C))  

Pipe volume (VolPIPE)  0.01 × N (m3)   

Water flow (qFLOW)  0.0001 × N (m3/s)  

Water chiller and controller 

Chiller power ( C,maxQ )  3000 × N (W)   

Integral gain ( I,CWk )  0.5 × N (W/(°C·s))   

Proportional gain ( P,CWk )  6000 × N (W/°C)  

Heat exchanger 

Exchanger volume (VolEXC)  0.005 m3 

Exchanger capacitance (CEXC)  1.25 × 105 J/(kg·°C)  

Maximum flow (qMAX)  0.0001 m3/s  

Zone 

Temperature set point (TZASP)  23 °C  

Zone capacity (CZA)  6092 × 103 J/W  

Resistance with outside (Rout)  2.16 × 10−3 °C/W  

Resistance with exchanger (Rcw)  3.03 × 10−4 °C/W   

Internal gain (p1,p2,p3)  0.2199J/(°C)2, 5.0597J/°C, 84.9168J

Zone thermostat 

Integral gain (kI,Z)  5 × 10−4 (°C·s) −1 

Proportional gain (kP,Z)  1 (°C) −1 
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Figure 2 plots the simulated trajectories for the ambient, 
the first zone and the last zone temperatures. Then, Fig. 3 
shows the water temperature at the tank and at the first and 
last circuit segments. The simulations correspond to a model 
with 50 zones. As expected, the temperatures at first zone 
are cooler because it is closer to the chilled water tank.  

Simulation issues 

This model has a more complex structure than that of the 
previous cases. There are four state variables associated   
to each zone, and three additional states associated to the 
remaining components, completing a total of 4×N+3 states. 
The system has also some discontinuities corresponding  
to the saturation of the different actuators. However, 
discontinuities are not very frequent. The zone controllers 
also impose a relatively fast dynamics compared to that of 
the global system, so the model is also stiff. Moreover, the 
model becomes more stiff as N growths. In fact, taking N=50 
zones, the real part of the Jacobian matrix eigenvalues are 
located in the interval [−0.935, −5.2×10−6], while taking 
N=100 the eigenvalues are spread in the interval [−1.927, 
−5.2×10−6].   

3.4 Case study IV 

This last case is an extension of the previous one, where the  

 
Fig. 2 Simulated trajectories of the environment and zones 
temperatures 

 
Fig. 3 Simulated trajectories of the tank and circuit temperatures 

model of each zone also considers the internal heat flow 
produced by the occupants. The internal heat flow INT ( )iQ t  
is modeled according to the following non-linear function 
of the zone temperature:  

2
INT 1 ZA 2 ZA 3 people( ) ( ( ) ( ) ( ) ) ( )i i i iQ t p T t p T t p n t= + +             

where people
in  is the number occupants of the i-th zone. This 

model is proposed in CIBSE (2006), where suitable values for 
the coefficients p1, p2, and p3 can be found (see Table 2).  

With these considerations, Eq. (16) is modified as follows:  

ZA ZA OA ZA INTZA
out

1( ) ( ) ( ( ) ( )) ( )i i i iC t Q t T t T t Q tT R
=- + - +       

(18) 

The number of occupants people
in (t) is generated by a 

simple stochastic model, where the next arrival/departure 
time of a person is given by a fixed time (1000 seconds) 
plus a uniform random variate between 0 and 1000 seconds. 
At each event, a person either enters or leaves the room. 
When there are less than 10 people, the probability of entering 
the room is 50%. Otherwise, it is 15%.  

Although this model does not represent any specific 
and realistic pattern to model room occupancy, it serves for 
the purpose of generating a number of uncorrelated time 
events, whose density in time grows with the number of 
zones.  

Simulation issues 

This case is almost identical to the previous one, but it has 
the addition of time events caused by people entering and 
leaving the zones. As in the AC population example, the 
event density grows linearly with the number of zones which 
in turn limits the maximum step size. However, this time, 
the additional discontinuities caused by people entering 
and leaving the zones are time events instead of state events. 
Time events are easier to locate as their time of occurrence 
is known in advance, so there is no need of iterating on 
zero crossing functions depending on the state variables.  

4 Simulation results 

In this section we present the simulation results for the case 
studies introduced above using different numerical integration 
algorithms.  

Simulation benchmark 

The simulations were performed under the following settings:  
 The simulation platform is a desktop computer with an 

Intel i7-3770 processor running at 3.40 GHz with 4 GB 
RAM under Ubuntu 16.04 operating system.  
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 All the simulations reported were performed using the 
QSS Stand Alone Solver (Fernández and Kofman 2014) 
as front-end.  

 In all cases we compared QSS2, LIQSS2, DOPRI, DASSL, 
CVODE, and IDA results under equivalent tolerance 
settings: in classic solvers we used absolute and relative 
tolerances of abstol=reltol=10−3, while in QSS we used 
absolute and relative quanta of ΔQabs=ΔQrel=10−3. 

 The implementation of DOPRI is dopri5.c, described 
in Hairer et al. (1993), with the addition of a zero crossing 
detection routine. DASSL results correspond to the 
code ddaskr.f, while CVODE and IDA are part of the 
SUNDIALS package (Hindmarsh et al. 2005). SUNDIALS 
solvers are always invoked making use of a sparse 
symbolical Jacobian evaluation.  

 In all cases, we performed simulations for different values 
of the parameter N that represents the model size.  

 We did not observe variability in the CPU time taken by 
repeating experiments. In consequence, we did not 
average multiple results.  

 Simulation errors were computed by comparing the results 
against a reference trajectory obtained using CVODE with 
a tight tolerance (1×10−6), using the formula:  

sim ref 2 ref 2

2
1

( [ ] [ ]) ( [ ])err
P

i

y i y i y i
P=

- /
=å             (19) 

 where P=5000 is the number of equidistant output points.  
 Although some of the solvers can run on parallel exploiting 

the multi-core architecture, all the experiments were 
realized using a single core.  

The reported results can be reproduced using the   
QSS Stand Alone Solver (https://sourceforge.net/projects/ 
qssengine/). The models are included in a Modelica package 
that can be downloaded from http://www.fceia.unr.edu.ar/ 
~fbergero/Examples.mo. 

4.1 Case study I 

The model was simulated varying N from 50 to 1000 AC 
units, using a final time tf=3600 in all cases. The CPU time 
taken by each experiment is depicted in Fig. 4, while the 
errors are shown in Fig. 5.  

Result analysis 

Both QSS algorithms (LIQSS2 and QSS) outperform all 
classic solvers in all cases. What is more important, the 
difference becomes larger as the number of AC units grows. 
When the number of AC units is large (greater than 400) 
the CPU time of QSS algorithms shows a linear growth with 
the number of AC units, while the CPU times of DOPRI, 
CVODE and IDA exhibit a near quadratic growth and 
DASSL is almost cubic.  

 

Fig. 4 CPU time vs. number of AC units for different solvers: 
Case study I 

 
Fig. 5 Error vs. number of AC units for different solvers: Case 
study I 

The approximately linear complexity of QSS was already 
known for large problems involving loosely coupled com-
ponents including discontinuities (Grinblat et al. 2012). 
This is due to the fact that these algorithms do not need to 
reinitialize the whole simulation after the occurrence of a 
discontinuity.  

Classic algorithms, in turn, perform steps at the 
discontinuity points: every one second (when the discrete 
time controller is updated) and whenever any AC unit 
switches on or switches off. Consequently, when the number 
of AC units increases, the number of switching events 
increases and the steps become shorter. Additionally, the 
evaluation of the right hand side of the ODE becomes more 
expensive as the model grows. Thus, when the number of 
AC units is large (so the number of switching events is much 
larger than those of the discrete time controller), the number 
of steps taken by the algorithm grows almost linearly with 
N. As the cost of evaluating the right hand side of the ODE is 
also linear with N, the CPU time grows quadratically with N.  

Implicit algorithms have additional costs related to the 
evaluation of the Jacobian matrix and the Newton iterations. 
This is why DASSL CPU time is almost cubic. Implicit 
SUNDIAL solvers (CVODE and IDA) face the same issue 
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but they evaluate the Jacobian matrix using a sparse form 
and they perform the iterations exploiting that representation 
adding only a linear cost to the computation of each 
simulation step. Thus, these algorithms are more expensive 
than DOPRI but they scale in the same way.  

The fact that the model is not stiff implies that QSS2 
and LIQSS2 have almost identical CPU times. The lack of 
stiffness also implies that DOPRI is much faster than implicit 
algorithms, as the step size is limited by the occurrence of 
events instead of being limited by stability requirements.  

Regarding the errors, all the algorithms show very similar 
figures. A noticeable feature is that the error becomes 
smaller as the number of AC units increases. The reason is 
that the simulation steps become smaller as N increases, 
reducing the simulation error.  

4.2 Case study II 

This model was run under the same conditions of the previous 
one. The CPU time taken by each experiment is depicted in 
Fig. 6, while the errors are shown in Fig. 7.  

Result analysis 

This time, LIQSS2 is significantly faster than any other  

 
Fig. 6 CPU time vs. number of AC units for different solvers: 
Case study II 

 
Fig. 7 Error vs. number of AC units for different solvers: Case 
study II 

solver and the CPU time grows linearly with the number of 
AC units. Due to the stiffness introduced by the actuator 
dynamics, QSS2 becomes almost 1000 times slower than 
LIQSS2.  

Provided that N is not very large, CVODE solver shows 
the best performance among classic solvers. Although their 
simulation steps are more expensive than those of DOPRI, 
it does not have stability limitations and it can perform 
larger steps that are only limited by the occurrence of 
discontinuities. DASSL, in turn, also performs large steps 
but it is not optimized for sparse systems and the cost of 
each step is significantly larger.  

As N increases, DOPRI becomes faster than CVODE. 
The reason is that DOPRI step size is limited by stability 
constraints (it is smaller than the time between consecutive 
events). Thus, the step size in DOPRI is almost constant 
and the CPU time only grows linearly with N. If N becomes 
even larger so that the time between consecutive events 
becomes smaller than the step size that ensures stability, 
then DOPRI should also exhibit quadratic growth.  

Regarding errors, this time those of QSS are larger than 
those of classic algorithms and they do not fall as N grows. 
Anyway, they have the order of the prescribed tolerance.   

4.3 Case study III  

The District Cooling model was simulated varying the 
number of zones N from 50 to 500, until a final time 
tf =360000 (i.e., 4 days and 4 hours). In this case, in order to 
obtain qualitatively better results, the relative and absolute 
tolerance of the classic solvers was set as abstol=reltol=10−4, 
while in QSS an absolute and relative quanta of ΔQabs= 
ΔQrel=10−4 was selected. The CPU times taken by the different 
experiments are depicted in Fig. 8, while the errors are 
shown in Fig. 9.  

 

Fig. 8 CPU time vs. number of zones for different solvers: Case 
study III  
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Fig. 9 Error vs. number of zones for different solvers: Case study III 

Result analysis 

The results are similar to those of the last example. However, 
when N is small, DOPRI’s performance is now closer to that 
of LIQSS2. This is mainly due to the fact that the model is 
not as stiff as the previous one and DOPRI can simulate it 
using reasonable large step sizes. However, when N grows 
the model becomes more stiff and CVODE results faster 
than DOPRI (but slower than LIQSS2).  

This time, the model does not contain frequent 
discontinuities with an occurrence rate that grows with N. 
Thus, classic solvers do not exhibit the quadratic cost of the 
previous cases. Taking into account the absence of frequent 
events, the main advantage of LIQSS2 in this case is the 
efficient treatment of stiffness.  

Regarding the errors, they are similar to those of the 
previous example. LIQSS2 errors are larger than those of 
the other models, but they are anyway bounded within the 
prescribed tolerance.  

4.4 Case study IV 

This last case was simulated under identical settings than 
the previous one. The CPU times taken by the different 
experiments are depicted in Fig. 10, while the errors are 
shown in Fig. 11.   

In this case, the presence of frequent discontinuities (that 
are more frequent as the number of zones grows) reduces 
the performance of classic solvers, that exhibit back near 
quadratic growths with N. The CPU time of QSS solvers, 
however, is not affected by these events. That way, the 
advantages of LIQSS2 are more noticeable than in the 
previous example.  

Errors are also within the prescribed tolerance, but it is 
now DOPRI the solver with the larger errors. These errors 
are mainly due to some inaccuracy related to the time event 
location.  

 

Fig. 10 CPU time vs. number of zones for different solvers: Case 
study IV  

 

Fig. 11 Error vs. number of zones for different solvers: Case study IV 

5 Conclusions and future work 

This work studied the performance of QSS numerical 
integration methods in the field of building performance 
simulation, comparing it with that of classic solvers like 
DOPRI, DASSL and CVODE on different case studies. 
These case studies had some features that are common in 
building simulations and that impose some challenges to 
classic solvers: stiffness, frequent discontinuities and a large 
number of weakly connected components. In these cases, 
the results obtained suggest that QSS methods can be a 
good alternative to classic solvers. Particularly, the second 
order accurate LIQSS2 algorithm outperforms all classic 
numerical integration methods from one to three orders of 
magnitude in terms of simulation time, while still obtaining 
accurate results according to the prescribed error tolerance. 
Taking into account that building simulated trajectories 
can span from hours (like in the examples analyzed here) to 
years, the advantages observed projected on longer simulation 
runs may imply that a simulation with QSS takes a few 
minutes while that of the fastest classic solver takes several 
hours.  
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These results can be explained by three reasons: First, 
QSS methods are more efficient to handle discontinuities, 
as they only need to perform a localized re-initialization 
after their occurrence. Secondly, QSS methods also exploit 
localized activity by performing calculations only where 
significant changes occur, which is a key feature in large 
weakly connected systems like those presented in this article. 
Finally, LIQSS2 allows to simulate some stiff models in an 
explicit way without adding computational costs.  

The last remark shows an additional advantage of 
LIQSS2. As the computational costs of their steps are not 
different from those of QSS2, it can be used as a default QSS 
solver even for non stiff cases, as it can be seen in Fig. 4.  
In classic solvers, however, implicit algorithms like DASSL 
have a computational cost per step much larger than that  
of explicit solvers like DOPRI. Thus, using DASSL as the 
default algorithm is safe but may be inefficient in non stiff 
or mildly stiff models.  

Having said that, we do not believe that current QSS 
methods can actually replace classic solvers like DASSL (or 
their variants) in general building simulations. We already 
know that QSS algorithms are inefficient in presence of large 
non-sparse models since in those models it is convenient  
to advance the entire state vector in a single step rather 
than updating individual components (updating individual 
components is only better in presence of localized activity). 
Also, LIQSS algorithms are only efficient in presence of 
certain types of stiff structures, in particular, when the 
stiffness is due to the presence of large terms at the main 
diagonal of the Jacobian matrix (Migoni et al. 2015). Thus, 
there are several cases in which classic solvers like DASSL 
or DOPRI offer a better performance than QSS algorithms.  

Regarding future work, it is very important to establish 
more clearly when it is convenient to use QSS algorithms 
and when it is better to use classic solvers. For that goal, the 
analysis performed in this article should be extended to a 
wider set of building applications. A first step in this 
direction would be to test QSS methods in models from the 
Modelica Buildings Library (Wetter and Haugstetter 2006).  

Another important issue is that of facilitating the usage 
of QSS algorithms to the building simulation community. 
Current implementations of the algorithms are now limited 
to the Stand Alone QSS solver, which require that the models 
are defined in the μ-Modelica sub-language. Although there 
exist some tools that automatically translate Modelica models 
into μ-Modelica, they are not robust enough to be utilized 
in a transparent way by final users. Also, we know that 
Modelica is not the most used modeling language for building 
simulation. Thus, improving the existing Modelica translation 
tools and extending them to other modeling languages is 
an important task to effectively allow the usage of QSS 
algorithms by the community.  

Finally, in spite of the advantages shown by QSS 
algorithms, several applications in building performance 
require that the simulations are run for final times corres-
ponding to several days, months and even years. Thus, in 
spite of the advantages shown by QSS algorithms, the 
simulation speed they achieve may be insufficient to obtain 
results in reasonable CPU times. In those cases, some 
parallelization strategies for QSS algorithms as those recently 
reported by Fernández et al. (2017) could be explored in 
the context of building applications.  
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