

Research A
rticle

Advances in M
odeling and

Sim
ulation Tools

E-mail: bergero@cifasis-conicet.gov.ar

On the efficiency of quantization-based integration methods for
building simulation

Federico Martín Bergero1 (), Francesco Casella2, Ernesto Kofman1,3, Joaquín Fernández1

1. Laboratorio de Sistemas Dinámicos, CIFASIS-CONICET, Rosario, Argentina
2. Politecnico di Milano, Italy
3. FCEIA-UNR, Rosario, Argentina

Abstract
Models describing energy consumption, heating, and cooling of buildings usually impose difficulties
to the numerical integration algorithms used to simulate them. Stiffness and the presence of
frequent discontinuities are among the main causes of those difficulties, that become critical
when the models grow in size. Quantized State Systems (QSS) methods are a family of numerical
integration algorithms that can efficiently handle discontinuities and stiffness in large models. For
this reason, they are promising candidates for overcoming the mentioned problems. Based on this
observation, this article studies the performance of QSS methods in some systems that are relevant
to the field of building simulation. The study includes a performance comparison of different QSS
algorithms against state-of-the-art classic numerical solvers, showing that the former can be more
than one order of magnitude faster.

Keywords
quantized state systems,

building simulation,

HVAC,

large scale system,

hybrid models

Article History
Received: 24 January 2017

Revised: 3 July 2017

Accepted: 10 July 2017

© Tsinghua University Press and

Springer-Verlag GmbH Germany 2017

1 Introduction

Models in building simulation usually combine phenomena
from different domains evolving on very different time
scales, leading to stiff systems. Additionally, the continuous
time submodel representing the physical phenomena often
interacts with digital controllers, opening valves, and other
discrete dynamics leading to hybrid systems. This interaction
implies the presence of discontinuities in the differential
equation systems. Also, the models sometimes contain several
instances of similar components (air conditioning units,
for instance), resulting in large scale systems.

Classic numerical integration methods have problems
in all these cases. First, stiffness enforces the usage of implicit
algorithms since explicit methods must significantly reduce
the integration step in order to satisfy stability requirements
(Hairer and Wanner 1996; Cellier and Kofman 2006). This is
the reason why most simulation tools use DASSL (Petzold
1983) or one of its variants as the default ODE or DAE

solver. Second, the presence of discontinuities requires that
the algorithms detect them and restart the simulation at the
point of their occurrence in order to avoid unacceptable
errors caused by the integration across discontinuous
functions (Cellier and Kofman 2006). Implicit methods and
discontinuity detection algorithms make use of iterative
routines, whose computational cost significantly grows with
the model size. In consequence, the simulation of large stiff
and discontinuous systems is computationally expensive.

A way to reduce these computational costs is given by
the Quantized State Systems (QSS) methods (Kofman and
Junco 2001; Cellier and Kofman 2006), that replace the
time discretization of classic numerical algorithms by the
quantization of the state variables. State quantization implies
that QSS methods work in an asynchronous way, and they
only perform computations when and where changes occur.
In large sparse models with localized changes, this fact
provides significant advantages.

QSS algorithms are also characterized by a very efficient

BUILD SIMUL (2018) 11: 405–418
https://doi.org/10.1007/s12273-017-0400-1

Bergero et al. / Building Simulation / Vol. 11, No. 2

406

handling of discontinuities (Kofman 2004), as they are
detected without performing iterations and their treatment
does not require to re-initialize the simulation. There is
also a family of QSS methods called Linearly Implicit QSS
(LIQSS) (Migoni et al. 2013), that can efficiently simulate
certain stiff systems without performing iterations at all.

Taking into account their advantages in the simulation
of stiff, discontinuous and large scale models, QSS algorithms
appear as promising candidates to integrate large scale sparse
hybrid systems as those appearing in many applications
related to building simulation. In fact, preliminary work has
shown that QSS methods offer enormous benefits in the
simulation of systems with similar features. In particular,
in the simulation of a district cooling system the results
showed that QSS algorithms were more than two orders of
magnitude faster than classic methods (Floros et al. 2014).

Based on the previous remarks, the goal of this paper is
to demonstrate the appropriateness and effectiveness of QSS
integration algorithms for building simulation in presence
of frequent discontinuities, stiffness, and large scale models.
Towards this goal, the use of QSS integration methods in
four case studies and their computational performance are
discussed and compared against classic ODE solvers like
DASSL, CVODE, and IDA, the last two belonging to the
SUNIDALS library (Hindmarsh et al. 2005). The first case
study corresponds to an air conditioning systems composed
of several AC units together with their control, as described
in Perfumo et al. (2012). This model is analyzed and then
extended in order to include the heat capacitance in the
room walls and some fast dynamics in the actuators. Then,
two models of a district cooling systems composed of a
chiller plant operating over a large number of cooling
zones, based on a model taken from Ceriani et al. (2013),
are considered. All these cases exhibit the different simulation
challenges before mentioned (large scale, frequent dis-
continuities, stiffness).

The article is organized as follows: Section 2 introduces
the main concepts used along the article. Then, Section 3
describes the case studies in detail outlining their features
and the challenges they impose to the numerical integration
methods. After that, Section 4 presents the simulation results
and performance comparisons. Finally, Section 5 concludes
the article and proposes different lines for future work.

2 Background

In this section we present the main concepts used along the
article. We first discuss about the use of classic numerical
integration algorithms in building simulation and introduce
the family of quantized state systems methods. Then, we
briefly describe the Modelica language and analyze some
previous and related work.

2.1 Classic numerical integration in building simulation

Building simulation involves dynamical systems usually des-
cribed by Ordinary Differential Equations (ODEs) of the form

() ((),)t t t=x f x (1)

where x(t) is the vector of state variables and ()tx are their
time derivatives.

Classical numerical integration methods (Hairer et al.
1993; Hairer and Wanner 1996; Cellier and Kofman 2006)
discretize the time variable computing the whole state vector
for certain time points tk, using explicit formulas like

1() (())k k kt t t+ = ,x F x (2)

or implicit equations like

1(() ()) 0k k kt t t+ , , =F x x (3)

that require iterations at each step. The time advance is
ruled by a parameter called step size h= tk+1− tk, that is usually
adapted during the simulation in order to fulfill certain
accuracy settings.

Explicit algorithm steps are usually cheaper than those
of implicit algorithms as the later require performing
iterations. However, when the step size h becomes large
with respect to the fastest dynamics of the system, explicit
methods produce unstable numerical results. For that reason,
in stiff systems (i.e., in presence of simultaneous fast and
slow dynamics) implicit methods must be used in order to
be able to increase the step size.

Besides their implicit or explicit nature, classic numerical
algorithms can be classified as one-step methods, where the
value of x(tk) is computed using only the information in tk−1,
and multi-step methods, where the computations use values
from previous steps. One-step methods are usually referred
to as Runge–Kutta (RK) algorithms. The most used and well
known multi-step methods, in turn, are those of Adams-
Bashforth, Adams-Moulton, and Backward Difference
Formulae (BDF).

There are several ODE solvers implementing different
algorithms. Among the most popular and efficient we can
mention the implementation of Dormand-Prince (DOPRI)
(Dormand and Prince 1980), an explicit fifth-order variable
step RK algorithm, and DASSL (Petzold 1982), an implicit
variable step and variable order BDF method. Due to its
robustness and its capability to integrate stiff systems, DASSL
is the default solver in most modeling and simulation tools.

As we mentioned earlier, building simulation introduces
some challenges to classic numerical integration solvers. First,
the models usually contain discontinuities (an opening
window, a person entering a room, an air conditioner
turning on and off, etc.). Since the numerical algorithms

Bergero et al. / Building Simulation / Vol. 11, No. 2

407

cannot integrate across discontinuities without introducing
unacceptable errors, they must detect the occurrence of
those events, go back to the exact time point at which the
event took place, process the discrete changes and restart
the simulation from that point (Cellier and Kofman 2006).
These processes of event detection—also called zero crossing
detection—and simulation restart slow down the simulations,
especially in presence of frequent discontinuities, as the time
elapsed between consecutive events imposes an upper limit
to the step size h. In addition, building models usually
involve components with noticeable time scale separation
(thermal sub-models, for instance, evolve very slowly in
comparison with electrical components). As it was mentioned
above, the simultaneous presence of slow and fast dynamics
is called stiffness and it normally enforces the usage of implicit
integration algorithms, with their additional computational
costs related to the iterations performed to solve the implicit
equations involved.

These issues become more problematic when the models
are large. Regarding discontinuities, the density of events
over time usually grows with the model size, enforcing the
numerical integration methods to take tiny global steps.
For this reason, even in a non-stiff case using explicit solvers,
the computational cost grows at least quadratically with the
model size (Cellier et al. 2013). When it comes to stiffness,
implicit algorithms require to perform iterations at each
step, where each iteration must solve a linear system of
equations of the size of the entire model. Even using efficient
sparse techniques for those operations, the computational
costs grow at least quadratically with the model size, leading
to very slow simulations.

While in most applications it is preferable to use higher
order solvers with step size control, recent results showed
that some performance improvements can be achieved for
the simulation of some building simulation models through
the use of fixed-step low-order explicit numerical integration
methods (Jorissen et al. 2015). Anyway, the usage of these
algorithms requires knowing a correct value for the step size,
that in many situations may be very difficult to estimate.
Additionally, they can introduce unacceptable errors in
presence of discontinuities.

2.2 Quantized state system integration methods

Quantized State System (QSS) methods replace the time
discretization of classic numerical integration algorithms
by the quantization of the state variables.

Given the ODE of Eq. (1), the first order Quantized
State System method (QSS1) (Kofman and Junco 2001)
approximates it by

() (())t t t= ,x f q (4)

Here, q is the quantized state vector. Its entries are
component-wise related with those of the state vector x by
the following hysteretic quantization function:

() if () () Δ
()

() otherwise
j j j j

j
j

x t x t q t Q
q t

q t

-

-

ì | - |³ïï= íïïî
 (5)

where Δ jQ is called quantum and ()jq t- denotes the left
hand limit of qj at time t.

It can be easily seen that qj(t) follows a piecewise
constant trajectory that only changes when the difference
between qj(t) and xj(t) becomes equal to the quantum. After
each change in the quantized variable, it results that qj(t) =
xj(t). Due to the particular form of the trajectories, the solution
of Eq. (4) is straightforward and can be easily translated into
a simple simulation algorithm.

For …1j n= , , , let tj denote the next time at which
() () Δj j jq t x t Q- = . Then, the QSS1 simulation algorithm

works as follows:

The QSS1 method has the following features:
 In the solution, the quantized states qj(t) follow piecewise

constant trajectories.
 The state variables xj(t) follow piecewise linear trajectories.
 The state and quantized variables never differ more than

the quantum Δ jQ . This fact ensures stability and global
error bound properties (Kofman and Junco 2001; Cellier
and Kofman 2006).

 Each step is local to a state variable xj (the one that reaches
the quantum change), and it only involves evaluations of
the state derivatives that explicitly depend on that state.
This fact implies that QSS1 performs intrinsic sparsity
exploitation in large systems.

 If some state variables do not change significantly, they
will not trigger any simulation step or function evaluation.
This feature reinforces the efficient sparsity exploitation.

 The fact that the state variables follow piecewise linear
trajectories simplifies the detection of discontinuities.
Moreover, after a discontinuity is detected, its effects are
not different from those of a normal step (because changes
in qj are discontinuous). Thus, QSS1 is very efficient in
simulating discontinuous systems (Kofman 2004).

Bergero et al. / Building Simulation / Vol. 11, No. 2

408

In spite of these advantages, QSS1 only performs a first
order approximation and good accuracy cannot be obtained
without a significant increment in the number of steps. This
limitation was solved with the introduction of higher order
QSS methods like QSS2 (Kofman 2002) and QSS3 (Kofman
2006).

Another problem is that QSS algorithms are not suitable
to simulate stiff systems, as they introduce spurious
oscillations in the numerical solution that result in additional
simulation steps (Cellier and Kofman 2006). For this reason,
a family of linearly implicit QSS methods (LIQSS) of
order 1 to 3 was also developed (Migoni et al. 2013).
Although the formulation of LIQSS methods is implicit,
their implementations are explicit and do not require per-
forming iterations. LIQSS methods share the advantages of
QSS methods and, additionally, they are able to efficiently
handle stiff systems, provided that the stiffness is due to the
presence of large entries in the main diagonal of the system
Jacobian matrix1.

Consequently, in the simulation of systems that are large,
sparse, discontinuous or exhibit the type of stiffness that is
properly handled by these algorithms, the usage of Quantized
State solvers can offer a better performance than that of
classic discrete time methods.

2.3 Stand-alone QSS solver

The implementation in software of QSS algorithms is more
involved than that of classic numerical integration methods.
The reason is that each QSS step involves a change in a single
variable and only some components of the right hand side
of the ODE must be computed. The first implementations
of these algorithms were based on the fact that the behavior
of the QSS approximation given by Eq. (4) can be easily
described by a discrete event system using the DEVS
formalism (Zeigler et al. 2000). Thus, QSS algorithms were
originally implemented inside DEVS simulation engines.
Unfortunately, DEVS-based implementations of QSS methods
are inefficient as DEVS simulation engines waste a large
amount of the computational load attending the DEVS
simulation mechanism.

Recently, the complete family of QSS methods was
implemented in a stand-alone QSS Solver coded in plain C
language (Fernández and Kofman 2014). This tool simulates
models that can contain discontinuities represented as:

() ()t t= , ,x f x d (6)

where d is a vector of discrete variables that can only change
when a condition

1 When the stiffness obeys to other reasons, LIQSS methods may also
introduce spurious oscillations in the numerical solution.

() 0iZC t, , =x d (7)

for some {1 }i zÎ , , is met. The components ZCi form a
vector of zero-crossing functions ()t, ,ZC x d . When a zero-
crossing condition of Eq. (7) is verified, the state and discrete
variables can change according to the corresponding event
handler:

(() ()) (() ())it t H t t t- -, = , ,x d x d (8)

These models are simulated using QSS methods that
approximate Eq. (6) by

() ()t t= , ,x f q d (9)

where each component qi(t) is a piecewise polynomial
approximation of the corresponding component of the
state xi(t).

The simulation is performed by three modules interacting
at runtime:
(1) The Integrator, that integrates Eq. (9) assuming that

the piecewise polynomial quantized state trajectory q(t)
is known.

(2) The Quantizer, that computes q(t) from x(t) according
to the QSS method in use and their tolerance settings
(there is a different Quantizer for each QSS method).
That way, it provides the polynomial coefficients of
each quantized state qi(t) and computes the next time at
which a new polynomial section starts (i.e., when the
condition () () Δi i iq t x t Q| - |= is met).

(3) The Model, that computes the scalar state derivatives
()i if tx = , ,q d , the zero-crossing functions ()iZC t, ,x d ,

and the corresponding event handlers ()iH t, ,q d . Besides,
it provides the structural information required by the
algorithms.
The structure information of the Model is automatically

extracted at compile time by a Model Generator module.
This module takes a standard model described in a subset
of the Modelica language called μ-Modelica (Bergero et al.
2012) and produces an instance of the Model module as
required by the QSS solver.

The Stand Alone QSS Solver also offers a front-end to
classic numerical solvers like DASSL, DOPRI, and CVODE.
Taking into account that the current implementation of
QSS methods requires that the models are described in
Modelica, we provide below a brief introduction to this
modeling language.

2.4 Modelica and μ-Modelica

Modelica (Mattsson et al. 1998; Fritzson 2015) is an object-
oriented declarative modeling language that allows the
combination of models belonging to different physical and

Bergero et al. / Building Simulation / Vol. 11, No. 2

409

technical domains in a unified way. Elementary Modelica
components are usually described by means of differential-
algebraic equations, with the eventual presence of discon-
tinuities and discrete evolutions. These elementary com-
ponents can be connected to compose more complex models.

Making use of the object-oriented features of the language,
a repository of models from different domains (thermal,
mechanical, electrical, etc.) called Modelica Standard Library
(MSL) was developed. Derived from the MSL, a specific
library for building simulation called Modelica Buildings
Library was also developed and applied to several problems
in the discipline (Wetter and Haugstetter 2006; Wetter
et al. 2014, 2016; Fuchs et al. 2015; Nytsch-Geusen et al.
2013; Baetens et al. 2015).

From a mathematical point of view, Modelica models
are collections of differential algebraic equations (DAEs).
Modelica compilers translate these descriptions into a
programming language2 piece of code that allows to evaluate
the right hand side of an equivalent ODE. The conversion
from DAE to ODE requires reducing the DAE index (in
presence of structural singularities), solving the algebraic
loops (or producing the iterative code that solves them), and
sorting the system of equations.

Several Modelica software tools are available, both
commercial (like Dymola (Brück et al. 2002) and Wolfram
SystemModeler) and open source (like OpenModelica
(Fritzson et al. 2005) and JModelica (Åkesson et al. 2009)).
These tools combine user-friendly modeling environments
with Modelica compilers and different ODE solvers.

There exists also a reduced subset of Modelica language
called μ-Modelica (Bergero et al. 2012), that contains only
the minimal statements and functions that are necessary to
describe plain systems of ODEs with discontinuities. As it
was mentioned earlier, this language is used by the stand-
alone QSS Solver to describe the models. Anyway, models
described in general Modelica language can be also simulated
by this tool making use of automatic translators from
Modelica to μ-Modelica like that of OpenModelica (Bergero
et al. 2012) and ModelicaCC, a new Modelica compiler
optimized for large scale models (Bergero et al. 2015).

The mentioned Modelica to μ-Modelica translators are
in fact Modelica compilers like those described above that
convert the DAEs to ODEs reducing the DAE index, solving
the algebraic loops (or producing the iterative code that
solves them), and sorting the system of equations. Unlike
the regular Modelica compilers, these translators write
μ-Modelica code instead of the C language code. Thus,
complex Modelica models containing algebraic loop or
structural singularities can be simulated using the QSS
methods through these translations.

2 C language is used in most Modelica tools.

2.5 Previous and related work

Some previous work has been done regarding the usage of
QSS methods in the field of building simulation. Preliminary
results reported in Floros et al. (2014) showed the advantages
of using QSS in some problems related to building per-
formance simulation. Anyway, the examples analyzed in that
work used unrealistic parameters for the context of buildings.
Also, the experiments were performed using different simula-
tion tools for QSS and DASSL, leading to unfair comparisons
(DASSL simulations were run with OpenModelica while
QSS simulations were run on the stand alone QSS solver that
produces more efficient simulation code).

QSS simulations of heat transfer in multi-layered walls
were studied by Frances et al. (2014, 2015). The results were
compared against those of EnergyPlus (Crawley et al. 2001)
and found to be in concordance. As these works were limited
to performing an early feasibility study, QSS simulations
were carried on using PowerDEVS (Bergero and Kofman
2011), a DEVS-based implementation of QSS that is not
optimal in terms of efficiency. Anyway, the discontinuity
handling features of QSS allowed the simulation of hybrid
systems including some phenomena that could not be
simulated in EnergyPlus. Motivated by these results, some
work is currently being done in order to include the QSS
methods into EnergyPlus (Wetter et al. 2015).

3 Case studies

In this section, we present four case studies that are then
simulated in the next section. The models exhibit one or
more features that impose difficulties to classic numerical
integration algorithms: stiffness, frequent discontinuities,
and all of them have a parameter that defines the model
size, so they can become of large scale type.

The first two cases correspond to a centralized control
of the total power consumed by a population of air conditioner
(AC) units. Both models contain frequent discontinuities
caused by the AC units turning on and off. In addition, the
second case has more realism including the modeling of a
wall that increases the system size, and an actuator that
introduces stiffness.

The remaining two cases represent a District Cooling
System. Here, the models have a more complex structure
than that of the first cases. In addition, the models are stiff
due to the local cooling controllers and the heat exchangers.
Moreover, one of these models involves frequent dis-
continuities.

3.1 Case study I. Air conditioner population

This model, taken from Perfumo et al. (2012), allows the

Bergero et al. / Building Simulation / Vol. 11, No. 2

410

study of a centralized system that controls the power
consumed by the AC population of a building.

The model considers that each AC unit refrigerates one
room, so that the temperature of the i-th room, θi(t), follows
the equation

a
1() [() ()]i i i ii

i i
t θ t θ R P m tθ C R
=- - + ⋅ ⋅

⋅
 (10)

Here, Ri and Ci are parameters representing the thermal
resistance and capacity of the i-th room, respectively. Pi is
the power of the i-th air conditioner in on state and θa is the
ambient temperature.

The variable mi(t) represents the state of the i-th air
conditioner, where mi(t)=1 is the on state, and mi(t)=0 is the
off state. This variable evolves according to the hysteretic
on–off control law:

r

r

0 if () 0 5 and () 1
() 1 if () 0 5 and () 0

() otherwise

k
i i

k
i i i

i

θ t θ m t
m t θ t θ m t

m t

+

ì £ - . =ïïïï= ³ + . =íïïïïî

 (11)

where r
kθ is the global reference temperature calculated by

the centralized control system.
The power consumption of the entire AC population is

computed as:

1
() ()

N

i i
i

P t m t P
=

= ⋅å

and a centralized digital control system regulates it, so that
it follows a desired power profile Pr(t). This centralized
control system uses a discrete time Proportional Integral
(PI) law to compute the reference temperature r

kθ as:

1

r 0 P r I r
1

[() ()] [() ()]
k

k j j

j
θ θ K P t P t K P t P t

-

=

= + ⋅ - + -å

where KP and KI are the parameters of the PI controller.
In the experiments, the power profile Pr(t) follows a

pulse trajectory that starts at the 50% of the total power,
then it falls to the 40% from t=1000 until t=2000, when it
comes back to its original value. The complete model contains
N AC units with the set of parameters listed in Table 1. The
parameters corresponding to the room dimensions and AC
power have a 25% variation around the reported mean value.

Simulation issues

This model contains N rooms with one AC unit each having
different parameters (heat capacitance, power, etc), so the
temperature in the different rooms evolves at different pace
and the on/off events occur at different time points. That
way, as N increases, the number of on/off events per time

Table 1 Model parameters—AC population example
Parameter Value

Room interior
Room dimension 3 m × 3 m × 3 m
Heat capacitance of air 1.012 kJ/(kg·K)
Mass of air 35 kg
Room heat capacitance 35.4 kJ/K
Initial temperature 22°C

Room walls
Brick conductivity 0.89 W/(m·K)
Brick capacitance 0.840 kJ/(kg·K)
Wall thickness 0.3m
Wall resistance 9.363 × 10−3 m2·K/W
Wall capacitance 1.52 × 106 kJ/K
Initial temperature 26°C

Control
KI 1
KP 1
θ0 20 °C

AC unit
AC power 1 kW

Environment
θa 32 °C

unit also grows. Since the time between consecutive events
impose an upper limit to the step size of classic numerical
algorithms, the number of simulation steps grows with
N while the complexity of evaluating the right hand side of
Eq. (1) also grows. In consequence, we expect that the
computational cost grows quadratically with the model size.

This model is not stiff. Taking N=50, for instance, the
Jacobian matrix eigenvalues are located in the interval
[−0.00275, −0.00198]. Thus, the usage of implicit algorithms
will only increase the computational costs due to the com-
putation of the Jacobian matrix and the iterations on a
system of N equations.

3.2 Case study II: A more realistic room

The second case study adds more realism to the previous
model, including the heat capacitance of the brick walls
and the dynamics of the AC actuator. That way, the i-th
room temperature θi(t) evolves as follows:

[]

w

w w
w a

w w

1 () ()() ()

1 () () ()()

1() () ()

i i
ii

i i

i i i
i

ii i

i i ii

θ t θ tt p tθ C R
θ θ t θ t θ ttθ RC R

t m t P p tp τ

é ù-ê ú= -
ê úë û
é ù- -ê ú= -
ê úë û

= ⋅ -







 (12)

Here, w ()iθ t represents the temperature of the i-th room

Bergero et al. / Building Simulation / Vol. 11, No. 2

411

walls and pi(t) is the cooling power of i-th AC unit. The
parameters w

iC and w
iR are the thermal capacitance and

resistance of the wall, and τ is the time constant of the AC
actuator. The remaining parameters and variables coincide
with those of the previous case and their values are listed in
Table 1.

Simulation issues

This modified model has three times as many state variables
as the previous one, so the evaluation of the right hand side
of the ODE is more expensive. Additionally, the actuator
dynamics imposes a fast dynamics, so the model becomes
stiff. In fact, the Jacobian eigenvalues are located in the
interval [−1000, −0.000047]. On the other hand, the presence
of heat storage at the brick walls attenuates the temperature
changes in the room slowing down the frequency of on–off
events in the AC units. In conclusion, we expect that the
simulation of this model has more computational costs
associated to the size and stiffness, but less discontinuities
than the previous one.

3.3 Case study III: A district cooling system

The following case, adapted from Ceriani et al. (2013),
represents a centralized system used to distribute cooling
power to several rooms (zones) through a water circuit as
shown in Fig. 1.

Fig. 1 (a) District cooling system, and (b) detail of a zone submodel

The model is formed by the following components:
 The Water Chiller that cools the water that is then pumped

to the cooling circuit.
 The Chilled Water Tank consisting of a reservoir connected

to the Water Chiller, from which the water is pumped to
the water circuit.

 The Chilled Water Circuit that forms a circular network
of incompressible fluid, where the water flows from the
Chilled Water Tank, arriving then to the first zone, and
passing through the successive zones until arriving back
to the tank. The circuit is divided in sections, so that the
i-th circuit section exchanges heat with the i-th zone.

 The Zones, that are modeled as rooms that exchange heat
with the outside ambient and with the Heat Exchangers.
They also receive heat from internal sources such as
occupants and office equipment.

 The Heat Exchangers, that exchange heat between each
section of the Chilled Water Circuit and the corresponding
room.

 The Zone Temperature Controllers, that regulate the
opening and closing of each Heat Exchanger valve in order
to control the temperature of the corresponding zone.

 The Chilled Water Temperature Controller, that computes
the Cooling Plant power that is necessary to regulate the
temperature in the water tank at a specified set-point.

The mathematical representation of these components
are described below:

The Water Chiller is simplified in this article, so it delivers
exactly the power C SP ()Q t required by the Chilled Water
Temperature Controller.

The Chilled Water Tank contains water at the tem-
perature TTANK(t), that evolves according to:

0
TANK CW C SP CWTANK() () () ()NC t Q t Q t Q tT = - - (13)

where CTANK is the tank heat capacitance, CW ()NQ t is the heat
flow entering the tank from the last section of the Chilled
Water Circuit and

0
CW TANK W FLOW() ()Q t T t ρ C q= ⋅ ⋅ ⋅ (14)

is the heat flow going from the tank to the first section of
the water circuit. Here, qFLOW is the constant water flow
impulsed by the water pump.

The Chilled Water Circuit dynamics at the i-th section
obeys the equations

1
CW CW CW W EXC CWCW

EXC

CW CW W FLOW

() () () () (()
())

() ()

ii i i i i

i

i i

C t Q t Q t ρ C q t T tT
T t

Q t T t ρ C q

-= - - ⋅ ⋅ ⋅

-

= ⋅ ⋅ ⋅



(15)

where CW
iT is the water temperature at i-th section, CW

iC is

Bergero et al. / Building Simulation / Vol. 11, No. 2

412

its thermal capacity, CW ()iQ t is the heat flowing from the i-th
circuit section to the next one, EXC ()iT t is the temperature
of the water in the i-th Heat Exchangers, and EXC ()iq t is the
controlled water flow entering the heat exchanger. Notice
that the first circuit section receives the heat flow 0

CW ()Q t
coming from the chilled water tank.

The Zones are represented by the following equations:

ZA ZA OA ZAZA
out

ZA ZA EXC
cw

1() () (() ())

1() (() ())

ii i i
i

i i i
i

C t Q t T t T tT R

Q t T t T t
R

=- + ⋅ -

= ⋅ -


 (16)

where ZA ()iT t is the i-th room temperature, ZA
iC is its thermal

capacity, TOA(t) is the external temperature, out
iR is a constant

parameter representing the thermal resistance with the
environment, and cw

iR is the thermal resistance between
the zone and the heat exchanger.

The Heat Exchangers are modeled as:

EXC ZA W EXC CW EXCEXC

EXC c MAX

() () () (() ())
() ()

ii i i i i

i i

C t Q t ρ C q t T t T tT
q t X t q

= + ⋅ ⋅ ⋅ -

= ⋅



(17)

where c ()iX t is the valve opening fraction (computed by the
Zone Temperature Controller) and qMAX is the maximum
water flow through the heat exchanger.

The Chilled Water Temperature Controller is a PI
controller with an anti-windup scheme that computes the
cooling power set point C SP ()Q t that is necessary to regulate
the chilled water tank temperature TTANK(t) around its set
point CW SP ()T t :

()
C,max

C,CW TANK CW SP

I,CW I,CW
, C,CW C SP

P,CW P,CW

C SP [0,] P,CW C,CW C,CW

() () ()

() () ()

() () ()

C CW

Q

e t T t T t
k k

t z t Q tz k k
Q t Φ k e t z t

= -

=- ⋅ + ⋅

= ⋅ +



Here, []()a bΦ , ⋅ is a saturation function:

[,]() [,]a b

a x a
Φ x x x a b

b x b

ì <ïïïï= Îíïïï >ïî

modeling the actuator limits. eC,CW(t) is the error in the
regulated temperature, and zC,CW(t) is the integral state that,
in a non saturated situation, is proportional to the integral
of eC,CW(t). When the controller saturates, this anti-windup
scheme clamps the integrator state to an equilibrium value
instead of experiencing a linear growth with the error.
Finally, kP,CW and kI,CW are the proportional and integral
gains of the PI controller.

The Zone Temperature Controller of the i-th zone is
also a PI controller with anti-windup, that attempts to control
the zone temperature ZA ()iT t around a set-point ZA SP ()T t .
The control variable is the heat exchanger valve opening

c ()iX t , which spans the range [0,1]. The controller is
modeled as:

()

C,Z ZA ZA SP

I,Z I,Z
C,Z C,Z c

P,Z P,Z

c [0 1] P,Z C,Z C,Z

() () ()

() () ()

() () ()

i i

i i i

i i i

e t T t T t
k k

t z t X tz k k
X t Φ k e t z t,

= -

=- ⋅ + ⋅

= ⋅ +



with identical definitions to those of the Chilled Water
Temperature Controller.

Model parameters

Table 2 shows the parameters for this case. In order to obtain
a realistic behavior as the number of zones N changes,
some parameters are proportional to the model size as it is
expressed in the table.

Table 2 Model parameters—district cooling zone

Parameter Value

Water tank and circuit

Water temp. set point (CWSPT) 10 °C

Water density (ρ) 998 kg/m3

Water capacity (CW) 4.18 × 103 J/(kg·°C)

Tank volume (VolTANK) 0.1 × N (m3)

Tank capacity (CTANK) CW ρVolTANK (J/(kg·°C))

Pipe volume (VolPIPE) 0.01 × N (m3)

Water flow (qFLOW) 0.0001 × N (m3/s)

Water chiller and controller

Chiller power (C,maxQ) 3000 × N (W)

Integral gain (I,CWk) 0.5 × N (W/(°C·s))

Proportional gain (P,CWk) 6000 × N (W/°C)

Heat exchanger

Exchanger volume (VolEXC) 0.005 m3

Exchanger capacitance (CEXC) 1.25 × 105 J/(kg·°C)

Maximum flow (qMAX) 0.0001 m3/s

Zone

Temperature set point (TZASP) 23 °C

Zone capacity (CZA) 6092 × 103 J/W

Resistance with outside (Rout) 2.16 × 10−3 °C/W

Resistance with exchanger (Rcw) 3.03 × 10−4 °C/W

Internal gain (p1,p2,p3) 0.2199J/(°C)2, 5.0597J/°C, 84.9168J

Zone thermostat

Integral gain (kI,Z) 5 × 10−4 (°C·s) −1

Proportional gain (kP,Z) 1 (°C) −1

Bergero et al. / Building Simulation / Vol. 11, No. 2

413

Figure 2 plots the simulated trajectories for the ambient,
the first zone and the last zone temperatures. Then, Fig. 3
shows the water temperature at the tank and at the first and
last circuit segments. The simulations correspond to a model
with 50 zones. As expected, the temperatures at first zone
are cooler because it is closer to the chilled water tank.

Simulation issues

This model has a more complex structure than that of the
previous cases. There are four state variables associated
to each zone, and three additional states associated to the
remaining components, completing a total of 4×N+3 states.
The system has also some discontinuities corresponding
to the saturation of the different actuators. However,
discontinuities are not very frequent. The zone controllers
also impose a relatively fast dynamics compared to that of
the global system, so the model is also stiff. Moreover, the
model becomes more stiff as N growths. In fact, taking N=50
zones, the real part of the Jacobian matrix eigenvalues are
located in the interval [−0.935, −5.2×10−6], while taking
N=100 the eigenvalues are spread in the interval [−1.927,
−5.2×10−6].

3.4 Case study IV

This last case is an extension of the previous one, where the

Fig. 2 Simulated trajectories of the environment and zones
temperatures

Fig. 3 Simulated trajectories of the tank and circuit temperatures

model of each zone also considers the internal heat flow
produced by the occupants. The internal heat flow INT ()iQ t
is modeled according to the following non-linear function
of the zone temperature:

2
INT 1 ZA 2 ZA 3 people() (() () ()) ()i i i iQ t p T t p T t p n t= + +

where people
in is the number occupants of the i-th zone. This

model is proposed in CIBSE (2006), where suitable values for
the coefficients p1, p2, and p3 can be found (see Table 2).

With these considerations, Eq. (16) is modified as follows:

ZA ZA OA ZA INTZA
out

1() () (() ()) ()i i i iC t Q t T t T t Q tT R
=- + - +

(18)

The number of occupants people
in (t) is generated by a

simple stochastic model, where the next arrival/departure
time of a person is given by a fixed time (1000 seconds)
plus a uniform random variate between 0 and 1000 seconds.
At each event, a person either enters or leaves the room.
When there are less than 10 people, the probability of entering
the room is 50%. Otherwise, it is 15%.

Although this model does not represent any specific
and realistic pattern to model room occupancy, it serves for
the purpose of generating a number of uncorrelated time
events, whose density in time grows with the number of
zones.

Simulation issues

This case is almost identical to the previous one, but it has
the addition of time events caused by people entering and
leaving the zones. As in the AC population example, the
event density grows linearly with the number of zones which
in turn limits the maximum step size. However, this time,
the additional discontinuities caused by people entering
and leaving the zones are time events instead of state events.
Time events are easier to locate as their time of occurrence
is known in advance, so there is no need of iterating on
zero crossing functions depending on the state variables.

4 Simulation results

In this section we present the simulation results for the case
studies introduced above using different numerical integration
algorithms.

Simulation benchmark

The simulations were performed under the following settings:
 The simulation platform is a desktop computer with an

Intel i7-3770 processor running at 3.40 GHz with 4 GB
RAM under Ubuntu 16.04 operating system.

Bergero et al. / Building Simulation / Vol. 11, No. 2

414

 All the simulations reported were performed using the
QSS Stand Alone Solver (Fernández and Kofman 2014)
as front-end.

 In all cases we compared QSS2, LIQSS2, DOPRI, DASSL,
CVODE, and IDA results under equivalent tolerance
settings: in classic solvers we used absolute and relative
tolerances of abstol=reltol=10−3, while in QSS we used
absolute and relative quanta of ΔQabs=ΔQrel=10−3.

 The implementation of DOPRI is dopri5.c, described
in Hairer et al. (1993), with the addition of a zero crossing
detection routine. DASSL results correspond to the
code ddaskr.f, while CVODE and IDA are part of the
SUNDIALS package (Hindmarsh et al. 2005). SUNDIALS
solvers are always invoked making use of a sparse
symbolical Jacobian evaluation.

 In all cases, we performed simulations for different values
of the parameter N that represents the model size.

 We did not observe variability in the CPU time taken by
repeating experiments. In consequence, we did not
average multiple results.

 Simulation errors were computed by comparing the results
against a reference trajectory obtained using CVODE with
a tight tolerance (1×10−6), using the formula:

sim ref 2 ref 2

2
1

([] []) ([])err
P

i

y i y i y i
P=

- /
=å (19)

 where P=5000 is the number of equidistant output points.
 Although some of the solvers can run on parallel exploiting

the multi-core architecture, all the experiments were
realized using a single core.

The reported results can be reproduced using the
QSS Stand Alone Solver (https://sourceforge.net/projects/
qssengine/). The models are included in a Modelica package
that can be downloaded from http://www.fceia.unr.edu.ar/
~fbergero/Examples.mo.

4.1 Case study I

The model was simulated varying N from 50 to 1000 AC
units, using a final time tf=3600 in all cases. The CPU time
taken by each experiment is depicted in Fig. 4, while the
errors are shown in Fig. 5.

Result analysis

Both QSS algorithms (LIQSS2 and QSS) outperform all
classic solvers in all cases. What is more important, the
difference becomes larger as the number of AC units grows.
When the number of AC units is large (greater than 400)
the CPU time of QSS algorithms shows a linear growth with
the number of AC units, while the CPU times of DOPRI,
CVODE and IDA exhibit a near quadratic growth and
DASSL is almost cubic.

Fig. 4 CPU time vs. number of AC units for different solvers:
Case study I

Fig. 5 Error vs. number of AC units for different solvers: Case
study I

The approximately linear complexity of QSS was already
known for large problems involving loosely coupled com-
ponents including discontinuities (Grinblat et al. 2012).
This is due to the fact that these algorithms do not need to
reinitialize the whole simulation after the occurrence of a
discontinuity.

Classic algorithms, in turn, perform steps at the
discontinuity points: every one second (when the discrete
time controller is updated) and whenever any AC unit
switches on or switches off. Consequently, when the number
of AC units increases, the number of switching events
increases and the steps become shorter. Additionally, the
evaluation of the right hand side of the ODE becomes more
expensive as the model grows. Thus, when the number of
AC units is large (so the number of switching events is much
larger than those of the discrete time controller), the number
of steps taken by the algorithm grows almost linearly with
N. As the cost of evaluating the right hand side of the ODE is
also linear with N, the CPU time grows quadratically with N.

Implicit algorithms have additional costs related to the
evaluation of the Jacobian matrix and the Newton iterations.
This is why DASSL CPU time is almost cubic. Implicit
SUNDIAL solvers (CVODE and IDA) face the same issue

Bergero et al. / Building Simulation / Vol. 11, No. 2

415

but they evaluate the Jacobian matrix using a sparse form
and they perform the iterations exploiting that representation
adding only a linear cost to the computation of each
simulation step. Thus, these algorithms are more expensive
than DOPRI but they scale in the same way.

The fact that the model is not stiff implies that QSS2
and LIQSS2 have almost identical CPU times. The lack of
stiffness also implies that DOPRI is much faster than implicit
algorithms, as the step size is limited by the occurrence of
events instead of being limited by stability requirements.

Regarding the errors, all the algorithms show very similar
figures. A noticeable feature is that the error becomes
smaller as the number of AC units increases. The reason is
that the simulation steps become smaller as N increases,
reducing the simulation error.

4.2 Case study II

This model was run under the same conditions of the previous
one. The CPU time taken by each experiment is depicted in
Fig. 6, while the errors are shown in Fig. 7.

Result analysis

This time, LIQSS2 is significantly faster than any other

Fig. 6 CPU time vs. number of AC units for different solvers:
Case study II

Fig. 7 Error vs. number of AC units for different solvers: Case
study II

solver and the CPU time grows linearly with the number of
AC units. Due to the stiffness introduced by the actuator
dynamics, QSS2 becomes almost 1000 times slower than
LIQSS2.

Provided that N is not very large, CVODE solver shows
the best performance among classic solvers. Although their
simulation steps are more expensive than those of DOPRI,
it does not have stability limitations and it can perform
larger steps that are only limited by the occurrence of
discontinuities. DASSL, in turn, also performs large steps
but it is not optimized for sparse systems and the cost of
each step is significantly larger.

As N increases, DOPRI becomes faster than CVODE.
The reason is that DOPRI step size is limited by stability
constraints (it is smaller than the time between consecutive
events). Thus, the step size in DOPRI is almost constant
and the CPU time only grows linearly with N. If N becomes
even larger so that the time between consecutive events
becomes smaller than the step size that ensures stability,
then DOPRI should also exhibit quadratic growth.

Regarding errors, this time those of QSS are larger than
those of classic algorithms and they do not fall as N grows.
Anyway, they have the order of the prescribed tolerance.

4.3 Case study III

The District Cooling model was simulated varying the
number of zones N from 50 to 500, until a final time
tf =360000 (i.e., 4 days and 4 hours). In this case, in order to
obtain qualitatively better results, the relative and absolute
tolerance of the classic solvers was set as abstol=reltol=10−4,
while in QSS an absolute and relative quanta of ΔQabs=
ΔQrel=10−4 was selected. The CPU times taken by the different
experiments are depicted in Fig. 8, while the errors are
shown in Fig. 9.

Fig. 8 CPU time vs. number of zones for different solvers: Case
study III

Bergero et al. / Building Simulation / Vol. 11, No. 2

416

Fig. 9 Error vs. number of zones for different solvers: Case study III

Result analysis

The results are similar to those of the last example. However,
when N is small, DOPRI’s performance is now closer to that
of LIQSS2. This is mainly due to the fact that the model is
not as stiff as the previous one and DOPRI can simulate it
using reasonable large step sizes. However, when N grows
the model becomes more stiff and CVODE results faster
than DOPRI (but slower than LIQSS2).

This time, the model does not contain frequent
discontinuities with an occurrence rate that grows with N.
Thus, classic solvers do not exhibit the quadratic cost of the
previous cases. Taking into account the absence of frequent
events, the main advantage of LIQSS2 in this case is the
efficient treatment of stiffness.

Regarding the errors, they are similar to those of the
previous example. LIQSS2 errors are larger than those of
the other models, but they are anyway bounded within the
prescribed tolerance.

4.4 Case study IV

This last case was simulated under identical settings than
the previous one. The CPU times taken by the different
experiments are depicted in Fig. 10, while the errors are
shown in Fig. 11.

In this case, the presence of frequent discontinuities (that
are more frequent as the number of zones grows) reduces
the performance of classic solvers, that exhibit back near
quadratic growths with N. The CPU time of QSS solvers,
however, is not affected by these events. That way, the
advantages of LIQSS2 are more noticeable than in the
previous example.

Errors are also within the prescribed tolerance, but it is
now DOPRI the solver with the larger errors. These errors
are mainly due to some inaccuracy related to the time event
location.

Fig. 10 CPU time vs. number of zones for different solvers: Case
study IV

Fig. 11 Error vs. number of zones for different solvers: Case study IV

5 Conclusions and future work

This work studied the performance of QSS numerical
integration methods in the field of building performance
simulation, comparing it with that of classic solvers like
DOPRI, DASSL and CVODE on different case studies.
These case studies had some features that are common in
building simulations and that impose some challenges to
classic solvers: stiffness, frequent discontinuities and a large
number of weakly connected components. In these cases,
the results obtained suggest that QSS methods can be a
good alternative to classic solvers. Particularly, the second
order accurate LIQSS2 algorithm outperforms all classic
numerical integration methods from one to three orders of
magnitude in terms of simulation time, while still obtaining
accurate results according to the prescribed error tolerance.
Taking into account that building simulated trajectories
can span from hours (like in the examples analyzed here) to
years, the advantages observed projected on longer simulation
runs may imply that a simulation with QSS takes a few
minutes while that of the fastest classic solver takes several
hours.

Bergero et al. / Building Simulation / Vol. 11, No. 2

417

These results can be explained by three reasons: First,
QSS methods are more efficient to handle discontinuities,
as they only need to perform a localized re-initialization
after their occurrence. Secondly, QSS methods also exploit
localized activity by performing calculations only where
significant changes occur, which is a key feature in large
weakly connected systems like those presented in this article.
Finally, LIQSS2 allows to simulate some stiff models in an
explicit way without adding computational costs.

The last remark shows an additional advantage of
LIQSS2. As the computational costs of their steps are not
different from those of QSS2, it can be used as a default QSS
solver even for non stiff cases, as it can be seen in Fig. 4.
In classic solvers, however, implicit algorithms like DASSL
have a computational cost per step much larger than that
of explicit solvers like DOPRI. Thus, using DASSL as the
default algorithm is safe but may be inefficient in non stiff
or mildly stiff models.

Having said that, we do not believe that current QSS
methods can actually replace classic solvers like DASSL (or
their variants) in general building simulations. We already
know that QSS algorithms are inefficient in presence of large
non-sparse models since in those models it is convenient
to advance the entire state vector in a single step rather
than updating individual components (updating individual
components is only better in presence of localized activity).
Also, LIQSS algorithms are only efficient in presence of
certain types of stiff structures, in particular, when the
stiffness is due to the presence of large terms at the main
diagonal of the Jacobian matrix (Migoni et al. 2015). Thus,
there are several cases in which classic solvers like DASSL
or DOPRI offer a better performance than QSS algorithms.

Regarding future work, it is very important to establish
more clearly when it is convenient to use QSS algorithms
and when it is better to use classic solvers. For that goal, the
analysis performed in this article should be extended to a
wider set of building applications. A first step in this
direction would be to test QSS methods in models from the
Modelica Buildings Library (Wetter and Haugstetter 2006).

Another important issue is that of facilitating the usage
of QSS algorithms to the building simulation community.
Current implementations of the algorithms are now limited
to the Stand Alone QSS solver, which require that the models
are defined in the μ-Modelica sub-language. Although there
exist some tools that automatically translate Modelica models
into μ-Modelica, they are not robust enough to be utilized
in a transparent way by final users. Also, we know that
Modelica is not the most used modeling language for building
simulation. Thus, improving the existing Modelica translation
tools and extending them to other modeling languages is
an important task to effectively allow the usage of QSS
algorithms by the community.

Finally, in spite of the advantages shown by QSS
algorithms, several applications in building performance
require that the simulations are run for final times corres-
ponding to several days, months and even years. Thus, in
spite of the advantages shown by QSS algorithms, the
simulation speed they achieve may be insufficient to obtain
results in reasonable CPU times. In those cases, some
parallelization strategies for QSS algorithms as those recently
reported by Fernández et al. (2017) could be explored in
the context of building applications.

References

Åkesson J, Gäfvert M, Tummescheit H (2009). Modelica—An open
source platform for optimization of Modelica models. In:
Proceedings of the 6th Vienna International Conference on
Mathematical Modelling.

Baetens R, De Coninck R, Jorissen F, Picard D, Helsen L, Saelens D
(2015). OpenIDEAS—An open framework for integrated district
energy assessments. In: Proceedings of the 14th International
IBPSA Building Simulation Conference, Hyderabad, India, pp.
347–354.

Bergero F, Kofman E (2011). PowerDEVS: A tool for hybrid system
modeling and real-time simulation. Simulation, 87: 113–132.

Bergero F, Floros X, Fernández J, Kofman E, Cellier FE (2012).
Simulating Modelica models with a stand-alone quantized state
systems solver. In: Proceedings of the 9th International Modelica
Conference, Munich, Germany, pp. 237–246.

Bergero F, Botta M, Campostrini E, Kofman E (2015). Efficient
compilation of large scale Modelica models. In: Proceedings of
the 11th International Modelica Conference, Versaille, France,
pp. 449–458.

Brück D, Elmqvist H, Mattsson SE, Olsson H (2002). Dymola for
multi-engineering modeling and simulation. In: Proceedings of
the 2nd Modelica Conference, Oberpfaffenhofen, Germany.

Cellier F, Floros XF, Kofman E (2013). The complexity crisis: Using
modeling and simulation for system level analysis and design. In:
Proceedings of the 3rd International Conference on Simulation
and and Modeling Methodologies, Technologies and Applications
(SimulTech), Reykjavik, Iceland.

Cellier F, Kofman E (2006). Continuous System Simulation. New York:
Springer.

Ceriani NM, Vignali R, Piroddi L, Prandini M (2013). An approximate
dynamic programming approach to the energy management of a
building cooling system. In: Proceedings of European Control
Conference, Zurich, Switzerland, pp. 2026–2031.

CIBSE (2006). CIBSE Guide A: Environmental Design. Norwich, UK:
CIBSE Publications.

Crawley DB, Lawrie LK, Winkelmann FC, Buhl WF, Huang YJ, et al.
(2001). EnergyPlus: Creating a new-generation building energy
simulation program. Energy and Buildings, 33: 319–331.

Dormand JR, Prince PJ (1980). A family of embedded Runge-Kutta
formulae. Journal of Computational and Applied Mathematics, 6:
19–26.

Bergero et al. / Building Simulation / Vol. 11, No. 2

418

Fernández J, Kofman E (2014). A stand-alone quantized state system
solver for continuous system simulation. Simulation, 90: 782–799.

Fernández J, Kofman E, Bergero F (2017). A parallel Quantized State
System Solver for ODEs. Journal of Parallel and Distributed
Computing, 106: 14–30.

Floros X, Bergero F, Ceriani N, Casella F, Kofman E, Cellier FE (2014).
Simulation of smart-grid models using quantization-based
integration methods. In: Proceedings of the 10th International
Modelica Conference, Lund, Sweden, pp. 787–797.

Frances VMS, Escriva EJS, Ojer JMP (2014). Discrete event heat transfer
simulation of a room. International Journal of Thermal Sciences,
75: 105–115.

Frances VMS, Escriva EJS, Ojer JMP (2015). Discrete event heat transfer
simulation of a room using a Quantized State System of order two,
QSS2 integrator. International Journal of Thermal Sciences, 97:
82–93.

Fritzson P (2015). Principles of Object-Oriented Modeling and
Simulation with Modelica 3.3: A Cyber-Physical Approach, 2nd
edn. Piscataway, NJ, USA: Wiley-IEEE Press.

Fritzson P, Aronsson P, Lundvall H, Nystrom K, Pop A, Saldamli L,
Broman D (2005). The OpenModelica modeling, simulation, and
development environment. In: Proceedings of the 46th Conference
on Simulation and Modeling (SIMS’05), Trondheim, Norway,
pp. 83–90.

Fuchs M, Constantin A, Lauster M, Remmen P, Streblow R, Müller E
(2015). Structuring the building performance Modelica model
library AixLib for open collaborative development. In: Proceedings
of the 14th International IBPSA Building Simulation Conference,
Hyderabad, India, pp. 331–338.

Grinblat GL, Ahumada H, Kofman E (2012). Quantized state simulation
of spiking neural networks. Simulation, 88: 299–313.

Hairer E, Nørsett S, Wanner G (1993). Solving Ordinary Differential
Equations I. Nostiff Problems, 2nd edn. Berlin: Springer.

Hairer E, Wanner G (1996). Solving Ordinary Differential Equations
II. Stiff and Differential-Algebraic Problems. Berlin: Springer.

Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker
DE, Woodward CS (2005). SUNDIALS: Suite of nonlinear and
differential/algebraic equation solvers. ACM Transactions on
Mathematical Software, 31: 363–396.

Jorissen F, Helsen L, Wetter M (2015). Simulation speed analysis and
improvements of Modelica models for building energy simulation.
In: Proceedings of the 11th International Modelica Conference,
Versaille, France, pp. 59–69.

Kofman E (2002). A second-order approximation for DEVS simulation
of continuous systems. Simulation, 78: 76–89.

Kofman E (2004). Discrete event simulation of hybrid systems. SIAM
Journal on Scientific Computing, 25: 1771–1797.

Kofman E (2006). A third order discrete event simulation method for
continuous system simulation. Latin American Applied Research,
36: 101–108.

Kofman E, Junco S (2001). Quantized-state systems: A DEVS approach
for continuous system simulation. Transactions of the Society for
Computer Simulation International, 18: 123–132.

Mattsson SE, Elmqvist H, Otter M (1998). Physical system modeling
with Modelica. Control Engineering Practice, 6: 501–510.

Migoni G, Kofman E, Bergero F, Fernández J (2015). Quantization-
based simulation of switched mode power supplies. Simulation,
91: 320–336.

Migoni G, Bortolotto M, Kofman E, Cellier FE (2013). Linearly implicit
quantization-based integration methods for stiff ordinary differential
equations. Simulation Modelling Practice and Theory, 35: 118–136.

Nytsch-Geusen C, Huber J, Ljubijankic M, Rädler J (2013). Modelica
BuildingSystems—eine Modellbibliothek zur Simulation komplexer
energietechnischer Gebäudesysteme. Bauphysik, 35: 21–29.

Perfumo C, Kofman E, Braslavsky JH, Ward JK (2012). Load
management: Model-based control of aggregate power for
populations of thermostatically controlled loads. Energy Conversion
and Management, 55: 36–48.

Petzold LR (1982). A description of DASSL: A differential/algebraic
system solver. In: Proceedings of Scientific computing, Montreal,
Canada, pp. 65–68.

Wetter M, Haugstetter C (2006). Modelica versus TRNSYS—A com-
parison between an equation-based and a procedural modeling
language for building energy simulation. In: Proceedings of the
2nd National IBPSA-USA Conference, Cambridge, MA, USA.

Wetter M, Zuo W, Nouidui TS, Pang X (2014). Modelica Buildings
library. Journal of Building Performance Simulation, 7: 253–270.

Wetter M, Nouidui TS, Lorenzetti D, Lee EA, Roth A (2015).
Prototyping the next generation EnergyPlus simulation engine.
In: Proceedings of the 14th International IBPSA Building
Simulation Conference, Hyderabad, India.

Wetter M, Bonvini M, Nouidui TS (2016). Equation-based languages—A
new paradigm for building energy modeling, simulation and
optimization. Energy and Buildings, 117: 290–300.

Zeigler B, Praehofer H, Kim TG (2000). Theory of Modeling and
Simulation, 2nd edn. San Diego, USA: Academic Press.

