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REGULAR OPTIMAL CONTROL PROBLEMS WITH

QUADRATIC FINAL PENALTIES

VICENTE COSTANZA†,‡

1. Introduction

Hamilton’s canonical equations (HCEs) have played a central role in Mechanics
after (i) their equivalence with the principle of least action, and (ii) the variational
calculus leading to the Euler-Lagrange equation, were established and applied (see
[1]). Also, since the foundational work of Pontryagin [22], HCEs have been at
the core of modern optimal control theory. When the problem concerning an
n-dimensional control system and an additive cost objective is regular [19], i.e.
when the Hamiltonian H(t, x, λ, u) of the problem is smooth enough and can be
uniquely optimized with respect to u at a control value u0(t, x, λ) (depending on
the remaining variables), then HCEs appear as a set of 2n ordinary differential
equations whose solutions are optimal state-costate time trajectories.

Concerning the infinite-horizon bilinear-quadratic regulator and change of set-
point servo problems, there exists a recent attempt to find the missing initial con-
dition for the costate variable, based on a state-dependent (generalized) algebraic
Riccati equation (GARE) with solution P∞(x), which allows to integrate the HCEs
on-line with the underlying control process [9]. The same approach in a finite
time-domain leads to a first-order partial differential equation (PDE) called ‘Gen-

eralized Differential Riccati Equation’ (GDRE) (see [3], [6], [11]) for a time-state
dependent matrix P (t, x), whose solution allows to calculate the missing initial
costate λ(0) = 2P (0, x0)x0 and exhibits, for S = 0, a limiting behavior (see [19])
similar to that of linear systems with the same cost, i.e.

lim
T→∞

P (0, x) = P∞(x) , (1)

where T is the duration of each optimization process.
In the general nonlinear finite-horizon optimization set-up, allowing for a free

final state, the cost penalty K(x) imposed on the final deviation generates a two-
point boundary-value situation. This is often a rather difficult numerical problem
to solve. However, in the linear-quadratic regulator (LQR) case there exist well-
known methods (see for instance [4], [24]) to transform the boundary-value into a
final-value problem, related to the differential Riccati equation (DRE). Motivated
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by the role of Riccati equations, nonlinear situations have been treated for general
final penalties by Byrnes [5], who posed a quasilinear first-order vector PDE (also
labelled generalized Riccati equation by the author) for the optimal costate “in
feedback form”, i.e. as a function of the ‘event’ (t, x), but with boundary condi-
tions on both t and x. Its usefulness is still under discussion, since a discretization
of the state-space is unavoidable for numerical treatment. The same question in
the one-dimensional case and for a quadratic K(x) (in this paper it will always
be K(x) = x′Sx) has been extended to a whole (T, S)-family of problems (see [7],
[12]), generating two first-order, quasilinear, uncoupled PDEs with classical ini-
tial conditions, where the dependent variables are the missing boundary conditions
x(T ) and λ(0) of the HCEs. This approach has been completely disjoint from
Riccati equations, but more in the line of the early invariant-imbedding ideas in-
troduced by Bellman [2], [23]. Analogous ideas were retaken and reformulated for
the multidimensional case, in the light of symplectic properties inherent to Hamil-
tonian dynamics. The resulting matrix and vector PDEs are under review [8] and
will be just summarized here, together with still unpublished feedback expressions
for the optimal control.

When the H-minimal control u0 is not explicitly known, then new but similar
PDEs appear, involving also the final value u(T ) of the optimal control. The
discussion of these equations would exceed the scope of this paper (see however
[13], [14]).

After the relevant mathematical objects associated with the finite-horizon con-
trol problem are presented in Section 2, then the immersion into a family of (T, S)-
processes is worked out in Section 3. Afterwards, in Section 4 the main PDEs for
the missing boundary conditions are substantiated. A brief discussion on the po-
tentiality for feedback control follows in Section 5, applications are then developed
in Section 6, and finally the conclusions and perspectives are summarized.

2. The Hamiltonian formalism

In what follows only initialized, autonomous (for simplicity) control systems of
the form

ẋ = f(x, u), x(0) = x0 (2)

will be considered. The state x moves into some region O of R
n, and the admissible

control strategies are the real, piecewise continuous functions of the time-domain T
into some open subset U of R

m. The right-hand side f : O × U → R
n is assumed

to be smooth enough as to guarantee existence and uniqueness of solutions to the
dynamics’ equation (2) in the range of interest. The (finite-horizon) quadratic
final penalty optimization context will imply here that a cost functional like

J (T, 0, x0, u(·)) =

T
∫

0

L(x(τ), u(τ))dτ + x′(T )Sx(T ) (3)

has to be minimized on the set of admissible control trajectories, where T =
[0, T ] , T < ∞, L is a nonnegative smooth function called ‘the Lagrangian’ of the

Rev. Un. Mat. Argentina, Vol 49-1
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problem, and S is a nonnegative-definite symmetric matrix called ‘the final penalty

coefficient’. The ‘value function’ V can always be defined for such a problem,
namely

V(t, x) , inf
u(·)

J (T, t, x, u(·)), t ∈ [0, T ] (4)

and, if the problem has a unique solution, then this solution is called ‘the optimal

control strategy’ u∗,

u∗(·) , arg inf
u(·)

J (T, t, x, u(·)) (5)

which in turn will generate ‘the optimal state trajectory’

x∗(·) , solution to (2) with u(·) = u∗(·) . (6)

The Hamiltonian of such a problem is defined as usual,

H(x, λ, u) , L(x, u) + λ′f(x, u) , (7)

where λ is called the ‘costate’, λ ∈ R
n, (x, λ) ranging in 2n-dimensional ‘phase-

space’. Since H is assumed regular, then there exists a unique H-optimal control

u0(x, λ) , arg min
u

H(x, λ, u) . (8)

‘Explicitly regular’ Hamiltonian means that the function u0(x, λ) is known (not
only its existence but also its explicit form) and that it is sufficiently smooth on
its variables. The control Hamiltonian,

H0(x, λ) , H(x, λ, u0(x, λ)) , (9)

gives rise to the HCEs (see [22] for general problems; [24], page 406 for the free
final state case)

ẋ =

(

∂H0

∂λ

)′

, F(x, λ) ; x(0) = x0 , (10)

λ̇ = −

(

∂H0

∂x

)′

, −G(x, λ) ; λ(T ) = 2Sx(T ) , (11)

that is a 2n-dimensional ODE for a (Hamiltonian) vector field X ,

(

ẋ

λ̇

)

=

(

F(x, λ)
−G(x, λ)

)

, X (x, λ) . (12)

Solutions to Eqns. (10, 11) result, under the hypotheses made, the optimal
state and costate trajectories (denoted x∗(t) and λ∗(t) respectively), which are
also related through the value-function by

λ∗(t) =

(

∂V

∂x
(t, x∗(t))

)

′

. (13)

Rev. Un. Mat. Argentina, Vol 49-1



46 VICENTE COSTANZA

It is useful to remind also that the control Hamiltonian is constant along the optimal
trajectories, since

d

dt
H0(x∗(t), λ∗(t)) =

(

∂H0

∂x

)′

· F +

(

∂H0

∂λ

)′

· [−G] = 0 . (14)

3. Imbedding the problem into a (T, S)-family

The following notation for the missing boundary conditions will be used in this
Section

ρ(T, S) , x∗(T ) (15)

σ(T, S) , λ∗(0) (16)

(the notation xT,S(T ) = ρ(T, S) and λT,S(0) = σ(T, S) may eventually emphasize
that the quantities refer to a particular (T, S)-problem)

By assuming that the Hamiltonian vector field is at least C1, then the existence
of a flow

φ : R ×Ox ×Oλ → R
n × R

n , (17)

is guaranteed, where Ox,Oλ are appropriate regions of R
n. The flow verifies

D1φ(t, x, λ) =

(

F(φ(t, x, λ))
−G(φ(t, x, λ))

)

= X (φ(t, x, λ)) , (18)

φ(0, x, λ) =

(

x

λ

)

, ∀

(

x

λ

)

∈ Ox ×Oλ , (19)

where D1 is preferred to the usual ∂
∂t

, to avoid confusions.
By calling φt to the t-advance transformations associated with the flow, the

following identities become clear
(

ρ

2Sρ

)

= φT (x0, σ) = φ(T, x0, σ) =

(

φ1(T, x0, σ)
φ2(T, x0, σ)

)

, (20)

where φ1, φ2 denote the ‘components’ of the flow over the state and costate sub-
spaces, respectively. The first component of Eq. (18) reads

D1φ1(T, x0, σ(T, S)) = F(φ(T, x0, σ(T, S))) =

= F(φ1(T, x0, σ(T, S)), φ2(T, x0, σ(T, S))) = F(ρ(T, S), 2Sρ(T, S)) , F (ρ, S) ,

(21)

and similarly for the second component, in brief

G(ρ, S) , G(ρ, 2Sρ) , (22)

D1φ2 = −G . (23)

The (phase-space) derivative of the T -advance function will be needed in the
sequel, so a special name is given to it and to its partitions

V , DφT (x0, σ) =

(

V1 V2

V3 V4

)

=

(

φ1x
φ1λ

φ2x
φ2λ

)

, (24)
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where φ1x
= ∂φ1

∂x
, and so on. Existence and uniqueness of solutions imply that the

inverse of V exists and verifies

U , V −1 = Dφ−T (ρ, 2Sρ) . (25)

4. The main PDEs for missing boundary conditions

Hamiltonian vector fields have flows with the following important properties (see
[18], page 378; [20], page 220)

U ′

1U4 − U ′

3U2 = I = U ′

4U1 − U ′

2U3 , (26)

U ′

1U3 − U ′

3U1 = 0 = U ′

2U4 − U ′

4U2 , (27)

where the following notation is adopted for submatrices: U ′

i , (Ui)
′
.

Since the same is true for V, its inverse can be calculated in terms of the sub-
matrices Vi, namely

V −1 = U =

(

U1 U2

U3 U4

)

=

(

V ′

4 −V ′

2

−V ′

3 V ′

1

)

. (28)

Now by deriving the first component of Eq. (20) with respect to T,

D1ρ(T, S) = D1φ1(T, x0, σ(T, S)) + D3φ1(T, x0, σ(T, S))D1σ(T, S)) , (29)

which will be written (with φ1λ
≡ ∂φ1

∂λ
≡ D3φ1) simply as

ρT = F + φ1λ
σT ; (30)

and similarly, for the second component,

2SρT = −G + φ2λ
σT . (31)

The following operations over Eqns. (30, 31) use the symplectic properties of
the vector field

V ′

4(ρT − F ) = V ′

4V2σT = V ′

2V4σT = V ′

2(2SρT + G) . (32)

By repeating the procedure for the S-derivatives, analogous equations are ob-
tained, namely

ρS = φ1λ
σS = V2σS , (33)

2(ρ + SρS) = φ2λ
σS = V4σS , (34)

and from their combination,

V ′

4ρS = V ′

4V2σS = V ′

2V4σS = V ′

2 (2ρ + 2SρS) . (35)

Now, by using V ′ =

(

V ′

1 V ′

3

V ′

2 V ′

4

)

and properties in Eqns. (26, 27), together

with results in Eqns. (32, 35), then a condensed form for previous identities is
obtained
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V ′

(

2SρT + G 2ρ + 2SρS

F − ρT −ρS

)

=

(

σT σS

0 0

)

, (36)

which means that there really are only two independent first-order vector PDEs
for ρ, σ, namely

V ′

1(2SρT + G) + V ′

3(F − ρT ) = σT , (37)

V ′

1(2ρ + 2SρS) − V ′

3ρS = σS . (38)

Notice that only V1 and V3 are involved, although a pair of equivalent PDEs can
be obtained involving V2 and V4. In the one-dimensional case these equations can
be uncoupled, obtaining (see [7])

ρρT − (SF +
G

2
)ρS = ρF , (39)

ρσT − (SF +
G

2
)σS = 0 , (40)

but for n > 1 a more involved treatment is needed, as will be shown below.
For an n-dimensional state space it will be convenient to assign a name to the

combined variable v ,

(

x

λ

)

. Eq. (18) can be written

D1φ(t, v) = X (φ(t, v)) , (41)

and by taking derivatives on both members with respect to v, i.e. D2 = ∂
∂v

,

and then interchanging the order of derivation, the ‘variational equation’ (see for
instance [16], page 299) is obtained, namely

D1[D2φ(t, v)] = DX (φ(t, v)) · D2φ(t, v) , (42)

or, by abusing notation (V (t) , Dφt , the symbol V is reserved for V (T ); A(t) ,

DX ◦ φt)

V̇ (t) = A(t)V (t) , (43)

with the initial condition

V (0) = I . (44)

Actually, this means that V = Φ(T, 0), the fundamental solution of (43), which
verifies (see [24], page 488)

∂Φ(T, 0)

∂T
= A(T )Φ(T, 0) , (45)

i.e. the following identity is established

VT (x0, σ) = DX (ρ, 2Sρ) · V (x0, σ) , (46)

or, in short, reserving the symbol A for A(T ),

VT = AV . (47)

Rev. Un. Mat. Argentina, Vol 49-1



REGULAR OPTIMAL CONTROL PROBLEMS 49

Now, inspired in the treatment of the LQR in Hamiltonian form (see [4], [24]),
two auxiliary matrices will be defined

(

α

β

)

, U

(

I

2S

)

=

(

V ′

4 − 2V ′

2S

−V ′

3 + 2V ′

1S

)

, (48)

and deriving them with respect to T, S and using Eqns. (28, 47, 48),
(

αT

βT

)

=

(

V ′

2A
′

3 + V ′

4A
′

4 − 2 (V ′

2A
′

1 + V ′

4A
′

2)S

− (V ′

1A
′

3 + V ′

3A
′

4) + 2 (V ′

1A
′

1 + V ′

3A
′

2)S

)

, (49)

(

αS

βS

)

=

(

−2V ′

2

2V ′

1

)

, (50)

then the following identities are obtained

V ′

1 =
1

2
βS , V ′

2 = −
1

2
αS , V ′

3 = βSS − β , V ′

4 = α − αSS , (51)

(

αT

βT

)

=

(

αSM− αN
βSM− βN

)

, (52)

where the new matrices M,N take the form

M ,
1

2
(2A′

1S −A′

3) + S(2A′

2S −A′

4) , (53)

N , 2A′

2S −A′

4 ⇒ M =
1

2
(2A′

1S −A′

3) + SN . (54)

Since for a process of zero duration, φT = φ0 = id, then in such case V = DφT =
I = U , and therefore the main matrix PDEs in Eq. (52) are subject to the initial
conditions

α(0, S) = I , β(0, S) = 2S . (55)

Now, Eqns. (53, 54) still include the unknown final state ρ inside the A′

is so the
(matrix) PDEs in Eq. (52) can not be solved alone. But, having found expressions
for the partitions of V in terms of the auxiliary matrices α, β and their derivatives,
(vector) Eqns. (37, 38) turn into

(

σT

σS

)

=

(

βS(SF + G
2 ) − β(F − ρT )

βSρ + βρS

)

, (56)

which become solvable, at least in principle, when coupled to the matrix PDEs for
α, β, and subject to initial conditions

ρ(0, S) = x0 , (57)

σ(0, S) = 2Sx0 . (58)

In short, the problem requires to solve in parallel two matrix first-order PDEs for
(α, β) , and another two vector first-order PDEs for (ρ, σ), all meeting appropriate
initial conditions. If instead of V1, V3 the remaining submatrices V2, V4 were chosen,
then Eqns. (32, 35) take also a condensed form, namely
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(

0

0

)

=

(

αS(SF + G
2 ) − α(F − ρT )

αSρ + αρS

)

, (59)

but σ can not be directly recuperated from them.
Concerning the existence and uniqueness of solutions to the coupled system of

Eqns. (52, 56), there exist only local results (see [15], page 51), although the field
of vector and matrix PDEs integration is in active development (see for instance
[25]).

5. Feedback

Let us denote as σ(T, S, x0) the optimal initial costate corresponding to a (T, S)-
problem with initial state x0. Smooth dependence on initial conditions for ODEs
[16], extensive to first-order quasilinear PDEs [15], guarantees smooth dependence
of σ on x0. Neither the matrix nor the vector PDEs developed in the previous
section depend explicitly on x0. The initial state x0 only affects solutions through
the conditions (57, 58). As a consequence, numerical software can sometimes
handle this dependence “analytically”, i.e. considering x0 as a dummy variable
when solving for ρ, σ. So it will be assumed that σ(T, S, x0) is available for some
appropriate open set O(x̃0) ⊂ R

n containing the “expected perturbations” from
the optimal state trajectory {x∗(t), t ∈ [0, T ]} starting at the original fixed initial
condition x̃0 = x∗(0). Under these assumptions it is clear that the optimal costate
trajectory must also verify (analogously to the Dynamic Programming Principle
for the value function)

λ∗(t) = σ(T − t, S, x∗(t)) ∀t ∈ [0, T ] . (60)

Therefore, if at some intermediate time t the measured (or observed) state is
x(t), possibly different from the expected but still inside O(x̃0), a new optimal
control problem starting at x(t) as initial condition (and duration T − t) may be
considered to cope with state perturbations, and it follows that the new optimal
control can be expressed in feedback form as

u∗(t) = u0(x(t), σ(T − t, S, x(t))) . (61)

6. Applications

6.1. The (constant coefficient) LQR problem revisited. The Hamiltonian
form of the LQR problem (with linear dynamics f = Ax + Bu and quadratic
Lagrangian L = x′Qx + u′Ru ) reads

v̇ =

(

ẋ

λ̇

)

=

(

A − 1
2W

−2Q −A′

)(

x

λ

)

= Hv , (62)
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where W , BR−1B′. Therefore in this case the HCEs become a linear, time-
constant dynamical system or vector field X (v) = Hv, whose flow verifies

φT (v) = eHT v , (63)

and consequently

V = DφT = φT = eHT , (64)

U = V −1 = e−HT . (65)

The following identities are easily obtained

VT = HeHT , DX = H = A (time-constant) (66)

A′ =

(

A′ −2Q

− 1
2W −A

)

=

(

A′

1 A′

3

A′

2 A′

4

)

(67)

N = A − WS, M = A′S + SA + Q − SWS . (68)

Therefore, Eqns. (52) for α, β can be integrated alone, since they do not depend
on ρ, σ. Actually, from

(

x0

σ

)

= e−HT

(

ρ

2Sρ

)

= U

(

I

2S

)

ρ =

(

α

β

)

ρ , (69)

it follows that no further equations are needed for ρ, σ. Since α is always invertible
(see [24], p.371), then the missing boundary conditions result

ρ = α−1x0, (70)

σ = βρ . (71)

Illustrations can be found in [10]. From Eq. (13) for the LQR case, the initial
costate has here the form

σ = λ∗(0) =

(

∂V

∂x
(0, x∗(0))

)

′

= 2P (0)x0 ; (72)

where P is in turn the numerical solution of the DRE, i.e. the final-value matrix
ODE

π̇ = πWπ − πA − A′π − Q ; π(T ) = S . (73)

Therefore, from Eq. (71), for each (T, S)-problem the Riccati matrix P (t) should
also verify

P (0) =
1

2
β(T, S) [α(T, S)]

−1
. (74)

The method based on PDEs for missing boundary conditions avoid solving DRE
for each particular (T, S)-problem, and storing, necessarily as an approximation,
the Riccati matrix P (t) for the values of t ∈ [0, T ] chosen by the numerical in-
tegrator, possibly different from the time instants for which the control u(t) is
constructed. Instead, the HCEs (62) can be integrated with initial conditions

x(0) = x0, λ(0) = σ(T, S) (75)
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and the optimal trajectories x∗(t), λ∗(t) obtained for 0 ≤ t ≤ T, which allows to
generate the optimal control at each time

u∗(t) = u0 (x∗(t), λ∗(t)) = −
1

2
R−1B′λ∗(t) , (76)

or, in this case, the feedback form, which becomes directly available due to the
linear dependence of Eqns. (70, 71) on initial conditions,

u∗(t) = −
1

2
R−1B′β(T − t, S) [α(T − t, S)]−1

x . (77)

As a side-product, an alternative formula for the Riccati matrix results:

P (t) =
1

2
β(T − t, S) [α(T − t, S)]

−1 ∀t ∈ [0, T ]. (78)

6.2. Bilinear systems and quadratic costs. The bilinear-quadratic case (with
x ∈ R

n, u ∈ R) will be used to illustrate the application of previous results to
nonlinear systems. The dynamics and trajectory cost will be, respectively,

f(x, u) = Ax + (b + Nx)u , L(x, u) = x′Qx + ru2 . (79)

The H-optimal control is readily obtained (see [24])

u0(x, λ) = −
1

2r
λ′(b + Nx) , (80)

and then the control Hamiltonian takes the form

H0(x, λ) = x′Qx + λ′Ax −
1

4r
[λ′(b + Nx)]2 . (81)

The HCEs are therefore

ẋ = Ax −
1

2r
[λ′(b + Nx)](b + Nx) = Ax −

1

2
W̄ (x)λ , (82)

λ̇ = −2Qx − A′λ +
λ′(b + Nx)

2r
N ′λ = −2Qx −

[

Ā(x, λ)
]

′

λ , (83)

where the x-dependent matrix W̄ (x) is clearly a generalization of the W = BR−1B′

defined for linear systems, and analogously for Ā(x, λ),

W̄ (x) ,
1

r
(b + Nx)(b + Nx)′ (symmetric), (84)

Ā(x, λ) , A −
λ′(b + Nx)

2r
N = A + u0N , (85)

allowing to write the vector field X and its derivative DX in concise expressions,
namely

X (x, λ) =

(

A − 1
2W̄ (x)

−2Q −
[

Ā(x, λ)
]

′

)(

x

λ

)

, (86)

DX (x, λ) =

(

Â(x, λ) − 1
2W̄ (x)

−2Q̃(λ) −
[

Â((x, λ)
]

′

)

, (87)

Rev. Un. Mat. Argentina, Vol 49-1



REGULAR OPTIMAL CONTROL PROBLEMS 53

where new generalizations of LQR matrices appear,

Â(x, λ) , Ā(x, λ) −
1

2r
(b + Nx)λ′N , (88)

Q̃(λ) , Q +
1

4r
N ′λλ′N (symmetric) . (89)

The matrix A can be evaluated by looking to the final conditions, i.e.

A = A(T ) = DX (ρ, 2Sρ) =

(

Â − 1
2W̄

2Q̃ −Â′

)

, where (90)

W̄ =
1

r
(b + Nρ)(b + Nρ)′ , (91)

Â = A −
1

r
[ρ′S(b + Nρ)N + (b + Nρ)ρ′SN ] , (92)

Q̃ = Q +
1

r
N ′Sρρ′SN . (93)

In conclusion, the relevant objects read in this case

N = 2A′

2S −A′

4 = Â − W̄S , (94)

M = A′

1S −
1

2
A′

3 + SN = Â′S + SÂ + Q̃ − SW̄S , (95)

F =

[

A −
1

r
(b + Nρ)(b + Nρ)′S

]

ρ , (96)

G = 2

[

Q + A′S −
ρ′S(b + Nρ)

r
N ′S

]

ρ . (97)

The following checking procedure can be performed over numerical solutions.
It is known (see [6]) that the value function verifies, for the finite-horizon bilinear-
quadratic problem,

∂VT,S

∂x
(t, x) = 2 [PT,S(t, x)] x , (98)

for some matrix PT,S(t, x) solution of a generalized Riccati differential equation
(GDRE), actually a first-order PDE in the variables (t, x) that in the one-dimensional
case takes the form

[pt + F (x, p) · px]x +

[

pF (x, p) +
1

2
G(x, p)

]

= 0 , (99)

with F, G as defined in Eqns. (21, 22), respectively.
It is also known (see [9], and [19] for the linear analogue) that for S = 0 the so-

lutions to GDRE are compatible with solutions P∞(x) to the generalized algebraic
Riccati equation (GARE) arising in the infinite-horizon case, namely

A′P + PA + Q − PW (x)P = 0 , (100)
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via the limiting behavior

lim
T→∞

P
T,0

(0, x) = 2P∞(x) . (101)

Numerical calculations performed for increasing time-spans (approximately) con-
firm the asymptotic result

σ∞ = lim
T→∞

σ(T, 0) = lim
T→∞

∂VT,0

∂x
(0, x0) =

= lim
T→∞

2
[

P
T,0

(0, x0)
]

x0 = 2 [P∞(x0)] x0 . (102)

7. Conclusions and perspectives

The solutions to the PDEs established in the previous Sections allow to transform
the classical boundary-value problem posed for Hamilton equations in 2n dimen-
sions, into an initial-value situation when the Hamiltonian is regular. This allows
in turn to numerically integrate the original HCEs on-line with the control process,
and to continuously construct the manipulated variable u∗(t) = u0(x∗(t), λ∗(t))
from the state and costate values provided by this integration, since the H-optimal
control function u0(·, ·) is known. The on-line accessibility to an accurate value for
the optimal state is most valuable in practical situations, since physical states of
nonlinear control systems are hardly available at all desired times. Sometimes even
a feedback control form can be constructed from the solutions to the quasilinear
PDEs.

The PDEs’ method solves a whole family of (T, S) problems, avoiding additional
off-line calculations and burdensome storing of information for each particular sit-
uation, as in methods of the DRE or GDRE type. The numerical integration
of the new PDEs is relatively simple when only scalar values for S are admitted,
which is enough in many practical situations. Also, solutions providing the missing
boundary conditions can be checked in several ways, and eventually iterated until
convergence before using them to start controlling in real time.

Having the values of ρ, σ for a wide range of T, S parameter values may be
helpful at the design stage. From one side, the values of T, S can be reconsidered
by the designer when acknowledging the final values of the state ρ(T, S) that will
be obtained under present conditions. And if a change in the parameter values is
decided, then it will not be necessary to perform additional calculations to manage
the new situation. Besides, the value of σ(T, S) is an accurate measure of the
‘marginal cost’ of the process, i.e. it measures how much the optimal cost would
change under perturbations, which can also influence the decision on adopting the
final T, S values.

Other than the possibility of integrating HCEs on-line with the real plant (and
constructing the optimal control for the model in real time), or even the possibility
of generating a feedback law as we shall see, the approach presented in this paper
may also be useful when studying input-output L-stability of control systems, since
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the trajectory cost
T
∫

0

[

‖y(t)‖2 − γ2 ‖u(t)‖2
]

dt (103)

may be analyzed in this set-up for variable gain γ, even for nonlinear observation
functions

y(t) = h(x(t), u(t)) (104)

and nonlinear dynamics (see [17], [21]), provided the resulting Hamiltonian is regu-
lar. Therefore, these PDEs seem to provide a novel environment where to explore
the balance ‘performance versus stability’.

Other aspects of this approach deserve research. For instance, the curves σ(., S)
are potentially a safeguard against Hamiltonian systems’ instabilities (their lin-
earizations have eigenvalues with positive real parts, because those associated with
λ are symmetric to those corresponding to x). Therefore, it will probably add
to robustness to construct the control by imposing a bound on costates λ(.), for
instance impeding the costates to trespass the reverse σ(., S) curve starting from
σ(T̄ , S) when a finite horizon of duration T̄ is being optimized.
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