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Abstract A novel approach has been developed for approximating the solution to the con-
strained LQR problem, based on updating the final state and costate of a related regular
problem, and on slightly shifting the switching times (the instants when the control meets the
constraints). Themain result is the expression of a suboptimal control in feedback form using
the solution of some compatible Riccati equation. The gradient method is applied to reduce
the cost via explicit algebraic formula for its partial derivatives with respect to the hidden final
state/costate of the related regular problem and to the switching times. The numerical method
is termed efficient because it does not involve integrations of states or cost trajectories, and
reduces to its minimum the dimension of the unknown parameters at the final condition. All
the relevant objects are calculated from a few auxiliary matrices, which are computed only
once. The scheme is here applied to two case studies whose optimal solutions are known.
The first example is a two-dimensional model of the ‘cheapest stop of a train’ problem. The
second one refers to the temperature control of a metallic strip leaving a multi-stand rolling
mill, a problem with a high-dimensional state.
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1 Introduction

The linear-quadratic regulator (LQR) problem is probably the most studied and used in
the optimal control literature. Concurrently, the Hamiltonian formalism has also been at the
core of the development ofmodern optimal control (Agrachev and Sachkov 2004; Athans and
Falb 2006; Costanza and Rivadeneira 2014b; Pontryagin et al. 1964; Troutman 1996). In this
paper, a Hamiltonian approach to the bounded control LQR problem will be pursued. When
the n-dimensional finite-horizon problem for unbounded controls is regular, it leads to a set of
2n linear ordinary differential equations (ODEs) with two-point boundary-value conditions,
known as the Hamilton Canonical Equations (HCEs). There are well-known methods (see
for instance Costanza and Neuman 2009; Sontag 1998) to transform the boundary-value
problem into an initial-value one. In the infinite-horizon, bilinear-quadratic regulator, and
also in the change of set-point servo problems, there are also some attempts to find the
missing initial condition for the costate variable from the data of each particular problem,
which allows to integrate the Hamiltonian equations, on-line with the underlying control
process (Costanza and Neuman 2006). For nonlinear systems, this line of work is still in its
beginnings (Costanza and Neuman 2006; Costanza and Rivadeneira 2008; Costanza et al.
2009).

The bounded-control contextmay lead to non-regular optimal control problems, for whose
solution there are not standard recipes (Athans and Falb 2006; Speyer and Jacobson 2010;
Sontag 1998). Since the early 60s, the Pontryagin Maximum Principle (PMP) has been
the standard theoretical setup to treat such non regular situations. In Kojima and Morari
(2004) the infinite-horizon constrained LQR problem is studied by introducing singular-
value decomposition applied to finite-time horizon linear subproblems, and then by joining
all subproblemsdata into a big quadratic programming scheme leading to the optimal solution.
The solution of the same problem is pursued through the convex duality approach in Goebel
and Subbotin (2007), where a method of calculating the optimal stabilizing feedback without
relying on discrete optimization is outlined. Recently, in Pannocchia et al. (2015), the same
problem was tackled by approximating the input by a piecewise linear function on a finite-
time discretization. The solution of this approximate problem results in a standard quadratic
programming scheme. But notice that none of these approaches maintain the nonlinear
character during a finite horizon.

In Sakizlis et al. (2005) the finite-horizon constrained LQR problem is analyzed and
approximate solutions on a feedback form are suggested. The control law results nonlinear
in the state and piecewise differentiable with respect to the switching times. However, the
method is suitable only for low-dimensional systems, since for large systems the control
needs to be calculated off-line, inconveniences that we try to avoid in what follows.

Our proposal takes advantage of the relationships between PMP and the classical
Hamilton–Jacobi formalism. The theoretical result used here was initially phrased as fol-
lows: the optimal solution to a given bounded control LQR problem can be generated by
saturating the solution of another unbounded LQR problem, having the same dynamics and
cost objective as the original one, but starting at a different initial condition and subject to
a quadratic final penalization with a different matrix coefficient (Costanza and Rivadeneira
2013). Off-line and on-line schemes were developed to detect this new initial condition
x̃0 and final penalization matrix S̃ (Costanza and Rivadeneira 2014a; Costanza et al. 2013)
under diverse circumstances. In Costanza and Rivadeneira (2014a) algebraic formula were
developed to calculate the partial derivatives of the cost with respect to S̃ and x̃0. Here this
situation is considerably improved.
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The main contribution of this article stems from a reformulation of the previous result
in Costanza and Rivadeneira (2013). It is shown here that, instead of the final penalization
n×nmatrix S̃ and the hidden initial state x̃0, only a 2n-dimensional vector (ρ, μ) needs to be
updated. Also, appropriate algebraic formula are devised to calculate the partial derivatives of
the cost with respect to the new parameters, thus not involving ODEs numerical integrations.
From the point of view of the computational effort, this reduction in the dimension of the
parameters, along the algebraic calculation of partial derivatives may be determining when
treating high-dimensional systems.

Since the control strategy is intended towork in feedback formwhen the control is between
bounds, the precise knowledge of the initial condition of the underlying unrestricted LQR
process is not substantial. In such a context it is enough to know the location of the time-
instants where the control meets the constraints. Therefore, the proposed scheme updates
ρ,μ, and the switching times τi referred above, while the total cost is being reduced via
the gradient method (Bramanti et al. 1994; Fletcher and Reeves 1964; Pardalos and Pytlak
2008). In general the resulting control will at least be suboptimal, although in the two test
cases illustrated here the optimal values were reached through the proposed procedure.

The numerical scheme takes advantage of the on-line availability of the Riccati matrices
that correspond to a range of final penalty parameter values, generated from the solutions to a
pair of first-order partial differential equations (Costanza 2007; Costanza andNeuman 2009).

The article has the following structure: after the Sect. 1, the regular LQR results and the
main auxiliary matrices that will be used in the sequel are presented. Then the bounded-
control version of the problem is described together with the theoretical results substantiating
the proposed numerical procedure. Afterwards the algebraic formula to be employed in the
numerical updating of the parameters are explicitly given, and thewhole numerical scheme for
cost reduction is elaborated. Two applications of the numerical scheme are then illustrated:
one of them is the classical two-dimensional problem known as ‘the cheapest stop of a train’
(Agrachev and Sachkov 2004) , already revisited in Costanza and Rivadeneira (2013); and
the second one is a linearized system coming from an industrial problem, initially stated
through a first-order PDE, and here transformed in a high-dimensional ODE control system.
Conclusions and perspectives are exposed at the end.

2 Equations for regular LQR optimal control problems

The finite-horizon, time-constant formulation of the LQR problem with free final states and
unconstrained controls attempts to minimize the (quadratic) cost

J (u) =
t f∫

0

[x ′(τ )Qx(τ ) + u′(τ )Ru(τ )]dτ + x ′(t f )Sx(t f ), (1)

with respect to all the admissible (here piecewise-continuous) control trajectories u :[
0, t f

] → R
m of duration t f , applied to some fixed, finite-dimensional, deterministic plant.

The control strategies affect the R
n-valued states x through some initialized, autonomous,

dynamical constraint of the type

ẋ = Ax + Bu := f (x, u) , x(0) = x0. (2)

This will be called a (A, B, Q, R, S, t f ,Rm, x0) -problem.
As usual, the (real, time-constant) matrices in Eqs. (1) and (2) are assumed to have the

following properties: Q and S are positive-semidefinite n × n matrices, R is m × m and
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positive definite, A is n × n, B is n × m, and the pair (A, B) is controllable. In this paper
the input dimension will always be m = 1, the generalization to m > 1 requiring involved
but no substantially different manipulations. The quadratic expression under the integral is
usually known as the ‘Lagrangian’ L of the cost, namely

L(x, u) := x ′Qx + u′Ru. (3)

Under these conditions the Hamiltonian of the problem, namely the R
n × R

n × R
m → R

function defined by

H(x, λ, u) := L(x, u) + λ′ f (x, u), (4)

is known to be regular, i.e., that H is uniquely minimized with respect to u for each pair
(x, λ), and this occurs when u takes the explicit control value

u0(x, λ) = −1

2
R−1B ′λ, (5)

(here independent of x), which is usually called ‘the H -minimal control’. Finding the optimal
control for a regular problem (see for instanceAthans and Falb 2006; Sontag 1998) requires to
solve the two-point boundary-value problem known as the ‘Hamilton Canonical Equations’
(HCEs),

ẋ = H0
λ (x, λ); x(0) = x0, (6)

λ̇ = −H0
x (x, λ); λ(t f ) = 2Sx(t f ), (7)

where H0(x, λ), usually called the ‘minimized (or control) Hamiltonian’, stands for

H0(x, λ) := H(x, λ, u0(x, λ)), (8)

and H0
λ , H0

x for the column vectors with i-components ∂H0

∂λi
, ∂H0

∂xi
respectively, i.e. Eqs. (6)

and (7) for the LQR problem take the form{
ẋ = Ax − 1

2Wλ,

λ̇ = −2Qx − A′λ,
(9)

where W := BR−1B ′.
It is well known that the solution in feedback form to the unrestricted regular problem, as

posed above, relies in turn on the solution P(·) to the ‘Riccati Differential Equation’ (RDE)
Ṗ = PW P − PA − A′P − Q; P(t f ) = S, (10)

which establishes a useful relationship between the optimal state x∗(·) and costate λ∗(·)
trajectories, namely

λ∗(t) = 2P(t)x∗(t), (11)

and, from Eq. (5), leads to the optimal control trajectory

u∗(t) = u0(x∗(t), λ∗(t)) = −R−1B ′P(t)x∗(t), (12)

or equivalently to the optimal feedback law

u f (t, x) = −R−1B ′P(t)x . (13)

When the control values are restricted, the global regularity of the Hamiltonian can not be
assured, and therefore the search for the optimal control strategy becomes more involved, as
may be shown in the following sections.
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The Hamiltonian matrix of the original problem,

H : =
(

A −W/2
−2Q −A′

)
, (14)

and the associated fundamental matrix

U(t) := e−Ht , (15)

will also be employed in devising algebraic formula for the partial derivatives of the cost.
The matrix U(t) is 2n × 2n. For convenience, its n × n partition is denoted as

(
U1(t) U2(t)
U3(t) U4(t)

)
:= U(t). (16)

Additional relevant objects from the LQR theory will be used in the sequel, for instance the
matrices α(t f , S), β(t f , S) (see Bernhard 1972; Costanza et al. 2009; Sontag 1998) defined
as: (

α(t f , S)

β(t f , S)

)
� U(t f )

(
I
2S

)
=

(
U1(t f ) + 2U2(t f )S
U3(t f ) + 2U4(t f )S

)
. (17)

Thesematrices allowus to calculate, for any unboundedLQRproblem, the solution P(·, T, S)

to its RDE through the expression

P(t, t f , S) = 1

2
β(t f − t, S)

[
α(t f − t, S)

]−1 ∀t ∈ [0, t f ], (18)

and in such a case the matrices α, β are also related to the boundary conditions of the HCEs
by the following relations:

x(t f ) = α(t f , S)−1x(0), λ(0) = β(t f , S)x(t f ), λ(t f ) = 2Sx(t f ). (19)

3 The bounded-control case

The manipulated variable in most practical applications can only assume a bounded set of
values. The term ‘manipulated’ indicates that a person or an instrument assigns a value
to a signal generated by physical means, and therefore this value can not take more than a
physically realizable amount. Commonly, the manipulated variable can move inside and on
the boundary of some bounded subset of a metric space, then it is natural to assume that the
admissible set of control values is a compact subset of R.

u(t) ∈ U := [umin, umax] . (20)

The qualitative features of optimal control solutions to bounded problems are significantly
different from those of unbounded ones (Pontryagin et al. 1964). But questions about how
much they actually differ, which classes of problems lead to bang–bang controls, andwhether
their solutions are just saturations of the optimal trajectories of unbounded problems, are still
open.

The search for solutions to restricted problems most frequently falls in the domains of
the Pontryagin Principle (PMP) (Pontryagin et al. 1964). However, even when solved, PMP
is not flexible enough to treat state perturbations: no optimal feedback laws arise from the
application of PMP equations, only at best open-loop control strategies.
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Fig. 1 Typical qualitative behavior of optimal phase trajectories for the original restricted problem {x∗
x0 , λ

∗
x0 },

and for the related unrestricted process {x̂, λ̂}

In this paper the following result (Costanza and Rivadeneira 2013) will be exploited:
Let us assume that there exists a time instant t ∈ (0, t f ) where u∗

x0(t) ∈ (umin, umax).

Then there exists a time interval I ⊂ (0, t f ) containing t such that the optimal phase trajectory
{x∗

x0 , λ
∗
x0}of the original (A, B, Q, R, S, t f ,U, x0)-problemcoincideswith the optimal phase

trajectory {x̂, λ̂} corresponding to a (A, B, Q, R, Ŝ, t f , R, x̂0)-problem.
The (A, B, Q, R, Ŝ, t f ,U, x̂0)-problem is not control-restricted (U ≡ R), and it is called

the ‘underlying’, ‘hidden’, or, in short, the ∧-problem. In what follows, it will be assumed
that there exists just one maximal ‘regular’ interval (τ1, τ2) ⊂ (0, t f )where the control takes
values in (umin, umax).

The result transforms the original problem with the bounded controls (whose solution
must be looked for in the infinite-dimensional space of admissible control trajectories) into a
finite-dimensional search (for the hidden final conditions ρ,μ). A typical behavior of these
objects is depicted in Fig. 1.

3.1 A novel approach to updating relevant parameters

Let us suppose that (A, B, Q, R, Ŝ, t f ,U, x̂0) are the objects characterizing the underlying
unrestricted problem, and that {x̂, λ̂} is its optimal state/costate trajectory, and let us define
ρ := x̂(t f ), μ := λ̂(t f ),

S̃ := 1

2

μμ′

ρ′μ
(21)

(whenever ρ′ Ŝρ > 0, otherwise S̃ := Ŝ). Notice that the (n+1)n
2 elements of S̃ are generated

from the 2n elements of ρ and μ. The following theorem provides the basement for the new
cost reduction procedure:
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Theorem 1 The (A, B, Q, R, S̃, t f ,U, x̂0)-problem has the same optimal state/costate tra-
jectory as the (A, B, Q, R, Ŝ, t f ,U, x̂0)-problem, namely {x̂, λ̂}.
Proof To prove it, let us denote the trajectory {x̃, λ̃} as the solution to the Hamiltonian
equations of any of the problems (such ODEs do not depend on S̃, Ŝ) with final conditions
x̃(t f ) = ρ, λ̃(t f ) = 2S̃ρ = μ.

Let us notice that

λ̃(t f ) = 2S̃ρ = μ = 2Ŝρ , (22)

and therefore {x̃, λ̃} is the optimal trajectory of the (A, B, Q, R, Ŝ, t f ,U, x̂0)-problem, i.e.

{x̃, λ̃} ≡ {x̂, λ̂}. (23)

But since both pairs are solutions of the Hamiltonian equations, they must also satisfy λ̃ =
2 P̃ x̃, λ̂ = 2 P̂ x̂, with P̃ and P̂ two solutions to the RDE with final conditions S̃ and Ŝ,
respectively. Therefore the solution x to

ẋ = (A − W P̃)x, x(0) = x̂0 (24)

is optimal for the (A, B, Q, R, S̃, t f ,U, x̂0) -problem. Now, by defining δ := x− x̂, it
follows that

δ̇ = Aδ − W (P̃x − P̂ x̂) = Aδ − W (P̃x − P̃ x̃)

= Aδ − W (P̃x − P̃ x̂) = (A − W P̃)δ. (25)

Since δ(0) = 0, this means that x ≡ x̂ ≡ x̃ . 
�
It follows immediately that:

Corollary 2 P̃ x̂ = P̃ x̃ = P̂ x̂ , and therefore the optimal feedback (13) is the same for the
∧ -and the ∼-problems.

Remark 3 As a useful consequence of these new results, it can be observed that the unknown
parameters (Ŝ, x̂0) can be replaced by (ρ, μ) since: (i) the trajectory (x̂, λ̂) characterized by
(Ŝ, x̂0) is also uniquely determined by (ρ, μ), and (ii) the Riccati matrices P̃, P̂ arising from
their final values Ŝ, S̃, respectively, have the same effect in constructing the optimal feedback,
and therefore they are equally effective for control purposes. Also, it is to be noticed that
Ŝ has (n+1)n

2 unknown entries (since it is symmetric), and x̂0 another n unknowns. In total
(n+3)n

2 unknowns. In the present setup, this number is reduced to 2n (for ρ, μ). For n = 100,
this amounts to a reduction from 5150 to 200 unknowns parameters.

The numerical procedure will attempt then to reach the hidden (ρ, μ), starting from an
appropriate (ρseed, μseed), and by repeated application of the gradient method force the cost
to decrease until convergence.

3.2 Algebraic formulas used in the procedure

3.2.1 Auxiliary objects

The following type of feedback control laws will be frequently used in the sequel

ũ(t) :=
⎧⎨
⎩
umin, ∀t ∈ [0, τ1)
−R−1B ′P(t, ρ, μ)x(t), ∀t ∈ [τ1, τ2)
umax, ∀t ∈ [τ2, t f ]

, (26)
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where ũ(t) is a short notation for ũρ,μ,τ1,τ2(t),whichwill be used to indicate that the feedback
law is associated to the parameters (ρ, μ, τ1, τ2) . The new strategy proposes variations of
the variables ρ and μ in such a way that the matrix S̃ results completely determined by
the final conditions. More precisely, the procedure should take into account the following
considerations:

(i) The initial matrix S̃0 will be constructed from the optimal state and the costate tra-
jectories of the unconstrained problem (1), (2) by applying the feedback (13). The costate
verifies at t f that λ(t f ) = 2P(t f )x(t f ) = 2Sx(t f ), and then by denoting ρseed := x(t f ),
μseed := λ(t f ), the seed matrix S̃0 is defined as

S̃0 := 1

2

μseedμ
′
seed

ρ′
seedμseed

. (27)

(ii) A ‘seed’ strategy is adopted to start the iterative method below, namely

useed(t) :=
⎧⎨
⎩
umin if − R−1B ′P(t, S̃0)x(t) ≤ umin

umax if − R−1B ′P(t, S̃0)x(t) ≥ umax

−R−1B ′P(t, S̃0)x(t) otherwise
. (28)

The state trajectory corresponding to the control useed and starting at x0, i.e. xuseed , will be
denoted as xseed. Notice that from the seed control and state trajectories, simulated for the
new final matrix S̃0, the first values for the saturation times, denoted τ1,0 ≤ τ2,0 , can be
detected if they exist.

(iii) In what follows P(t, ρ, μ) will denote the solution to the RDE (10), with final
condition P(t f ) = S̃. When the value of ρ,μ are clear from the text, the notation may
simplify to P(t). The following identity will also be used (η := ρ or μ) from (18),

∂P(t, ρ, μ)

∂η
=

∂
[
1
2β(t f − t, ρ, μ)

[
α(t f − t, ρ, μ)

]−1
]

∂η

= 1

2

[
βηα

−1 − βα−1αηα
−1] (t f − t, ρ, μ)

= 1

2

[
βη − 2P (t, ρ, μ) αη

]
α−1, (29)

where α, αη := ∂α
∂η

, βη := ∂β
∂η

should be evaluated at (t f − t, ρ, μ), and from Eqs. (16), (17),
the partial derivatives αη, βη result

αη = 2U2
∂S

∂η
, βη = 2U4

∂S

∂η
. (30)

(iv) The ‘saturated’ fundamental matrix:


(t, τ ) :=
∫ t

τ

eA(t−σ)dσ = eAt
∫ t

τ

e−Aσ dσ = eA(t−τ)

∫ t−τ

0
e−Asds, (31)

and the related matrices


̂(t, τ ) :=
∫ t

τ


 ′(σ, τ )QeA(σ−τ)dσ =
∫ t−τ

0

 ′(s + τ, τ )QeAsds, (32)


̌(t, τ ) :=
∫ t

τ

eA
′(σ−τ)QeA(σ−τ)dσ =

∫ t−τ

0
eA

′s QeAsds. (33)
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will also be needed in the sequel. By defining the matrix functions F1(�), F2(�), G(�),
H(�), K (�), L2(�), L3(�), M1(�), and M2(�), dependent on the scalar �, according
with the following matrix partitions:

(
F1(�) G(�)

0 F2(�)

)
:= exp

([−A′ Q
0 A

]
�

)
, (34)

(
I H(�)

0 e−A�

)
:= exp

([
0 I
0 −A

]
�

)
, (35)

⎛
⎝ I M1(�) K (�)

0 L2(�) M2(�)

0 0 L3(�)

⎞
⎠ := exp

⎛
⎝

⎡
⎣ 0 I 0
0 −A′ Q
0 0 A

⎤
⎦ �

⎞
⎠ ; (36)

then by employing appropriate formula for some special integrals of Hamiltonian matrix
exponentials (Van Loan 1978), and resorting to integration by parts and similar algebraic
manipulations; finally the integrals in Eqs. (31)–(33) can be expressed as follows:


̌(t, τ ) = F ′
2(t − τ)G(t − τ), (37)


(t, τ ) = eA(t−τ)H(t − τ), (38)


̂(t, τ ) = 
 ′(t, τ )e−A′(t−τ)
̌(t, τ ) − K (t − τ); (39)

showing that all of them can be calculated without resorting to numerical integrations.
Along with the matrix U(t), all these auxiliary matrix functions can be evaluated once,

interpolated off-line, and kept in memory to be recalled as needed during the optimization
procedure. It will then be assumed in the sequel that they will be available as functions of
their two variables (t, τ ), in the range [0, t f ] × [0, t f ].

When u(t) ≡ umin in [0, τ1] , the state at τ1 results

x (τ1) = eAt x0 + 
(τ1, 0)Bumin. (40)

(v) Here, it is important to notice that the state at τ2 may be calculated from the Hamiltonian
flow. Since for each t ∈ [τ1, τ2) the control is −R−1B ′P (t, ρ, μ) x(t) and the costate
(corresponding to this piece of a regular trajectory), denoted λ̃(t), is λ̃(t) = 2P (t, ρ, μ) x(t),
and (

x(t)
λ̃(t)

)
= U(τ1 − t)

(
x(τ1)
λ̃(τ1)

)
, (41)

this finally results in

x (τ2) = U1(τ1 − τ2)x(τ1) + U2(τ1 − τ2)λ̃(τ1)

= (U1(τ1 − τ2) + 2U2(τ1 − τ2)P (τ1, η))x (τ1) .

In what follows, the argument t of U(t) will also be omitted when the context is clear. Also,
when u(t) ≡ umax in [τ2, t f ], then the state at the final time t f is

x
(
t f

) = eA(t f −τ2)x (τ2) + 
(t f , τ2)Bumax. (42)
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3.2.2 The partial derivatives of the cost

Previous results in Dhamo and Tröltzsch (2011) indicate that the optimal control u∗(·) for
the original (A, B, Q, R, S, t f ,U, x0) -problem can be obtained by saturating the optimal
control û(·) corresponding to the unrestricted ∧-problem. But actually it is not necessary to
determine the whole û(·) trajectory since we know it saturates outside I = [τ1, τ2], and also
we know the values that û(·) assumes for t /∈ [τ1, τ2]. So it is enough to calculate τ1, τ2 and
P̂(t), for t ∈ I to define the whole u∗(·) strategy. Then, we will search for ρ,μ, τ1, τ2 to
avoid calculating the open loop û(·) and saturating it afterwards. This amounts to end in a
number of 2(n + 1) parameters to be updated via the gradient method.

It is known (Dhamo and Tröltzsch 2011) that the total cost J (ũ) is differentiable as a
function of the variables (ρ, μ, τ1, τ2) . It is time-partitioned here for convenience:

J (ρ, μ, τ1, τ2) := J (ũ) = J1 + J2 + J3 + J4, (43)

where J1 accounts for the trajectory cost associated with the saturation period [0, τ1], J2 with
the regular interval [τ1, τ2], J3 with [τ2, t f ], and J4 measures the final penalty. Denoting by
u1 the saturated value of the control in [0, τ1], and by u2 the value assumed in [τ2, t f ] , the
partial costs may be expressed as follows:

J1 = Ru21τ1 +
∫ τ1

0
x ′ (t) Qx (t) dt, (44)

J2 = x ′(τ1)P (τ1) x (τ1)−x ′ (τ2) P (τ2) x (τ2) , (45)

J3 = Ru22(t f − τ2) +
∫ t f

τ2

x ′ (t) Qx (t) dt, (46)

J4 = x ′ (t f ) Sx (
t f

)
. (47)

The derivatives Dη with respect to the variables ρ andμ (denoted indistinctly by the variable
η) result:

Dη J1 = 0 , Dη J2 = x ′(τ1)
[

∂P (τ1)

∂η
− 4(U1 + 2U2P(τ1))

′P(τ2)U2
∂P (τ1)

∂η
. . . ,

−(U1 + 2U2P(τ1))
′ ∂P (τ2)

∂η
(U1 + 2U2P(τ1))

]
x(τ1), (48)

where the partial derivatives of P are calculated from Eqs. (29), (30), and from

∂ S̃kl
∂ρi

= 1

2
(μkμl)

(
− μi

(ρ′μ)2

)
, (49)

∂ S̃kl
∂μ j

= 1

2

[
Z j(kl)

(ρ′μ)
− (μkμl) ρ j

(ρ′μ)2

]
, (50)

where

Z j(kl) := ∂μkμl

∂μ j
=

⎧⎪⎪⎨
⎪⎪⎩

2μ j if k = l = j
μk if l = j and k �= j
μl if k = j and l �= j
0 if k �= j and l �= j

. (51)
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Dη J3 =
t f∫

τ2

2x ′(t)Q ∂x (t)

∂η
dt = 4

[
x ′ (τ2) 
̌(t f , τ2) + · · ·

+ u2B
′
̂(t f , τ2)

]
U2(τ1 − τ2)

∂P (τ1, η)

∂η
x(τ1), (52)

after replacing x ′ (t) = x ′ (τ2) eA
′(t−τ2) + B ′
 ′(t, τ2)u2, and expanding

∂x (t)

∂η
= eA(t−τ2)

∂x (τ2)

∂η
= eA(t−τ2)2U2(τ1 − τ2)

∂P (τ1, ρ, μ)

∂η
x(τ1). (53)

Finally,

Dη J4 = 2x ′(t f ) S
∂x(t f )

∂η
= 4x ′(t f ) S eA(t f −τ2)U2(τ1 − τ2)

∂P (τ1, η)

∂η
x(τ1). (54)

The derivatives with respect to the switching times τ1 and τ2 are

Dτ1 J1 = Ru21 + x ′(τ1)Qx(τ1), (55)

Dτ1 J2 = 2x ′(τ1)P(τ1)Bu1 + x ′(τ1)P(τ1)WP(τ1)x(τ1) . . .

−x ′(τ1)Qx(τ1) − 2x ′(τ2)P(τ2)
∂x (τ2)

∂τ1
, (56)

Dτ1 J3 =
t f∫

τ2

2x ′(t)QeA(t−τ2)dt
∂x (τ2)

∂τ1

=
t f∫

τ2

(
eA(t−τ2)x (τ2) + 
(t f , τ2)Bu2

)′
QeA(t−τ2)dt

∂x (τ2)

∂τ1

= x ′ (τ2)
t f∫

τ2

eA
′(t−τ2)QeA(t−τ2)dt

∂x (τ2)

∂τ1
· · ·

+ B ′u2

t f∫

τ2


 ′(t f , τ2)QeA(t−τ2)dt
∂x (τ2)

∂τ1

= (x ′ (τ2) 
̌(t f , τ2) + u2B
′
̂(t f , τ2))

∂x (τ2)

∂τ1
. (57)

For the final penalization, from Eq. (42),

Dτ1 J4 = 2x ′(t f )SeA(t f −τ2)
∂x (τ2)

∂τ1
, (58)

where the last term can be expressed in terms of the data as

∂x (τ2)

∂τ1
= U1(τ1 − τ2)(Ax(τ1) + Bu1) − (A − WP(τ2))x(τ2) + · · ·

2U2(τ1 − τ2)[P(τ1)(WP(τ1)x(τ1) + Bu1) − (A′P + Q)x(τ1)]. (59)

Similarly, the derivatives with respect to τ2 are

Dτ2 J1 = 0, (60)
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Dτ2 J2 = x ′(τ2)(P(τ2)WP(τ2) + Q)x(τ2), (61)

Dτ2 J3 = −(Ru22 + x ′(τ2)Qx(τ2)), (62)

Dτ2 J4 = −2x ′(t f )SeA(t f −τ2)(WP(τ2)x (τ2) + Bu2). (63)

3.2.3 Updating the parameters

First approximations τ1,0 , τ2,0 to the optimal saturation points τ1, τ2 become available after
simulating the state trajectory xseed as described in Sect. 3.2.1. For t ∈ [

0, t f
]
the control is

set to

ũ0(t) ≡ useed(t). (64)

The parameters (ρ, μ, τ1, τ2) are then updated to construct successive control strategies
ũ j ; j = 1, 2, . . . that decrease the value of the total cost,

J (ũ j+1) ≤ J (ũ j ) ≤ · · ·J (useed); j = 1, 2, . . . (65)

according to the prescriptions of the gradient method:

{
ρ j = ρ j−1 − γ j

∂ J
∂ρ

(ρ j−1, μ j , τ1, j , τ2, j )

μ j = μ j−1 − γ j
∂ J
∂μ

(ρ j , μ j−1, τ1, j , τ2, j )
, (66)

{
τ1, j = τ1, j−1 − γ j

∂ J
∂τ1

(ρ j , μ j , τ1, j−1, τ2, j )

τ2, j = τ2, j−1 − γ j
∂ J
∂τ2

(ρ j , μ j , τ1, j , τ2, j−1)
, (67)

until convergence or practical decision to stop, where γ j is a positive, small real number
measuring the portion of the gradient vector to be applied in each iteration, chosen and tuned
by the user.

Some more sophisticated versions of the gradient method can be explored in this context.
For instance, in the second example of this paper themethod of Fletcher andReeves (Bramanti
et al. 1994; Fletcher and Reeves 1964) was essayed, producing a moderate improvement in
the number of iterations needed to reach the optimum. The conjugate search directions s j

are calculated sequentially starting from

s0 := −∇ J (p0), (68)

where p denotes the parameters involved (ρ, μ, τ1, τ2) , and p0 contains their seed values.
The value s0 is the initiating search direction and ∇ is the (row) gradient operator. The
updating equation for the search direction (prescribed by this technique) is

s j+1 = −∇ J (p j+1) + s j
∇ J (p j+1)∇′

J (p j+1)

∇ J (p j )∇′ J (p j )
, j = 1, 2, ..., (69)

and the updating of parameters is conducted as follows:

(ρ, μ, τ1, τ2) j+1 = (ρ, μ, τ1, τ2) j + γ j s
j . (70)
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3.2.4 Schematic description of the numerical procedure

A practical instrumentation of the results in previous sections would require the following
basic steps:

(i) Calculate the auxiliary matrices as described in Eq. (2) and Sect. 3.2.1 and store them in
memory. Obtain first approximations of the state and control trajectories, xseed and useed
respectively (for instance, those corresponding to the saturation of the optimal control of
the subjacent unrestricted regular problem). These trajectories provide initial tentative
values for the parameters (ρ, μ, τ1, τ2).

(ii) Update the parameters through the chosen version of the gradient method and of the
scalar γ , as proposed in Sect. 3.2.3.

(iii) Confirm by numerical integration that the real cost is actually decreasing, and in such a
case return to step (ii). This step can be executed every several iterations of the gradient
method, according to the programmer intuition and the particularities of the application.

(iv) If the cost does not decrease, reduce the speed γ until it does, or
(v) Adopt the last results as best approximation to the optimal control attainable by this

method, and stop.

4 Applications and numerical results

4.1 A low-dimensional example

The first example of this paper refers to the ‘cheapest stop of a train’ (Agrachev and Sachkov
2004; Costanza and Rivadeneira 2013, 2014a, b; Costanza et al. 2013) and its LQR problem
defined by the objects:

ẋ1(t) = x2(t); x1(0) = 1,

ẋ2(t) = u(t); x2(0) = −1,

u(t) ∈ [0, 3] ; 0 ≤ t ≤ t f = 1, (71)

Q = 10I, R = 0.5, and S = 100I. The optimal solution was already presented in Costanza
and Rivadeneira (2013). The result of updating parameters from the gradient method applied
to τ1, τ2, ρ, μ, are depicted in Figs. 2, 3, 4, 5 and 6. In Fig. 3, the seed and the optimal
trajectories are illustrated. The Fig. 4 shows the reduction of the total cost until obtaining the
minimal value, i.e., its optimal value J ∗ = 15.1632.

The updating of the switching times may lead to different situations, as depicted in Fig. 2.
The updated values, after an application of the gradient as in Eq. (67), are denoted in Fig. 2
by τ1, τ2. The updates of ρ,μ may lead to different types of regular intervals, for instance
[τ sat,11 , τ

sat,1
2 ] or [τ sat,21 , τ

sat,2
2 ]. In case 1, the control is constructed as

u1(t) :=
⎧⎨
⎩
umin if t ∈ [0, τ1]
ũ(t) if t ∈ [τ1, τ2]
umax if t ∈ [

τ2, t f
] , (72)

i.e., the saturated values τ1, τ2 are respected, forcing the control to jump due to the values of
ũ(t) in the regular interval. In the case 2,
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Fig. 2 How to update the switching times under different situations when the gradient method is applied
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Fig. 3 Control strategy resulting from application of the gradient method to the bidimensional example

u2(t) :=

⎧⎪⎨
⎪⎩
umin if t ∈ [0, τ sat,21 ]
ũ(t) if t ∈ [τ sat,21 , τ

sat,2
2 ]

umax if t ∈ [τ sat,22 , t f ]
, (73)

since at τ1 and τ2 the regular control ũ(t) could take values out of the allowed
domain U = [umin, umax]. All other situations are handled accordingly; i.e.: τ1 and τ2 are
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Fig. 4 Evolution of the total cost resulting from the gradient method
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Fig. 5 Evolution of the τs resulting from the gradient method

respected as possible, but τ
sat, j
i are used when the values of ũ(t) fall in the complement

of U.
Two series of iterations were performed to determine the best strategy for the updating

of the parameter gamma: in the first one, the value of the parameter γ was maintained
constant, γ = 0.005 (black dashed line in Fig. 4), and in the second one, it was updated
whenever felt needed. It is clear that at the beginning of the method γ could be chosen
moderately high, provided that the method decreases the cost. However, at some point this
high γ is useless since big gradients may ‘jump’ over eventual local minima, so disrupting
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Fig. 6 Evolution of the ρs and μs resulting from the gradient method

the decreasing of the cost. At this point γ must be reduced. In this case study, the first value
was settled in γ = 0.01, and the last reached value was γ = 0.005 (blue solid line in Fig. 4).
This way of changing the parameter γ showed a better performance than when it was kept
constant. Figures 5 and 6 illustrate the evolution of τ1, τ2; and of ρ,μ, respectively. After 700
iterations the parameters converge to their optimal values. The final values are: τ1 = 0.5753,
τ2 = 0.7764, and S̃11 = 456.613, S̃21 = −134.475, S̃22 = 39.6015 , calculated from Eq.
(21) and the values of ρ,μ are shown in Fig. 6.

4.2 A typical linearized model situation: the rolling mill

The second case-studymodels a rollingmill as described inCostanza andRivadeneira (2014a)
and Hearns and Grimble (2010), whose (infinite-dimensional) dynamics, coming from a
standard energy balance, obeys the following first-order PDE

∂θ

∂t
= −V

∂θ

∂z
+ a(θa − θ) + b(θ4a − θ4), (74)

where θ(t, z) is the temperature of the metallic strip at time t and location z in the trend,
V (t) is the linear speed of the strip, and θa is the ambient temperature (assumed constant in
this set-up). The coefficients a, b weigh the rate of heating due to conduction and radiation,
respectively. The system is simplified by neglecting radiation (small b), and by supposing
that the temperature will stay around the equilibrium profile

θSS(z) = θa + (θ0 − θa) exp(−az/V0), (75)

which is the solution to Eq. (74) with b = 0, ∂θ/∂t = 0, V (t) ≡ V0, and θ0 := θSS(0),
some appropriate constant characterizing each physical set-up. The following definitions

�θ(t, z) := θ(t, z) − θSS(z); u(t) := V (t) − V0, (76)
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allow to approximately express the dynamics of the fluctuations through the ‘linearized’
version of Eq. (74), namely

∂�θ

∂t
= −V0

∂�θ

∂z
− a�θ +

[
a

V0
(θ0 − θa) exp(−az/V0)

]
u, (77)

after neglecting the term u∂�θ/∂z, on the argument that it is the product of two ‘small’
quantities.

From the control theory perspective the state x in Eq. (77) may be identified, at each time
t, with the whole z-profile of the temperature

x(t) := {�θ(t, z), z ∈ [0, L]} . (78)

This, in principle, makes the dynamics infinite-dimensional, of the form

ẋ = F(x, u), (79)

F denoting the operator associated to the right-hand-side of Eq. (77), so placing its rigorous
treatment out of the scope of this paper. An n-dimensional approximation has then been
constructed by discretizing the z-variable in the form

h := L/n; zi := (i − 1) h; i = 1, . . . , n; (80)

next by defining n state variables xi (or equivalently a vector state variable x(·) with values
x(t) in R

n),

xi (t) := �θ(t, zi ); i = 1, . . . , n; (81)

x(t) := (x1(t), x2(t), . . . , xn(t))
′ ; (82)

and finally by approximating the z-partial derivative by some appropriate linear combination
of the function �θ(t, ·) evaluated at the discretized values zi , for instance,

∂�θ

∂z
(t, zi ) ≈ xi+1(t) − xi (t)

h
; i = 1, . . . , n − 1; (83)

∂�θ

∂z
(t, zn) ≈ xn(t) − xn−1(t)

h
. (84)

After such manipulations the following structure of a linear control system is obtained

ẋ = Ax + Bu, (85)

where the n × n matrix A and the column n-vector B take the form

A = (ai j ) :
⎧⎨
⎩
aii = V0/h − a; ai,i+1 = −V0/h; i = 1, . . . , n − 1
an,n−1 = V0/h; ann = −(a + V0/h)

all remaining elements equal to 0
, (86)

B = (bi ) =
[
a

V0
(θ0 − θa) exp(−azi/V0); i = 1, . . . , n

]
. (87)

The eigenvalues of thematrix A are dominated by the relation between the heat gained at each
position by convection versus the heat extracted at that point by the environment, implicit in
the term V0/h − a which appears in the main diagonal, except in its last element. The free
evolution has to be stable to keep any physical meaning in the equations (the temperature
can not grow forever). But, if control has to be relevant to increase stability, it is appropriate
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to explore those situations near where the system might lose stability (for instance, due
to environmental perturbations). With this contradictory objectives in mind, the following
values for the parameters were investigated

V0 = h = 1; a = 1.001. (88)

The discretized, ODE version (85) of Eq. (77) was numerically confirmed to be an acceptable
approximation (Costanza and Rivadeneira 2014a). The initial state x0 = x(0) used for
simulation of the system defined by Eqs. (85)–(87) was

xi (0) = 100; i = 1, . . . , n, (89)
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Fig. 7 Evolution of the control trajectories with the iterations until reaching the optimal control

Table 1 Seed and final values for parameters

Component ρseed ρ∗ μseed μ∗

1 −234,223 245,168 −1402,842 −631,500

2 317,068 −127,917 634,734 940,896

3 51,967 −265,032 1,383,567 1,518,771

4 594,135 −315,422 1,658,772 1,731,146

5 621,500 −333,940 1,759,913 1,809,198

6 631,557 −340,743 1,797,081 1,837,874

7 635,253 −343,274 1,810,772 1,848,498

8 636,609 −343,959 1,815,561 1,851,761

9 637,122 −34,545 1,818,557 1,856,167

10 637,254 −343,012 1,816,606 1,850,087

123

Author's personal copy



An efficient cost reduction procedure for bounded-control...

with the following values for the reference temperatures (in ◦C):
θa = 20, θ0 = 700. (90)

The cost objective of the LQR problem was assigned the following parameters

t f = 0.5, Q = 0.05In, R = 100, S = 15In, (91)

and n = 10. The bounds imposed on control values were chosen here as

[umin, umax] = [−1.8,−0.8] , (92)

just to illustrate a case where the costs of the unrestricted problem and the first approxi-
mation to the restricted one (the ‘seed’) are different enough to justify looking for better
approximations and to obtain a significant cost reduction through the implementation of the
method. Indeed, the seed trajectory was calculated by applying Eq. (28), from which the ini-
tial switching times were detected: τ1,0 = 0.0413, τ2,0 = 0.0865, and the total cost resulted
Jseed = 1.1316 × 106, while the unbounded cost was Junbounded = 4.3338 × 105.

In Fig. 7, the seed control trajectory (dotted line) and its evolution towards the optimal
control (solid line) are illustrated. In this example, the optimal control resulted u∗(t) ≡
−0.8 = umax ∀ t . The optimal cost was retrieved after 25 iterations and its value was
J ∗ = 9.1010× 105. The relative reduction of the total cost J ∗ with respect to the cost of the
seed strategy Jseed was 20%. The seed and final values of ρ,μ obtained by the method are
shown in Table 1.

The optimality of the obtained control trajectory was checked by calculating: (i) the
solution to the Hamiltonian equations (9), backwardly from (ρ∗, μ∗), which reproduced
the initial state condition, and (ii) the Hamiltonian along the trajectory, which resulted in
H(x∗(t), λ∗(t), u∗(t)) ≡ 2.2191 × 106, constant as expected.
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Fig. 8 Evolution of the total cost when applying the conjugate gradient method
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Fig. 9 Evolution of the τs when applying the conjugate gradient method
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Fig. 10 Evolution of the ρ and μ when applying the conjugate gradient method

For this problemofmoderately high dimension, a comparison ofCPU timewas performed:
the first try by updating the 55 coefficients of thematrix S, and the second one by updating the
20 coefficients of ρ, μ. As it was expected, the first experiment takes 458.95 s per iteration
while the second one only 151.79 s. This means that the second method is 200% faster than
the first one.

The parameter γ was changed to keep lowering the total cost. The initially value was
γ = 1, and the final one was γ = 1 × 10−15, as it is marked in Fig. 8. The evolution of
the variables τ1, τ2 are depicted in Fig. 9. All components of ρ, μ converge to their optimal
values and their evolution can be seen in Fig. 10.
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5 Conclusions and perspectives

Although feedback laws may be preferred in practice, when perturbations are expected to
appear, a closed-loop control is in general suboptimal when there exist constraints in the
manipulated variable. With these limitations in mind, an efficient algorithm was devised to
approximate the open-loop optimal control via feedback, based on recent and new theoretical
results. The resulting strategies are quite different from the saturated form of the optimal
control corresponding to the unrestricted problem having the same parameters and initial
condition. This saturated form is used here just as a first approximation, and so labeled as a
‘seed’ strategy.

In the paper it was assumed that there existed a unique regular interval I = (τ1, τ2) ⊂
(0, t f ). A systematic treatment of the case with a countable number of regular arcs is under
development along similar lines. The next target would be to devise a numerical scheme
able to be implemented on-line.

The updating of the parameters ρ, μ and the saturation times τi , as long as the total cost is
reduced via algebraic formula, is the central idea. The stability of the method is guaranteed
since (i) the cost is not allowed to increase, and (ii) it is bounded from below. Enhancing the
speed is changing the value of the manipulated variable is probably the main issue of concern
in the control-computational world, mainly due to real-time requirements. The increasing
number of the variables to update in greater dimensions generates a need of calculation that
can exceed current performance. In response to these necessities, the positive features of the
new on-line proposed strategy are:

• The method is based on theoretical results ensuring that the hidden values ρ, μ and the
appropriate saturation times τ1, τ2 are the critical objects to be ascertained.

• Calculating the final penalization matrix in terms of ρ and μ reduces the total number of
components to update. With the method proposed in Costanza and Rivadeneira (2014a),
the minimal number of variables to update is n(n+3)

2 + 2, since S̃ is a symmetric matrix.
By using the new strategy the total number of variables are reduced to 2n+2, a significant
reduction for high dimensional systems.

• The method takes advantage on the availability of α, β as functions of (t f − t, S̃), and
consequently on the possibility of generating Riccati matrices P(t, t f , ρ, μ) on-line by
simple algebraic manipulations, as ρ,μ are updated; i.e., the RDE does not need to be
solved for any value of ρ,μ.

• The updating of parameters (ρ, μ, τ1, τ2) is performed via the gradient of the cost of the
process, and this cost is calculated by simple algebraic formulas instead of by calculating
state, control, and cost trajectories by ODE integrations.

References

Agrachev A, Sachkov Y (2004) Control theory from the geometric viewpoint. Springer, Berlin
Athans M, Falb PL (2006) Optimal control: an introduction to the theory and its applications. Dover, New

York
Bernhard P (1972) Introducción a la Teoría de Control Óptimo. In: Cuaderno No. 4, Instituto de Matemática

“Beppo Levi” , Rosario
Bramanti E, Bramanti M, Stiavetti P, Benedetti E (1994) A frequency deconvolution procedure using a con-

jugate gradient minimization method with suitable constraints. J Chemom 8:409–421
Costanza V (2007) Finding initial costates in finite-horizon nonlinear-quadratic optimal control problems.

Optimal Control Appl Methods 29:225–242

123

Author's personal copy



V. Costanza et al.

CostanzaV,NeumanCE (2006)Optimal control of nonlinear chemical reactors via an initial-valueHamiltonian
problem. Optimal Control Appl Methods 27:41–60

Costanza V, Neuman CE (2009) Partial differential equations for missing boundary conditions in the linear-
quadratic optimal control problem. Latin Am Appl Res 39:207–212

Costanza V, Rivadeneira PS (2008) Finite-horizon dynamic optimization of nonlinear systems in real time.
Automatica 44:2427–2434

CostanzaV, Rivadeneira PS (2013) Optimal saturated feedback laws for LQR problemswith bounded controls.
Comput Appl Math 32:355–371

Costanza V, Rivadeneira PS (2014) Online suboptimal control of linearized models. Syst Sci Control Eng
2:379–388

Costanza V, Rivadeneira PS (2014) Enfoque Hamiltoniano al control óptimo de sistemas dinámicos. OmniS-
criptum, Saarbrücken

Costanza V, Rivadeneira PS, González AH (2013) Minimizing control-energy in a class of bounded-control
LQR problems. Optimal Control Appl Methods 35(3):361–382

Costanza V, Rivadeneira PS, Spies RD (2009) Equations for the missing boundary values in the Hamiltonian
formulation of optimal control problems. J Optim Theory Appl 149:26–46

Dhamo V, Tröltzsch F (2011) Some aspects of reachability for parabolic boundary control problems with
control constraints. Comput Optim Appl 50:75–110

Fletcher R, Reeves CM (1964) Function minimization for conjugate gradients. Comput J 7(2):149–154
Goebel R, Subbotin M (2007) Continuous time linear quadratic regulator with control constraints via convex

duality. IEEE Trans Autom Control 52(5):886–892
Hearns G, Grimble MJ (2010) Temperature control in transport delay systems. In: The 2010 American control

conference, Baltimore
Kojima A, Morari M (2004) LQ control of constrained continuous-time systems. Automatica 40:1143–1155
Pannocchia G, Rawlings JB, Mayne DQ, Mancuso G (2015) Whither discrete time model predictive control?

IEEE Trans Autom Control 60(1):246–252
Pardalos P, Pytlak R (2008) Conjugate gradient algorithms in nonconvex optimization. Springer, New York
Pontryagin LS, Boltyanskii VG, Gamkrelidze RV,Mishchenko EF (1964) The mathematical theory of optimal

processes. Macmillan, New York
Sakizlis V, Perkins JD, Pistikopoulos EN (2005) Explicit solutions to optimal contol problems for contrained

continuous-time linear systems. IEE Proc Control Theory Appl 152(4):443–452
Sontag ED (1998) Mathematical control theory, 2nd edn. Springer, New York
Speyer JL, Jacobson DH (2010) Primer on optimal control theory. SIAM Books, Philadelphia
Troutman JL (1996) Variational calculus and optimal control. Springer, New York
Van Loan CF (1978) Computing integrals involving the matrix exponential. IEEE Trans Autom Control

23(3):395–404

123

Author's personal copy


	An efficient cost reduction procedure for bounded-control LQR problems
	Abstract
	1 Introduction
	2 Equations for regular LQR optimal control problems
	3 The bounded-control case
	3.1 A novel approach to updating relevant parameters
	3.2 Algebraic formulas used in the procedure
	3.2.1 Auxiliary objects 
	3.2.2 The partial derivatives of the cost
	3.2.3 Updating the parameters
	3.2.4 Schematic description of the numerical procedure


	4 Applications and numerical results
	4.1 A low-dimensional example
	4.2 A typical linearized model situation: the rolling mill

	5 Conclusions and perspectives
	References




