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Summary

1. The problem of scaling up from tractable, small-scale observations and experiments to prediction of large-

scale patterns is at the core of ecological theory and application, and one of the central problems in ecology.

2. Wepresent and test a general nonparametric framework to upscale spatially explicit and stochastic simulation

models. The idea is to design a state space, defined by the important state variables of the small-scale model, and

to divide it into a finite number of discrete states. Transition probabilities are then tallied bymonitoring extensive

simulation runs of the small-scale model, covering the entire range of initial conditions, states and external dri-

vers that may occur for the desired application. We exemplify our approach by upscaling an individual-based

model that simulates the spatiotemporal dynamics of Festuca pallescens steppes under sheep grazing in Western

Patagonia, Argentina, with a spatial resolution of 0�3 m 9 0�3 m and a 0�15-ha extent. The upscaledmodel sim-

ulates a 2500-ha paddock with 0�15-ha resolution and is enriched with additional rules that describe heterogene-

ity in the local stocking rate at the paddock scale.

3. We obtained 24 transition matrices that governed the upscaled model for different combinations of stocking

rates and annual precipitation. The upscaled model produced excellent predictions for the long-term dynamics,

but as expected, it did not fully capture the interannual dynamics of the original model. Rules for heterogeneity

in the local stocking rate allowed for emergence of realistic vegetation patterns as commonly observed for water

points in arid rangelands.

4. Our general nonparametric upscaling approach can be applied to a wide range of stochastic simulation mod-

els in which the dynamics can be approximated by a set of states, transitions and external drivers. Because estima-

tion of the transition probabilities can be done parallel, our approach can be applied to a wide range ofmodels of

intermediate complexity. Our approach closes a gap in our ability to scale up from small scales, where the biolog-

ical knowledge is available, to larger scales that are relevant formanagement.

Key-words: agent-based models, complex systems, graph theory, Markov chains, meta-models,

rangelands, spatially explicit models, state-transitionsmodels, succession

Introduction

Many of the phenomena of interest in ecology and conserva-

tion appear at larger spatial scales, but field data are typically

collected over relatively small areas during observational or

experimental studies of short duration (May 1999; Urban

2005). However, to understand large-scale phenomena, broad-

scale patterns and processes must be related to those at small

scales with which ecologists aremost familiar and have data on

hand (Wu 1999;Moorcroft, Hurtt & Pacala 2001). As a conse-

quence, the problem of how to transfer information from smal-

ler to larger scales, a process generally known as upscaling, is

at the core of ecological theory and application, and is one of

the central problems in ecology (Levin 1992;Wiens et al. 1993;

Urban 2005;Wu et al. 2006; Denny&Benedetti-Cecchi 2012).

The scale of individuals is of fundamental importance in

ecology (Wiens et al. 1993) because the behaviour and interac-

tions of individuals lead to the emergence of larger scale pat-

terns which are usually of interest in ecology (Grimm et al.

2005). Additionally, information on the short-term behaviour

of individuals and their interactions is often easy to observe

(Pacala et al. 1996;Wiegand&Milton 1996). Individual-based

models are especially suitable to describe the dynamics at the

population or patch scale (Grimm & Railsback 2005, 2012;

Grimm et al. 2005). Population dynamics emerges in individ-

ual-based models as a consequence of the behaviour and inter-

actions of individuals with immediate ecological conditions

(Grimm & Railsback 2005). However, what is challenging is*Correspondence author. E-mail: cipriott@agro.uba.ar
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how to scale across several organizational levels from the indi-

vidual to the local population scale, and to the landscape scale

(Urban 2005; Boulain, Simoni &Gignoux 2007). Several mod-

elling approaches have been developed to accomplish upscal-

ing over more than one level of organization. For example, a

recent review by Denny & Benedetti-Cecchi (2012) deals with

mechanistic response functions to describe how phenomena

interact across scales, and Wu et al. (2006) reviewed dynamic

model-based upscaling as well as similarity-based upscaling

methods that rely on power-law scaling, fractals, etc. (e.g. K�efi

et al. 2007).

Upscaling of dynamic models can be done in several ways.

First, without changing the original model, one may (i) assume

that it is representative. In this case, one may extrapolate the

original model directly to the larger scale by running it with the

mean values of parameters and inputs averaged across the

entire landscape (i.e. ‘lumping’) or using ‘effective’ parameters

instead of averages (Wu et al. 2006). Secondly, without chang-

ing the original model, one may (ii) scale up with ‘brute force’

and implement a copy of the model in each patch (i.e. ‘direct

extrapolation’). In this approach, the extent of the original

model (i.e. a patch) is usually a cell of a grid that is superim-

posed to the landscape. This allows consideration of geospa-

tially driven parameters and inputs (Rastetter et al. 1992;

Peters et al. 2004; Van de Koppel, Gupta & Vuik 2011), possi-

bly using remote sensed data to define the landscape. This

approach has been extensively used in forest gap models (Shu-

gart 1998), but leads only to an adequate upscaling if interac-

tions among the patches can be neglected (Peters et al. 2004;

Melbourne & Chesson 2006). However, interactions among

patches (e.g. due to seed dispersal among patches) need to be

considered in many relevant cases (Peters et al. 2004). Thus, a

hierarchical perspective (Wu & Loucks 1995; Meyer, Wiegand

&Ward 2009) can be adopted that (iii) basically uses the origi-

nal model, but explicitly embeds it into a larger scale model

that contains additional rules governing the interactions

among patches. While this approach accomplishes an upscal-

ing across three spatial scales (individual to patch, and patch to

landscape scale), running in each patch a full copy of the

detailed model may lead to excessive computational demands,

rendering this approach similarly to (ii) unsuitable for many

practical applications.

To escape the twin dilemma of computational intensiveness

and larger scale interactions, we need away to predict the land-

scape scale dynamics based on individual-level information,

possibly supplemented by rules on cross-patch interactions,

but without simulating the computational demanding interac-

tions among individuals. One approach for doing this is (iv)

use of analytical approximations based on so-called macro-

scopic equations (Moorcroft, Hurtt & Pacala 2001; Strigul

et al. 2008) that can directly predict variables of landscape

scale dynamics based on the parameters of the detailed individ-

ual-based model. An alternative approach is to (v) fit a larger

scale model to the output of a detailed small-scale model (e.g.

Acevedo, Urban & Ablan 1995; Rastetter et al. 2003; Tietjen

& Huth 2006). Finally, Seidl et al. (2012) (vi) took advantage

of the repetition of similar competition situations of individual

trees and replaced its detailed calculation with use of a previ-

ously generated library. Thus, once the library is generated by

running simulations of the detailed model at smaller spatial

scales, the landscape level model achieves reasonable computa-

tional speed without losing the information on the detailed

behaviour of individuals.

In this study, we present a general framework for upscaling

stochastic, spatially explicit and dynamic simulation models of

intermediate complexity from the patch scale to the landscape

scale. Our approach is inspired by Seidl et al. (2012) and Ace-

vedo,Urban&Ablan (1995) and takes advantage of the repeti-

tiveness of the entire dynamics at the patch scale. The idea is to

design a state space, defined by the important state variables of

the original model, and to divide it into a finite number of dis-

crete states. Libraries of transition probabilities are then tallied

by monitoring simulation runs of the detailed model, covering

the entire range of initial conditions, parameterizations, states

and external drivers relevant for the desired application. Each

combination of drivers requires one transition matrix. Finally,

larger scale rules can be added to describe interactions among

patches. We therefore do not fit the transitions of a predefined

Markov chain model as done in earlier approaches (e.g. Ace-

vedo, Urban & Ablan 1995), but adopt a more flexible non-

parametric approach in which themodel itself decides which of

the generalized states are themost important ones.

The overall aim of our paper was to present our nonpara-

metric upscaling framework. We exemplify our framework

with the individual-based simulation model COIRON that

describes the spatial dynamics of the Patagonian Festuca pal-

lescens grass steppes in Argentina (Paruelo et al. 2008). To this

end, we test the upscaled model in its ability to recover the

dynamics of COIRON, and we present an application of the

upscaled model where consideration of interactions among

patches is required to describe the effect of spatial gradients in

the stocking rates due to water points.

Materials andmethods

SMALL-SCALE MODEL COIRON

The aim of COIRONwas to understandmechanisms of degradation in

the Patagonian F. pallescens grass steppes as driven by stochastic rain-

fall and sheep grazing (Paruelo et al. 2008). This semi-arid ecosystem is

dominated by the tussock grass species F. pallescens which occurs in

areas receiving 300–600 mm of mean annual precipitation concen-

trated in winter. Additionally, the local stocking rates vary strongly

over the paddock scale (e.g. in dependence on the distance to water

points), which creates environmental gradients that feedback with local

vegetation conditions (Pickup&Chewings 1994).

COIRON describes the dynamics of homogeneous F. pallescens

stands (patches) with a 38�4 m 9 38�4 m extent by considering small-

scale processes at the tussock level (with resolution of 0�3 m 9 0�3 m;

the typical size of one tussock) and external controls such as selective

grazing and stochastic precipitation (Paruelo et al. 2008). F. pallescens

shows a negative feedback between the amount of senescent material

present in a tussock and sheep grazing behaviour: the lower the amount

of senescent material the higher the probability that green biomass is

defoliated. This behaviour cannot be adequately described without

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 7, 313–322
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considering grazing behaviour at the individual tussock level.

COIRON includes for this a detailed grazing model (see Appendix S1,

Supporting information). However, the management relevant scale is

the paddock or ranch scale which extends to 1000–10 000 ha. Thus,

COIRON is a typical example where upscaling is needed.

COIRON is a stochastic grid-based and individual-based simula-

tion model with a time step of 1 year and a spatial resolution (cell)

representing a fully grown individual tussock (0�3 m 9 0�3 m). This

is the spatial scale at which most of the plant processes and livestock

forage decisions take place. The extent comprises 128 9 128 cells,

covering an area of approximately 1500 m2. A cell can be occupied

by a ‘live tussock’, a ‘dead tussock’, be ‘empty’ or part of a ‘large bare

patch’ (basically a cluster of more than 10 empty cells). The latter are

important because large bare patches suffer additional soil water loss

due to higher evaporation, which have negative effects on seedling

survival. A cell occupied by a live tussock is characterized by the state

variables green biomass, dead biomass (which accumulates during

previous growing seasons) and potential productivity (which summa-

rizes the state of the tussock based on past precipitation and defolia-

tion). The main input variables of COIRON are the annual rainfall,

the local stocking rate and the initial vegetation condition, while the

main output variables are the ‘vegetation cover’ and ‘above-ground

net primary production’ (ANPP) of F. pallescens, and the ‘cover of

large bare patches’.

Changes in the state variables are driven by grazing (defoliation)

and water availability resulting from local redistribution of annual

precipitation due to root absorption. The dynamics of F. pallescens

is governed by rules on water dynamics (rule 1), biomass production

(rule 2), colonization (rule 3), grazing-induced changes in potential

productivity (rule 4), senescence and littering (rule 5), mortality (rule

6), local grazing pressure (rule 7) and defoliation (rule 8). Several of

these rules (i.e. rules 3, 6, 8) are stochastic. The model summarizes

abundant field data in this ecosystem collected over more than

40 years (Paruelo et al. 2008). The COIRON model is described,

parameterized and tested in detail in Paruelo et al. (2008); a detailed

model description is presented in Appendix S1 (Supporting informa-

tion).

GENERAL UPSCALING FRAMEWORK

Themain idea is to divide the state space, defined by the important state

variables of the original model, into discrete states. Transition proba-

bilities are then tallied by monitoring simulation runs of the original

model that cover the entire range of initial conditions, parameteriza-

tion, states and external drivers relevant for the desired application at

the broader spatial scale (Fig. 1). For each combination of external dri-

vers, we obtain one transition probability matrix (TPM) (Fig. 1c). The

TPMs can be studied byMarkov chain or graph theory analysis to gain

insights about the system structure and dynamics (Balzter 2000; Stro-

gatz 2001; Daehyun & Phillips 2013; see below ‘Model analysis’).

Finally, the landscape of the upscaled model is composed of a grid of

cells where each cell hosts a copy of the transition probability matrices

that replace the detailed small-scalemodel (Fig. 1e). Thus, the upscaled

model can have a substantially larger extent than the original model,

but it loses spatial resolution.However, all small-scale rules of the origi-

nal model (e.g. the negative feedback in COIRON described above;

Fig. 1a) are incorporated in the transition matrices. Finally, the

upscaled model may contain rules describing large-scale (inter patch)

(a) (b) (e)

(c) (d)

Fig. 1. General scheme of the upscaling approach indicating scale transitions and additional rules of the upscaled meta-model. The colours of the

transitionmatrices and cells in the upscaledmodel indicate different environmental conditions.
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interactions such as gradients in local grazing pressure due to distance

to water points (Fig. 1d).

Our upscaling framework therefore consists of four steps and is sup-

plemented by two additional steps of model analysis: (i) definition of

the states of the original model and the external drivers, (ii) definition

of simulation scenarios that cover the full range of situations expected

to occur at the large scale (e.g. initial conditions, climate time series,

local stocking rates) and account for parameter uncertainty, (iii) run-

ning of the original model for all scenarios determined in (ii) to sample

the libraries of transition probabilities, (iv) embed the transition proba-

bilities into the large-scale model that describe larger scale processes

and environmental drivers, and the possibly spatial interactions among

patches.

DEFINIT ION OF STATES AND EXTERNAL DRIVERS FOR

THE SMALL-SCALE MODEL

Our framework does not rely on a priori defined states; instead, states

result from systematic combination of the state variables of the original

model. Thus, we may possibly obtain a large number of states but are

not constrained by a priori model structures. We define for each state

variable a reasonable number of levels which are then combined with

that of the other state variables to yield the generalized states of the

original model.

The important state variables of COIRON are vegetation cover,

ANPPofF. pallescens, and cover of large bare gaps. Based on informa-

tion on the range of conditions found in Patagonian F. pallescens

steppes (Paruelo et al. 1993; Bertiller & Bisigato 1998), we defined 192

possible vegetation states (0–191) that resulted from eight levels of

F. pallescens cover, six levels of ANPP and four levels of cover of large

bare gaps (Table 1). For easier representation of the results, we ordered

the states with increasing forage quality from state 0 (<10% of vegeta-

tion cover, <175 g m�2 yr�1 of ANPP and 76–100% of cover with

large bare gaps) to the best vegetation condition at state 191 (>80% of

vegetation cover, >2200 g m�2 yr�1 of ANPP and <25% of cover of

large bare gaps).

The important external drivers of the year-to-year dynamics of

COIRON are the annual precipitation and the local stocking rate. We

selected 24 environmental states that resulted from three levels of

annual precipitation (dry years: < 315 mm yr�1; typical years: 315–

425 mm yr�1; and wet years: > 425 mm yr�1) and eight local stocking

rates ranging from zero to 4 sheep per ha (i.e. 0, 0�25, 0�5, 0�75, 1, 1�25,
2 and 4 sheep per ha). Thus, our library of TPMs consists of 24matrices

that govern all possible year-to-year transitions among the 192 possible

vegetation states.

DEFIN IT ION OF SIMULATION SCENARIOS

To obtain complete TPMs the original model must be executed under a

wide range of typical situations, defined by initial conditions, climatic

scenarios and local stocking rates. Additionally, we can account for

parameter uncertainty by repeating the procedure for different model

parameterizations. We repeated the COIRON simulations for 30 dif-

ferent initial conditions, nine precipitation time series, eight stocking

rates and eight alternative model parameterizations, yielding a total of

17 280. Details can be found in Appendix S2, Supporting information

(Definition of simulation scenarios). Each simulation lasted 200 years.

Thus, we monitored a total of 17 280 9 200 = 3 456 000 individual

transitions.

SAMPLING OF THE TRANSIT ION PROBABIL IT IES

For each simulation year t, we determined the initial state so (at year

t�1), the new state sn (at year t), the annual precipitation class i and

the stocking rate j (which was fixed for a given simulation). This

information was used to tally transition probability matrices Pij that

counted the number of transitions from the old state so to the new

state sn, conditionally on an annual precipitation class i and stocking

rate j. The final matrices with transition probabilities Pij(so, sn) were

calculated as

Pijðso; snÞ ¼ nijðso; snÞ
P191

s¼0

nijðso; sÞ
(1)

where the numerator nij is the number of transitions from the old state

so to the new state sn, and the denominator is the sum across all transi-

tions from the old state so to whatever state s. However, we applied

equation 1 only if the sum in the denominator was larger than zero, and

definedPij(so, sn) = 0 otherwise.

LARGE-SCALE MODEL

Space is represented in the upscaled model as a grid of 135 9 210 cells

(4180 ha) where each cell represents a 38�4 m 9 38�4 m patch with the

extent of the original model. Thus, we change both aspects of scale,

extent and grain. The upscaled model has a substantially larger extent

than the original model (4180 ha vs. 0�15 ha), but a coarser grain

(1500 m2 vs. 0�09 m2) (Fig. 1). After defining an initial state for each

cell, the transition matrices are applied to update the state of each cell

depending on its stocking rate and climate condition. We can also

include spatially heterogeneous environmental conditions by applying

different transition matrices for cells with different environmental

conditions.

However, new processes may appear at the larger scales that are

not included in the detailed smaller scale model. Here, we consider

spatial heterogeneity in the local stocking rate as example. In semi-

arid rangelands such as the F. pallescens steppe, the local stocking

rate emerges from a number of factors, including (i) the global stock-

ing rate in the paddock, (ii) the state of the focal patch, (iii) the state

of the immediate neighbourhood of the focal patch and (iv) the dis-

tance of the focal patch to the nearest water point or other sites able

to concentrate livestock in the paddock (Pickup & Chewings 1994).

To account for these large-scale effects, we estimated for each patch

in the paddock an index of ‘relative grazing attractiveness’ that allows

for estimation of the local stocking rate in each patch (see Appendix

S2, Supporting information ‘Relative grazing attractiveness’ for

details).

Table 1. Criteria to the definition of the 192 states (0–191) from the

small-scale model (COIRON) based on different levels from threemain

output variables: F. pallescens cover (8 levels), above-ground net

primary production (6 levels) and cover of large bare gaps (4 levels)

Cover (%) ANPP (kgDMm�2 yr�1) Cover of large bare gaps (%)

0–10 0–175 0–25
11–20 176–350 26–50
21–30 351–750 51–75
31–40 751–1100 75–100
41–50 1101–2200
51–60 >2200
61–80
80–100
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Model analysis

Graph theory analysis of transition matrices. We can analyse the

transition matrices with tools of graph theory as the vegetation states

can be interpreted as vertices and the transitions as edges. This yields

directed graphs because each edge has a direction and a value (i.e. the

transition probability). To assess whether and under what conditions

multiple pathways of degradation or recovery exist, we determined

cohesive blocks of states (i.e. groups of vertices which are internally

more connected than vertices belonging to other blocks; White & Har-

ary 2001) and articulation vertices (which link different otherwise

unconnected parts of the graph). We used the igraph package (Csardi

& Nepusz 2006) in the R environment (R Core Team 2013) for graphs

analysis.

Verification of the up-scaled model. To assess how well the

upscaled model captured the detailed dynamics of COIRON, we com-

pared the predictions of the upscaledmodel for different environmental

situations (i.e. three rainfall scenarios and three stocking rates) with the

outputs from COIRON. To this end, we simulated with the upscaled

model a rectangular area composed of 100 9 100 cells (1474 ha). We

started from a homogeneous initial condition where all cells were in

good condition (i.e. state 187) and simulated three different stocking

rates and three different climate series. See details in Appendix S2, Sup-

porting information (Verification of the up-scaledmodel).

Application of the upscaled model to a water point. We imple-

mented a water point in the centre of the paddock and simulated spa-

tially heterogeneous stocking rates (see Appendix S2, Supporting

information ‘Relative grazing attractiveness’) to assess its consequences

for the F. pallescens dynamics at the landscape scale. As initial condi-

tion, we assigned to all 135 9 210 cells of the paddock a good vegeta-

tion condition (ID = 187) and simulated the upscaled model for

100 years. For comparison, we simulated a no grazing treatment and a

treatment with high stocking rate but no water point. During the simu-

lations, we recorded the vegetation state of each cell at steps of

25 years. To determine the average vegetation states at increasing dis-

tances from thewater point, we applied amovingwindowon the result-

ingmap of vegetation states.

Results

ANALYSIS OF THE TPMS OF THE UP-SCALED MODEL

Only between 28 and 45 of the 192 possible states were real-

ized during the 17 280 COIRON simulations and only

between 0�38% and 0�5% of the 1922 theoretically possible

transitions were realized (Fig. 2). The 147 states that were not

realized in any of the 24 TPMs were unlikely biologically.

However, in other cases some states did occur only under cer-

tain precipitation scenarios and/or stocking rates (Fig. 2a–c).
Generally, matrices corresponding to high precipitation and

intermediate stocking rates showed the highest number of

states.

Most of the observed transitions occurred near to the main

diagonal of the TPMs (Fig. 2a–c) and the highest transition

probabilities occurred on the main diagonal (i.e. stasis;

Fig. 2a–c). This was expected because the F. pallescens steppes
do not show dramatic shifts in vegetation condition during

1 year, even under the dry climate and overgrazing conditions

here studied. Matrices for dry years and overgrazing (i.e. >1
sheep per ha) yielded a lower number of transitions (� 0�37%)

compared with wet years and moderate or zero stocking rates

(0�41–0�50%). Graph representations of TPMs show that the

networks became simpler with increasing stocking rate (i.e.

fewer states and transitions; Fig. 2d–f). We also found that

degradation or recovery trajectories under a given environ-

mental condition pass mostly through articulation vertices

(Fig. 2d–f). Thus, multiple pathways under the same environ-

mental conditions were unlikely.

TESTING THE UPSCALED MODEL

Generally, the upscaled model captured the long-term trends

of the detailed COIRONmodel well (Fig. 3). The F. pallescens

cover predicted by the upscaled model was almost in all years

inside the 95% simulation envelopes of the detailed simula-

tions (Fig. 3a-d), and that for ANPP (Fig. 3e-h). However, the

upscaledmodel was unable to capture the interannual variabil-

ity (especially in ANPP) and aspects of the short-term dynam-

ics (e.g. 10–20 year cycles) of the original model. This was

expected because the definition of the states did not contain

variables to capture a ‘memory’ introduced by the typical life

span of F. pallescens. However, what is more important is that

such smaller errors in describing the short-term fluctuations in

population dynamics evened out and had no consequences for

the ability of the upscaled model to capture the dynamics of

the steppe on the longer term.

APPLICATION OF THE UPSCALED MODEL TO A WATER

POINT

Spatial heterogeneity in the local stocking rate induced by a

water point in the centre of the paddock produced patterns

typically observed in large paddocks (>2000 ha; e.g. Pickup,

Bastin & Chewings 1998) (Fig. 4c,f). As expected, no spatial

structure emerged without grazing or with spatially homoge-

neous grazing (Figs. 4a,b,d,e). After 25 years, the locally ele-

vated stocking rate close to the water point resulted in an

aggregation of low relative forage values within 1000 m from

the water point, but after 100 years the forage value of the

entire paddock declined to levels similar to that of homoge-

neous grazing (cf. Figs. 4e,f).

Discussion

The problem of scaling up information from small scales to

understand and predict large-scale patterns is at the core of

ecological theory and application. This issue arises because

most of the biological information is available at small scales,

but larger scale patterns are usually relevant for management

and policy (Levin 1992; Urban 2005).We presented here a gen-

eral approach to upscale detailed dynamic simulation models

operating at one scale (in our example the patch scale) to the

next higher scale (in our example the landscape scale). Our

approach allows for the development of larger scale simulation

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 7, 313–322
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models (meta-models) which nevertheless retains the essential

details and biological processes from the local scalemodel.

ANALYSIS OF TRANSIT ION MATRICES

If a detailed model of vegetation dynamics is available, our

approach solves long-standing problems in rangeland ecology

related with the state-and-transition concept: the definition of

(vegetation) states, the estimation of transition probabilities

(e.g. Westoby, Walker & Noy-Meir 1989; Briske, Fuhlendorf

& Smeins 2005) and the inclusion of spatial effects (Bestel-

meyer, Goolsby & Archer 2011). Analysis of the transition

matrices using Markov chain tools can reveal critical states

under specific environmental conditions such as absorbing

states and states participating in the steady state. Transition

probabilities are in general difficult to determine with field

studies because dynamic aspects such as transitions among

states occur usually at a much larger time-scale than duration

of most field studies (Wiegand, Milton & Wissel 1995; Groff-

man et al. 2006). Application of graph theory allowed us to

reveal the detailed properties of the system dynamics with

direct implications for management, such as identification of

trajectories of degradation or recovery or occurrence of ‘criti-

cal’ states which need to be crossed during degradation (i.e.

articulation vertices; Daehyun & Phillips 2013). Graph theory

can also capture resilient aspects of networks (Strogatz 2001).

ASSUMPTIONS OF OUR APPROACH

Clearly, upscaling comes with the cost of losing some of the

detailed information of the original small-scale model, but in

many cases such detail is not really relevant for questions asked

at larger scales. The ‘art’ is therefore to maintain what is essen-

tial and to discard what is not essential. A potential weakness

(a) (d)

(b) (e)

(c) (f)

Fig. 2. Analysis of transitions probability

matrices (TPMs). (a-c) TPMs as 3D plots

(black bars: transition rates close to 1, light

grey bars: rates close to 0) for a typical climate

series (MAP = 375 mm yr�1; CV = 20%)

and for three stocking rates: 0 (a), 0�5 (b) and 2
(c) sheep per ha. (d-f) Cohesive blocks for the

same matrices interpreted as undirected

graphs. States in a cohesive block (encircled by

polygons with the same colour) are internally

more connected than with states belonging to

other blocks. The colour of the state (i.e. cir-

cles) indicates the number of connections (e.g.

low: ochre, medium: light blue, and high:

magenta). Asterisks indicate the articulation

vertices.
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of our approach is that the number of states may become very

high if the upscaledmodel should capture more detail (e.g. also

keep track of the short-term dynamics; Fig. 3). However, in

general this will not be a severe problem because most of the

theoretically possible states will not be realized (in our case

<0�5%were realized). If strong correlations between state vari-

ables are discovered during the simulations, it is also always

possible to reduce the number of state variables that define the

states a posteriori.

Our approach is nonparametric and does therefore not

depend on a particular structure of the large-scale model, but it

keeps track of the observed transitions in an abstract state

space. Therefore, the most important assumption of our

approach is that changes in the states of a given patch depend

for a set of environmental condition only on the previous state

(so) (i.e. a first-order Markov dependence property), and that

these changes are invariants through time (Balzter 2000). How-

ever, complex systems such as F. pallescens steppes may show

memory effects that can arise in our example if large cohorts of

F. pallescens establish and die together. Appropriate definition

of the states can accommodate memory effects in a way that

the Markov property still holds (see also Acevedo, Urban &

Ablan 1995). For example, if the transition probabilities

depend on the ‘age’ of the state (which may be relevant if

cohorts of F. pallescens die together), we can use an additional

state variable that counts the number of years the patch per-

sisted in a given state before changing. Our approach can also

accommodate situations where different vegetation types (e.g.

driven by different soil types) co-occur in one landscape by

upscaling for each vegetation type a detailed model, and inte-

grating the resulting transition matrices into the framework of

the upscaledmeta-model.

In our example, we assumed that the change in state of a

given patch does not depend on the state of neighboured

patches (i.e. spatial independence property). This is a good

approximation for our model, given that a patch simulated by

COIRON covers an area of approximately 1500 m2 and may

host in the best state (ID = 191) roughly 12 000–16 000 tufts.

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Fig. 3. Test of the upscaled model. Time ser-

ies of F. pallescens cover (a-d) and aerial net

primary productivity (e-h) predicted by the

upscaled model (black bold line) and mean

(bold grey line) and 95% simulation envelopes

(thin grey lines) based on 8 parameterizations

with the small-scale model. (a, e): typical cli-

mate series (MAP = 375 mm�yr�1;

CV = 20%) and no grazing, (b, f): typical cli-

mate series and 0�5 sheep per ha, (c, g): dry cli-

mate series (MAP = 308 mm yr�1;

CV = 21%) and 0�5 sheep per ha, (d, h): typi-

cal climate series and 2 sheep per ha.
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However, expansion of large bare patches or seed input from

neighboured patchesmay influence the transition probabilities.

Our approach can accommodate such ‘internal’ neighbour-

hood effects by expanding the state space by adding a state

variable such as the difference in F. pallescens cover between

the focal patch and the neighbouring patches. In this case, we

need to expand the extent of the original model to 3 9 3

patches. We did not consider here memory effects, but except

of losing some of the detailed short-term fluctuations, the

upscaled model predicted the long-term trends very well

(Fig. 3). Clearly, the level of detail in the states depends on the

level of detail required for the objectives of the study. Testing

the upscaling (e.g. Fig. 3) will show whether the states are

detailed enough.

COMPARISON WITH OTHER APPROACHES

Our approach has a number of advantages compared to alter-

native upscaling methods. For example, model lumping or

use of effective parameters does not allow for representation

of spatial heterogeneity, and scaling up by brute force will not

be feasible for the models of intermediate complexity targeted

by our approach. Fitting a larger scale model to the output of

a detailed smaller scale model (e.g. Tietjen & Huth 2006)

should require similar simulation effort compared with esti-

mation of transition matrices as all relevant circumstances

should be covered. Macroscopic equations (e.g. Strigul et al.

2008) are fascinating, but may work only for certain systems

where key assumptions such as the perfect plasticity approxi-

mation hold (e.g. Strigul et al. 2008). When considering

detailed states, our approach approximates that embed the

original model into a larger scale model (e.g. Meyer, Wiegand

& Ward 2009), but again, this may be computationally unfea-

sible. However, if the scientific question asked requires main-

tenance of more detail the best one can do to increase the

computational speed is to systematically use libraries that

approximate parts of the model which are heavily repeated

(e.g. Seidl et al. 2012).

FEASIB IL ITY OF OUR APPROACH

In principle, our approach can be applied to any dynamic

models for which definition of states and transitions makes

sense. However, the computational effort to estimate transi-

tions matrices is the limiting factor. It depends proportionally

on (i) the time needed for one simulation run of the

original model, (ii) the number of initial conditions, (iii) the

number of parameterizations and (iv) the dimensionality of

1

0

0·2

0·4

0·6

0·8

0

(a)

(b)

(c)

25 50 100

Year

x

(d)

(e)

(f)

Fig. 4. Application of the upscaled model to a water point. (a-c) Time series of the relative forage value of the vegetation states (= ID/191) of a

135 9 210 cell paddock at years 0, 25, 50 and 100. All simulations started with a homogeneous paddock in good condition (ID = 187). Light grey:

highest relative forage value (1), black: lowest forage value (0). (d–f) Relationships between the average relative forage value at different distance

from thewater point for years 25, 50 and 100. The panels show results for the following grazing conditions: (a, d) no grazing; (b, e) high stocking rates

and homogeneous grazing; (c, f) high stocking rate and a water point at the centre of paddock (marked with ‘x’) that generates a spatially heteroge-

neous grazing pressure.
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environmental conditions. For example, if one simulation of

the original model takes one minute, our 17 280 simulations

runs would need 12 days. However, tallying the transition

matrices can easily be parallelized and, for example, 200 cores

would reduce the simulation time to 1�5 h. Thus, our upscaling

approach is feasible for models of intermediate complexity

where one run requires few minutes and where the dimension-

ally of the environmental drivers is not too high (we used

9 9 8 = 72 different environmental conditions).

Conclusions

Upscaling represents a difficult methodological task (Wu &

David 2002; Urban 2005), but is needed in a wide range of

scientific disciplines to extrapolate knowledge from small

scales (small extent and/or fine grains) and low hierarchical

levels to larger scales and upper hierarchical levels. Our

nonparametric upscaling approach applies in a way brute

force to derive transition probabilities for generalized states.

Not relying on a predefined model structure provides it

with flexibility that allows application for a great variety of

models and situations. It is clear that the transition proba-

bilities must be enriched in most cases with additional rules

that describe phenomena occurring at the larger scale.

While our approach can describe the influence of the state

of a neighboured patch by appropriate definition of the

state variables and simulating a larger area of the original

model, inclusion of higher scale processes can be accom-

plished by adopting a meta-model approach (Urban 2005).

In this approach, rules are added to the transition probabil-

ities that describe spatial heterogeneity at the large scale as

well as spatial interactions among patches. We expect that

our nonparametric upscaling approach can be applied to a

wide range of simulation models of intermediate complexity

and closes a gap in our ability to scale up from small scales

where biological knowledge is available to the larger, man-

agement relevant scales.
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