

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: M. A. Rodriguez Olguin, N. Herbert, H. Atia, M. Bosco, E. L. Fornero, R. Eckelt, D. A. De Haro-Del Rio, A. Aguirre, H. J.G.E. Gardeniers and A. Susarrey-Arce, *Catal. Sci. Technol.*, 2022, DOI: 10.1039/D2CY00143H.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

View Article Online

View Journal

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM

4 M.A. Rodriguez-Olguin^{1,#}, R. N. Cruz-Herbert^{2,#}, H. Atia³, M. Bosco^{4,5}, E.L. Fornero^{4,6}, R.

5 Eckelt³, D. A. De Haro Del Río^{2,*}, A. Aguirre^{4,*}, J.G.E. Gardeniers^{1,*}, A. Susarrey-Arce^{1,*}

- ¹Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO. Box 217, 7500AE,
 Enschede, The Netherlands
- 8 ²Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba S/N.,
- 9 San Nicolás de los Garza, Nuevo León, 64455, México
- 10 ³Leibniz Institute for Catalysis, Albert-Einstein-Straße 29a, D-18059, Rostock, Germany
- ⁴Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional
 del Litoral, CONICET, Güemes 3450, S3000GLN, Santa Fe, Argentina
- ⁵Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Santiago del Estero
- 14 2829, Santa Fe, 3000, Argentina
- ⁶Facultad de Ingeniería en Ciencias Hídricas, UNL, Ciudad Universitaria. Ruta Nacional N°
 168 Km 472,4, 3000 Santa Fe, Argentina.
- [#]These authors contributed equally to this work
- Corresponding authors: A. Aguirre (aaguirre@santafe-conicet.gov.ar); D. A. De Haro Del Río
 (david.dharodlr@uanl.edu.mx); J.G.E. Gardeniers (j.g.e.gardeniers@utwente.nl); A. SusarreyArce (a.susarreyarce@utwente.nl)

21 Abstract

View Article Online DOI: 10.1039/D2CY00143H

Alumina (Al₂O₃) is one of the most used supports in the chemical industry due to its exceptional 22 thermal stability, surface area, and acidic properties. Mesoscopic structured alumina with 23 adequate acidic properties is important in catalysis to enhance selectivity and conversion of 24 certain reactions and processes. This study introduces a synthetic method based on 25 electrospinning to produce Al₂O₃ nanofibers (ANFs) with zeolite mordenite (MOR) 26 nanocrystals (hereafter, hybrid ANFs) to tune the textural and surface acidity properties. The 27 hybrid ANFs with electrospinning form a non-woven network with macropores. ANF-HMOR, 28 i.e., ANFs containing protonated mordenite (HMOR), shows the highest total acidity of ca. 276 29 µmol/g as determined with infrared spectroscopy using pyridine as a molecular probe (IR-Py). 30 IR-Py results reveal that Lewis acid sites are prominently present in the hybrid ANFs. Brønsted 31 acid sites are also observed in the hybrid ANFs and are associated with HMOR presence. The 32 33 hybrid ANFs functionality is evaluated during the methanol dehydration to dimethyl ether 34 (DME). The proof of concept reaction reveals that ANF-HMOR is the more active and selective 35 catalyst with 87% conversion and nearly 100% selectivity to DME at 573 K. The results demonstrate that the textural properties and the acid site type and content can be modulated in 36 hybrid ANF structures, end-synergistically improving selectivity and conversion during the 37 methanol dehydration reaction. From a broader perspective, our results promote the utilization 38 39 of hybrid structural materials as a means to tune chemical reactions selectively.

40 Keywords: electrospinning, Al₂O₃, nanofibers, mordenite, acidity, methanol dehydration,

41 DME

42 Introduction

View Article Online DOI: 10.1039/D2CY00143H

Al₂O₃ in heterogeneous catalysis has been used to support alkali metals, noble metals, and metal 43 oxides with a wide range of applications in biomass upgrading, oil industry, and automotive 44 sector.^{1–8} Such a wide range of applications is due to the various Al₂O₃ polymorphs,^{9,10} each 45 with unique properties, such as thermal stability, acidity, and high specific surface area, targeted 46 for specific reactions.^{11–16} Besides the current synthetic approaches in Al₂O₃,^{16–24} structuring of 47 mesoscopic scale Al_2O_3 remains a challenge. Typical methods to structure Al_2O_3 are extrusion⁸, 48 injection molding,²⁵ and 3D printing.^{25,26} These methods search to improve reaction rates via 49 50 mass transfer and diffusivity varying the Al₂O₃ geometries. Although such Al₂O₃ structures are often relevant in catalysis, sufficient attention should be paid to the chemical properties of 51 Al₂O₃, such as the nature of the acid sites to promote acidity in structural acid catalysts. 52

53 Electrospinning is a convenient method that provides sufficient versatility to optimize chemical properties in structured materials.^{27–36} The method produces nanofiber-like structures formed 54 during the withdrawal of a jet from a droplet subjected to an external electric field, which later 55 is deposited over a collector plate for further treatment.^{37–39} Although the approach has been 56 primarily used in the biomedical field,⁴⁰ it is increasingly used for energy storage, energy 57 conversion, and catalysis.^{41,42,43} In the past, ceramic materials, including alumina, have been 58 subject to modifications that have led them to have one-dimensional (1-D) configurations, such 59 as nanofibers.⁴⁴ These arrangements have attracted attention due to the unique functionality 60 provided by nanofibers. For example, high mechanical strength, high surface-area/weight ratio, 61 chemical composition, and stability.44,45,46 Recently, M.A. Rodriguez-Olguin et al.43 62 demonstrated that acid site content can be enhanced in ANFs. The authors use various 63 aluminum precursors during electrospinning. From the precursor assessment, Aluminum 64 Di(sec-butoxide)acetoacetic Ester Chelate (ASB) is identified as the ideal precursor to 65 obtaining ANFs with a large amount of weak and medium strength Lewis acid sites (LAS). 66

Catalysis Science & Technology Accepted Manuscript

Furthermore, ASB chelate promotes mesopores of 2-50 nm in size.^{47–51} Macropores (i e^{Vise} 50^{cte Online} nm), especially relevant in catalysts, can also be observed between the fiber-to-fiber interspaces.⁴³ From this perspective, it is fair to say that the benefit of nanofibers relies on its hierarchy having multiple levels of porosity that combine meso-/macro-pores.

Similarly, multilevel porosity can be found in hierarchical catalysts, such as zeolites. Zeolite 71 has pore sizes ranging from micropores to mesopores and macropores. 52,53,54 These pores are 72 composed of Si and Al atoms coordinated with oxygen, forming channel networks of diverse 73 sizes. However, if the zeolite pores are too small, the reaction might be diffusion or mass 74 transport limited. Synthetic methods to increase the meso-/macropores availability have been 75 established to reduce transport issues. A widely applied approach in zeolites is leaching.⁵⁵ 76 However, leaching involves several synthetic steps that are composition and zeolite type 77 dependent. An interesting alternative is providing structure to existing catalysts, such as 78 zeolites. Zeolites are compatible with synthetic approaches, such as electrospinning.^{56–62} A key 79 aspect of electrospinning is that it can facilitate the formation of macropores without limiting 80 mesopore formation.43 81

Reports have demonstrated advantages for shaped zeolites as either single or hollow 82 nanofiber.^{56,57} This includes crystalline fibers of zeolite Y,^{58,59} ZSM-5,^{60,61} and SUZ-4.⁶² Other 83 approaches used to structure zeolites involve templates or zeolite mixtures with more materials 84 to create composites. For example, F. Ocampo et al.63 developed a multimodal pore size 85 distribution using a zeolite and a glass monolith. The authors demonstrate the HZSM-5/glass 86 monolith functionality during n-hexane cracking. Following a similar concept, zeolite Y, MFI, 87 or Beta on α -SiC foams, carbon nanotubes, or TiO₂ nanofibers have been synthesized and tested 88 during a catalytic reaction.^{64,65,66} From the previous examples, MOR shaped as nanofibers or 89 MOR composites within a nanofiber are limited but increasingly recognized as an effective way 90

to enhance conversion and selectivity in chemical reactions, such as CO₂ methanation using Aricle Online
 silica MOR composite.⁶⁷

The rationale behind using MOR in structured materials as composite is to find more 93 94 dimensionally refined systems that allow easy access to molecules to adsorb, react and desorb over LAS and Brønsted acid sites (BAS).⁶⁸ This is the case for acid catalysts, widely used for 95 alcohol dehydration reactions, such as methanol dehydration to DME.^{69,70} An accepted 96 mechanism for the mentioned reaction occurs with the adsorption of the alcohols over a LAS 97 or BAS, and an adjacent LAS forming two species, which produce DME and water upon 98 condensation.⁷¹ However, in this reaction, a tradeoff between the LAS and BAS strength has to 99 be found because it can significantly alter methanol dehydration products.⁷² It is generally 100 accepted that the DME synthesis preferably proceeds on a solid acid catalyst with weak and 101 moderate acidic sites. For strong BAS commonly found in MOR,^{73,74} a considerable amount of 102 side-products can be formed. The products consist predominantly of hydrocarbons or coke, 103 which affect the selectivity and lifespan of the catalyst. An alternative that can compensate for 104 105 high BAS contents is a composite, for example, MOR with Al₂O₃ shaped as nanofiber.⁷⁵ Al₂O₃⁷⁶⁻⁸¹ is a known catalyst used to dehydrate methanol and produce DME by following a 106 proposed mechanism based purely on LAS.^{82,83} From this perspective, a synergy between acid 107 catalysts containing LAS and BAS has to be found to tune chemical reactions like DME 108 selectively. 109

The present work synthesized nanofibers composed of amorphous Al_2O_3 and MOR with electrospinning. The synergy of MOR and amorphous Al_2O_3 is demonstrated by comparing the hybrid ANFs with Al_2O_3 shaped as nanofiber. The added value of the structured fibers is assessed by comparing hybrid ANFs against Al_2O_3 and MOR without nanofiber shape. Structural and morphological analysis indicates the presence of MOR in the ANFs. Textural analysis corroborates our findings, where a decrease in the surface area for hybrid fibers is Catalysis Science & Technology Accepted Manuscript

Catalysis Science & Technology Accepted Manuscript

observed. Furthermore, hybrid ANFs show the highest acidity as determined with IR-Pyvierheicle Online acid sites present in the hybrid ANFs are LAS and BAS, while for the control samples of Al₂O₃, 117 only LAS has been found. The hybrid ANFs functionality is assessed during methanol 118 dehydration to DME as a proof of concept reaction. The results reveal a synergetic effect 119 between Al₂O₃ and MOR in the nanofibers and demonstrate the added value of hybrid materials 120 in chemical reactions. 121 122

116

124 Microwave-assisted zeolite synthesis

Microwave-assisted hydrothermal synthesis was carried out to produce NaMOR nanocrystals. 125 Colloidal silica (Ludox HS-40, 40% w/w, Aldrich), Al(OH)₃ (98%, Aldrich), and NaOH (98%, 126 Sigma-Aldrich) were used as precursors to obtain an initial gel with the ratio 6 NaOH: Al₂O₃:30 127 SiO₂: 780 H₂O. In a typical run, 1.6 g of Al(OH)₃ were dissolved in 2.2 g of NaOH (98%, 128 Sigma-Aldrich) and 61 g of deionized water. Then, 11.4 g of colloidal silica were added until 129 complete dissolution, and 3g of MOR nanocrystals from Zeolyst were used as seeds to enhance 130 131 the crystallization rate. The resulting suspension was stirred for 1 h at 450 rpm. After, the obtained gel was placed in a Teflon autoclave belonging to the Milestone Flexiwave 132 microwave. The crystallization conditions followed a ramp of 20 K/min to reach 453 K and 133 used 600 W as maximum power for the synthesis time (1 h). This strategy allows the reduction 134 of the synthesis time that has traditionally been reported from 24-48 h. Finally, the material was 135 recovered by filtration, washed to a pH lower than 9, and dried at 343 K for 24 h in air. The 136 final Si/Al ratio as determined with EDX is 10.5 for all NaMOR, which are then used during 137 the ionic exchange (see below). 138

139 **Protonation of zeolite mordenite**

The protonation of the NaMOR nanocrystals follows a post-treatment using 1 M NH₄NO₃ (ACS grade, Sigma Aldrich) solution in deionized water. First, NaMOR nanocrystals were dispersed in the NH₄NO₃ solution, 1 g of solid per 10 ml of solution, and stirred at 353 K for 2 h. Then, the material was washed and filtered once the time had elapsed. The product obtained was placed in the oven for 12 h, and once the time finished, the ion exchange was repeated 3 times. At the end of the ion exchanges, the samples were calcined at 773 K for 3 h in air. The material obtained was labeled as HMOR. Catalysis Science & Technology Accepted Manuscript

catalysis Science & Technology Accepted Manuscript

147 Hybrid fibers synthesis

View Article Online DOI: 10.1039/D2CY00143H

The hybrid ANFs containing either NaMOR or HMOR were prepared by electrospinning using 148 a commercial electrospinning system from IME Technologies (The Netherlands). The IME 149 system was operated utilizing a stainless-steel needle of 0.4 mm inner diameter at a separation 150 distance of 12 cm from the aluminum collector plate. First, a mixture consisting of 4 %p/v 151 C₁₄H₂₇AlO₅ (ASB) technical grade from Alpha Aesar, 6 %p/v polyvinylpyrrolidone (PVP, MW 152 ~1,300,000), and 0.26 %p/v t-octylphenoxypolyethoxyethanol (Triton x100, Sigma-Aldrich) 153 dissolved in ethanol (100% Tech. grade, BOOM B.V., The Netherlands) was used as the 154 aluminum precursor solution to generate ANFs. To make the hybrid ANFs, the synthesized 155 NaMOR, or HMOR nanocrystals, were incorporated into the ASB solution, reaching a final 156 concentration of 0.33 %p/v in each case. The prepared solutions were electrospun at 157 environmental temperature and humidity using a potential of 18 kV and at an 8 mL/h infusion 158 rate. After fiber deposition, all-fiber samples were dried in an oven at 353 K for 12 h to remove 159 the excess solvent. Subsequently, they were calcined (Nabertherm LH 15/12) in air with a 160 temperature ramp of 0.5 K/min to 623 K for 3 h and then 1 K/min until reaching 773 K for 4 h 161 to ensure the production of amorphous alumina.⁴³ Hereafter, the obtained hybrid ANFs are 162 named ANF-NaMOR and ANF-HMOR for simplicity. It should be noted that commercial 163 MOR (CBV 10A, Zeolyst) was also used following the previously described hybrid nanofiber 164 preparation. Control samples of particulate alumina (Al₂O₃-NP) and particulate alumina 165 166 containing HMOR (Al₂O₃-HMOR-NP) were prepared by drop-casting using the same ASB, NaMOR, HMOR precursor solutions in crucibles. These samples were annealed following the 167 same procedure as ANF-NaMOR and ANF-HMOR samples. 168

169 Characterization

170 Morphological characterization

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM

High-resolution (HR)-SEM images of samples were taken using a Zeiss MERLIN SEM tele Online
microscope operated at 1.40 kV coupled with High-Efficiency Secondary Electron Detector
(HE-SE2). SEM-scanning transmission electron microscope (STEM) was recorded at 20kV.
Prior to STEM analysis, samples were sonicated in ethanol, which led to the fragmentation of
the fibers into smaller fiber pieces.

176 Structural characterization

The crystalline structure of NaMOR and HMOR nanocrystals was analyzed by a Siemens (D5000, E04-0012 series) diffractometer, using CuK α radiation ($\lambda = 1.5418$ Å) operated at 35 kV, 25 mA, in the 2 θ range between 5-50°, employing a step size of 0.02°/min and step time of 4 s. The hybrid fibers were analyzed by X-ray powder diffraction (D2 PHASER, Bruker) using Cu K α radiation ($\lambda = 1.5418$ Å) operated at 30 kV, 10mA, in the 2 θ range between 7-45°, employing a step size of 0.05° and a scan speed of 0.1°/s. A Si low background sample holder (Bruker) was used for the hybrid samples.

184 Chemical characterization

185 X-ray photoelectron spectroscopy (XPS) general survey analysis was performed in a Quantera 186 SXM machine from Physical Electronics using monochromated Al K α (1486.6 eV). All 187 samples were fixed in a stainless-steel holder. Low energy electron flood gun was used to 188 supply the missing photo- and Auger electrons. The electron binding energies were referenced 189 to aliphatic carbon C 1s at 284.8 eV. The obtained peak analysis was made using the PHI 190 Multipak V9.9.0.8 software (Physical Electronics, Inc.).

191 **Textural analysis**

BET surface area, pore-volume, and pore diameter of the samples were determined from the
nitrogen adsorption/desorption isotherms at 77K on a Micrometrics ASAP 2010 instrument.

 Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM.

 (c) BY

 This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

 Co.
 Co.

Before the measurement, each sample was evacuated at 473K for 4 h. The pore size distribution scie Online
were calculated from the desorption branch of the isotherm using the Barrett-Joyner-Halenda
(BJH) model.⁵⁴

197 NH₃-TPD

To determine the total acidity properties of the samples, NH₃-TPD analysis was performed 198 using a Micromeritics Autochem II 2910 instrument. Prior to NH₃ adsorption, 150 mg of the 199 sample was loaded into a U-shaped quartz reactor and heated from RT to 673 K with 10 K/min 200 in a flow of He (50 ml/min), held for 30 min at 673 K (to remove any adsorbed species on the 201 surface). After that, the reactor was cooled to 373K. The sample was saturated with 1% NH₃ in 202 He (50 ml/min) for 120 min at 373 K, followed by helium flushing (50 ml/min) for 60 min at 203 204 373 K to remove physisorbed NH₃. The sample was then heated to 1073 K at a rate of 10 K/min in He flowed (50 mL/min) and held at 1073K for 30 min for NH₃ desorption. The effluent gasses 205 206 were analyzed with a Quadrupole mass spectrometer (Balzers Omnistar) using m/z = 15.

207 IR measurements and Pyridine adsorption

208 The nature and strength of acid sites were determined through pyridine (Py) adsorption over the materials and subsequent temperature-programmed desorption (TPD-Py). The samples 209 were analyzed with IR spectroscopy through in situ transmission on self-supported wafers (10-210 15 mg, 13 mm of diameter) pressed at 5 t cm⁻² (490 MPa). The wafers were placed in a Pyrex 211 IR cell fitted with water-cooled NaCl windows. More details of the experimental setup can be 212 found elsewhere.⁸⁴ Before the adsorption experiments, each sample was pretreated in situ at 213 723K (10 K/min) for 30 min under N₂ flow (50 sccm), then cooled down to 303K, and the 214 reference IR spectra of the "clean wafer" were taken. The samples were exposed to a flow of 215 N₂ containing evaporated Py. The physisorbed Py was further removed under flowing N₂ until 216 the spectra of the adsorbed Py remained stable (about 60 min). The thermal desorption of Py 217

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM

was measured from 303K to 723K with 5 K/min in a flow of N_2 (50 ml/min). The spectra were cle online acquired with a Nicolet Magna 550 FTIR spectrometer with a cryogenic MCT detector (4 cm⁻¹ resolution, 25 scans). The gas used in this study was high purity grade N_2 (INDURA UHP 99.999%) and was further purified through a molecular sieve (3 Å), and MnO/Al₂O₃ traps to remove water and oxygen impurities, respectively.

223 Catalytic test

The synthesized materials were tested for the dehydration of methanol to dimethyl ether (DME) 224 between 423 and 723 K (heating ramp of 1K/min) in a fixed bed glass tubular microreactor (i.d. 225 = 5.3 mm). The reactor was loaded with 50 mg of catalyst diluted (1:5) with milled quartz (200 226 mesh). The methanol concentration was 7% v/v in Ar obtained from a gas saturator filled with 227 pure methanol immersed into a thermostatic bath. The total flow rate was set to 20 mL/min, 228 giving a weight hourly space velocity (WHSV) of 2.3 gmethanol/gcat h. The pipelines were 229 heated to prevent methanol and products condensation. Before the catalytic test, the samples 230 were pretreated at 673 K under the flow of Ar (50 mL/min) for 1 h. The outlet gas stream was 231 analyzed continuously with a mass spectrometer Prisma QMG220 (Pfeiffer). The following 232 mass/charge signals were recorded: 2(H₂), 16 (CH₄), 18 (H₂O), 28 (CO), 29, 31 and 32 233 234 (methanol), 40 (Ar), 44 (CO₂), 45 (DME), 58 and 59 (olefins).

View Article Online

DOI: 10.1039/D2CY00143H

235 Results and discussions

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM

236 Hybrid ANFs containing MOR

The synthesis of the hybrid ANFs started by selecting the MOR crystallite size. Commercial 237 NaMOR, which has an average crystallite size of 220 nm (Figure S1a), has been used during 238 electrospinning. However, it is found that this leads to severe heterogeneities after annealing 239 240 (Figure S1b)). These heterogeneities are attributed to the relatively large (compared to the nanofiber dimensions) crystallite size of NaMOR, which upon annealing, promotes nanofiber 241 instability leading to hybrid ANFs without shape (Figure S1b)). In contrast to the commercial 242 NaMOR, the synthesized NaMOR shown in **Figure S2** has smaller crystallite sizes ranging 243 between 110 and 118 nm. The crystallite size is nearly half of the nanofiber diameter. From the 244 results, small MOR crystallite can lead to fewer heterogeneities in ANFs, as shown in Figure 245 1. In this Figure, the hybrid ANFs (Figure 1c) and Figure 1e)) retain their nanofiber shape, 246 similar to ANFs in Figure 1a) that show a non-woven fiber morphology. The estimated 247 nanofiber diameters are 321±74 nm for ANFs, 315±120 nm for ANFs containing NaMOR 248 (ANF-NaMOR), and 241±76 nm for ANFs containing HMOR (ANF-HMOR). 249

A detailed structural analysis using dark-field STEM images is also presented in Figures 1b), 250 1d), and 1f) to provide insights into the hybrid ANFs morphology. From the images, less dense 251 ANFs nanofibers are found in **Figure 1b**). The effect becomes evident at the edges of the ANFs, 252 253 with small pore openings (see yellow arrows). In contrast, STEM images of ANF-NaMOR and ANF-HMOR in Figures 1d) and 1f) show denser areas at the borders and center of the fiber 254 structure, possibly due to MOR nanocrystals inside the fibers, which could act as a 'filler' 255 256 material densifying the nanofibers. It should be noted that the high amount of broken fibers is due to the sonication used during specimen preparation for STEM. To this end, EDS mapping 257 in Figure S3 is used to verify the hybrid nanofiber constitution and generate insights into the 258

- 259 MOR distribution by looking at the silicon K α 1 signal. Silicon signal has been found in whether the silicon K α 1 signal. Silicon signal has been found in whether the silicon K α 1 signal.
- 260 non-woven structure and specific densified areas.

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM

Figure 1. SEM and dark-field STEM images of (a,b) ANFs, (c,d) ANF-NaMOR and (e,f) ANFHMOR. The yellow arrows highlight the pore openings in the fibers.

The chemical composition at the surface of the hybrid ANFs from **Figure 1** is analyzed with XPS to determine the types of species present on the hybrid ANFs (**Figure S4** and **Table S1**). In short, elemental analysis with XPS in **Table S1** reveals nitrogen presence in MOR. The results suggest that NH₄⁺ has exchanged with NaMOR to form the acidic form of MOR after

calcination. Temperature desorption carried out for HMOR demonstrates that at 773 K NELArticle Online 268 could be retained at the catalyst.⁸⁵ For temperatures 823 K, the NH₄⁺ in the form of NH₃ has 269 not been detected.⁸⁵ For ANF-HMOR in Table S1, no nitrogen has been observed. NH₃-TPD 270 is carried out for ANF-NaMOR and ANF-HMOR to demonstrate an increase in acidity in ANF-271 HMOR, most probably from the HMOR. In this case, ANF-NaMOR is used as a control. ANF-272 This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. NaMOR show 112 µmol/g of NH₃ desorbed, whereas ANF-HMOR has 216 µmol/g of NH₃ 273 274 desorbed. The general survey of the nanofibers revealed only the presence of aluminum and oxygen. Therefore, we can ensure that neither the ANFs nor hybrid fibers contain impurities 275 from the electrospinning precursors. Additionally, to verify the MOR content in ANFs, XRD is 276 277 assessed. The XRD diffraction patterns of NaMOR and HMOR nanocrystals and the hybrid ANFs are presented in Figure 2. First, we investigate the crystallographic features of the 278 NaMOR before and after ion exchange with NH₄⁺. The XRD diffraction patterns of NaMOR 279 280 and HMOR are presented in Figure 2a). The XRD for NaMOR shows diffraction peaks at 2θ $= 9.8^{\circ} (200), 13.5^{\circ} (111), 19.7^{\circ} (330), 22.3^{\circ} (150), 25.7^{\circ} (202), 26.4^{\circ} (350), 27.7^{\circ} (511), 31.0^{\circ}$ 281 (402) which match with literature from MOR ($2\theta = 9.8^{\circ}$, 13.5° , 19.6° , 22.3° , 25.7° , 26.3° , 27.5° , 282 and 30.9°).^{86–88} HMOR present similar diffraction peaks as NaMOR ($2\theta = 9.8^{\circ}$, 13.5°, 19.7°, 283 22.4°, 25.7°, 26.4°, 27.7°, and 31°). No other crystallographic phase is observed for both 284 3 285 samples. Figure 2b) compares the HMOR nanocrystals with ANF-NaMOR and ANF-HMOR hybrid fibers. In the same Figure 2b), XRD of nanofibers is presented. No crystalline phase 286 has been observed for the ANF sample, confirming the amorphous characteristic of ANF. ANF-287 288 NaMOR and ANF-HMOR diffractograms present peaks that correspond to MOR (Figure 2a)). No other crystallographic phase for the hybrid ANFs is observed. 289

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM.

3

290

291

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM

Figure 2. a) XRD diffraction pattern of bare NaMOR and HMOR nanocrystals and b) ANFs, 292 ANF-NaMOR, and ANF-HMOR.

The effect of MOR has been observed in **Figure 1** with more densified hybrid nanofibers. The 293 presence of MOR in the hybrid fibers became evident with the XRD analysis in Figure 2. 294 However, an essential aspect is understanding how MOR affects the surface area in the 295 nanofibers. In **Table 1**, the total surface area of the nanofibers is presented. From the produced 296 297 catalysts, ANFs possess the highest surface area (192 m^2/g), followed by hybrid ANF-HMOR (121 m²/g) and ANF-NaMOR (107 m²/g). The reason for a reduced surface area for nanofibers 298 is that the NaMOR or HMOR might block pore accessibility in ANFs.^{54,89,90} 299

To generate insights into the pore distribution for ANFs with and without MOR, the analysis of 300

the BET isotherms is presented in Figure 3. For ANFs, ANF-NaMOR, and ANF-HMOR in 301

Figure 3a), adsorption-desorption isotherms showed hysteresis loops in the multilayer step, 302 which is associated with capillary condensation type IV isotherms for mesopores with H2 303 hysteresis according to IUPAC classification.⁹¹ The hysteresis loop is characteristic of 304 mesoporous materials with cage-like pores or pores with constrictions at the pore opening.^{92,93} 305

Catalysis Science & Technology Accepted Manuscript

306	The pore distribution plots are presented in Figure 3b) and revealed a wide distribution of pore 400143H
307	bodies, with a majority distribution of pore widths around 6 nm for ANFs and hybrid ANFs
308	with NaMOR and HMOR. Figure 3b) shows that ANFs have the highest mesopore and
309	incremental pore volume, followed by ANF-HMOR and ANF-NaMOR. This indicates that the
310	MOR modifies the textural properties of ANFs by decreasing the number of pore bodies. The
311	results agree with STEM images in Figures 1b), 1d), and 1f).
312	Taking the results from the ANFs and hybrid ANFs together, the effect of structuring should be
313	compared with the same type of catalysts but without nanofiber shape, as shown in Figure S5.
314	The Al ₂ O ₃ -NP and Al ₂ O ₃ -HMOR-NP control samples have been produced using the same
315	alumina and HMOR precursors. The total surface area of Al ₂ O ₃ -NP and Al ₂ O ₃ -HMOR-NP are
316	presented in Table 1 . This table shows a decrease in surface area of approximately $30 \text{ m}^2/\text{g}$ for
317	Al ₂ O ₃ -NP compared to the ANFs counterpart. Similar results are observed for Al ₂ O ₃ -HMOR-
318	NP and the hybrid ANF-HMOR. We hypothesize that the ANFs are less prone to sintering due
319	to restriction of the growth of crystals in the fibers (by confinement) and thus present a higher
320	surface area, as shown in Table 1. When comparing the BET isotherms, variations between the
321	Al ₂ O ₃ -NP or Al ₂ O ₃ -HMOR-NP are observed. In this case, the type IV adsorption-desorption
322	isotherm shape with an H3 hysteresis loop has been found for Al ₂ O ₃ -NP and Al ₂ O ₃ -HMOR-NP
323	(Figure 3a)). Here, the sharp increase at high P/P_0 (0.85-0.99) suggests the presence of

324

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

331

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM.

aggregated slit-shaped pores, which may originate in the interparticle voids. For isotherms visit ficte Online hysteresis loop at high P/P_0 , it is likely to observe wide pore size distribution,^{94–97} as observed in the inset in Figure 3b). The pore size corresponds to Al₂O₃-NP, and Al₂O₃-HMOR-NP is 9 nm, similar to the hybrid ANFs. These results might indicate that the hybrid ANFs also provide

access for the diffusion of N₂ molecules, most probably due to the fiber network.⁴³ 328

Figure 3. (a) Adsorption-desorption isotherms and (b) pore size distribution for ANFs, ANF-329

NaMOR, ANF-HMOR, Al₂O₃-NP, and Al₂O₃-HMOR-NP. 330

Table 1. Fiber diameter, surface area, pore size, and total acidity of ANFs, ANF-NaMOR, ANF-332

HMOR, Al₂O₃-NP, and Al₂O₃-HMOR-NP. 333

Sample	Surface area (m²/g)	Total acidity at 373 K (μmol/g)	Total acidity at 373 K (μmol/ m²)
ANFs	192	178	0.9
ANF-NaMOR	107	116	1.1
ANF-HMOR	121	276	2.3
Al ₂ O ₃ -NP	162	255	1.6

Al ₂ O ₃ -HMOR-NP 94 184 2.0 View Arti
--

334

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM.

Pyridine (Py) is used as a probe molecule to determine the nature of the acid sites (i.e., either 335 LAS or BAS).⁹⁸ In Figures 4a) and 4b), the FTIR spectra of Py adsorbed at 303 K are presented. 336 The samples composed of alumina mainly (ANFs, Al₂O₃-NP), Al₂O₃-HMOR-NP, and hybrid 337 alumina (ANF-NaMOR, ANF-HMOR) present an intense band at 1446, 1577, and 1614 cm⁻¹. 338 In the case of MOR (NaMOR, HMOR) used for comparison, these peaks are weaker. These 339 bands are attributed to Py adsorbed on LAS, produced by uncoordinated Al³⁺ or cation 340 vacancies.⁹⁹ The signal at 1545 cm⁻¹ corresponds to Pv adsorbed on BAS (PvH⁺) (Figure 4b)). 341 Among the MOR, only HMOR shows an IR band at 1545 cm⁻¹. This band confirms that 342 HMOR, ANF-HMOR, and Al₂O₃-HMOR-NP, contain BAS. The results help to validate the 343 presence of HMOR in the ANFs. NaMOR and ANF-NaMOR do not reveal BAS, and thus, are 344 345 not tested during DME production. Interestingly, it should be noted that for all samples, two peaks close to 1594 cm⁻¹ and 1491 cm⁻¹ are present and are assigned to hydrogen-bonded Py 346 and Py adsorbed on both LAS and BAS.¹⁰⁰ 347

Figure 4. FTIR spectra after Py adsorption at 303 K. a) Full Py range. b) Detailed Py spectrace Online Dor 20.1039/D2CY00143H
highlighting the BAS band.

We continued with Py-TPD analysis to determine the amount and the strength of LAS and BAS 351 352 from Figure 4. Py-TPD in Figure 5 shows the LAS and BAS density (expressed in µmol/g) as a function of temperature, estimated using the 1446 cm⁻¹ and 1545 cm⁻¹ IR bands, where the 353 band at 1446 cm⁻¹ is used to estimate the total amount of LAS. Several authors¹⁰¹⁻¹⁰³ showed 354 that the integrated molar extinction coefficients of LAS do not depend on the nature of oxides, 355 the structure, and the strength of acid sites. Therefore, the Emeis's¹⁰¹ averaged extinction 356 coefficients of Py adsorption on LAS (2.22 cm µmol⁻¹) and BAS (1.67 cm µmol⁻¹) are used to 357 quantify the number of sites. For BAS, the IR band at 1545 cm⁻¹ is used for quantification. 358

Catalysis Science & Technology Accepted Manuscript

View Article Online

DOI: 10.1039/D2CY00143H

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM.

359

Figure 5. Py-TPD for ANF, ANF-NaMOR, ANF-HMOR, Al₂O₃-NP, Al₂O₃-HMOR-NP,
HMOR, and NaMOR. In a), b) LAS (μmol/g), and c) BAS (μmol/g) are shown for various
samples.

From **Figure 5a**), at 303 K, the hybrid ANF-HMOR has the highest LAS content. This can be correlated to the presence of HMOR. Contrary to ANF-HMOR, ANF-NaMOR shows the lowest LAS concentration, probably because the NaMOR blocks the acid sites of the

(00)

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM.

nanofibers. Lastly, the LAS content remains also low in ANFs. In Figure 5a), the experiments of Content remains also low in ANFs. In Figure 5a), the experiments of Content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content remains also low in ANFs. In Figure 5a), the experiments of the content re 366 demonstrate that LAS content in ANF-HMOR remains higher than Al₂O₃-NP, Al₂O₃-HMOR-367 NP, or MOR, as shown in Figure 5b). A possible explanation for ANF-HMOR is that 368 incorporating modifiers on alumina (e.g., HMOR) might promote dealumination, leading to the 369 formation of multiple Al species. Along with HMOR, such Al species can increase the amount 370 of LAS.^{104,105} The results indicate that structured hybrid systems, such as ANF-HMOR can 371 372 achieve high acidity, even higher than unstructured acid catalysts (Figure 5b)). The rationale behind our observations is that the nanofiber structure can help densify the acid sites and 373 provide better access to molecules (such as Py), which might be challenging in unstructured 374 375 acid catalysts (Figure S5). Furthermore, Py-TPD reveals that Py desorbs relatively fast from LAS at low temperatures (300-350 K), indicating the presence of weak acid sites (Figure 5a)). 376 At temperatures higher than 350 K, a slight decrease in Py desorption, most probably to the 377 378 presence of medium and strong acid sites.⁴³ Interestingly, after 500 K, all the alumina-modified samples retain similar LAS, except for the ANF-HMOR, where the Py is still adsorbed at 700 379 K, suggesting the presence of strongly adsorbed Py species over LAS. The results in Figures 380 5a) and 5b) (also shown in Table 1) confirm that hybrid ANF-HMOR is the most acid catalyst 381 (276 µmol/g), followed by ANFs (178 µmol/g) and ANF-NaMOR (116 µmol/g). 382

In **Figure 5c**), HMOR presents the highest BAS density. Py starts desorbing at 400 K and remains adsorbed until 723 K, which means it has the highest Brønsted acid strength. Hybrid ANF-HMOR and Al_2O_3 -HMOR-NP present less BAS density due to the lower amount of HMOR. BAS disappears at 460 K in both cases, indicating that sites have a lower BAS strength. It is essential to mention that although Py desorption occurs in **Figure 5**, the acid sites remain present and can help to catalyze reactions, such as methanol dehydration to DME.

391 392 393 ns.Attribution \$.0 Unported Licence 394 Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM 395 This article is licensed under a Greative Commo

396

The amount of BAS and LAS for three different temperatures (303, 373, and 423 K) from the Online 389

Figure 5 are shown in Table 2. In Table 2, the ANF-HMOR has the highest acidity and 390 LAS/BAS ratios at 303 K and 373 K, except at 423 K. At 423 K, BAS content is slightly high for ANF-HMOR (9 µmol/g) and reflected in Table 2. Overall, Figure 5 shows that

incorporating MOR in the alumina modulates the acid site amount and nature.

Table 2. Calculated LAS, BAS, total acidity (µmol/g), and LAS/BAS ratios samples at various selected temperatures.

Т	Т 303К 373К			423K								
Sample	LAS	BAS	Total acidity	LAS/BAS	LAS	BAS	Total acidity	LAS/BAS	LAS	BAS	Total acidity	LAS/B .S
ANFs	351	-	351	-	178	-	178	-	95	-	95	
ANF-NaMOR	283	-	283	-	117	-	117	-	73	-	73	- 9
ANF-HMOR	469	12	481	38	276	14	290	20	204	9	213	23
Al ₂ O ₃ -NP	406	-	406	-	255	-	255	-	148	-	148	- >
Al ₂ O ₃ -HMOR-NP	298	11	309	27	178	6	184	30	101	2	103	49
HMOR	14	42	56	0.33	-	43	43	-	-	42	42	- 0
NaMOR	66	-	66	-	37	-	37	-	27	-	27	

Methanol dehydration to DME 397

The methanol dehydration to DME is assessed as a proof of concept reaction to underline the 398 399 functionality of the hybrid nanofibers. Figure 6a) shows the methanol conversion of ANF, ANF-HMOR, Al₂O₃-NP, Al₂O₃-HMOR-NP, and HMOR over a temperature range of 423 and 400 673 K. From these catalysts, HMOR starts converting the methanol at lower temperatures (<423 401 K) than Al₂O₃-NP and ANFs. However, for temperatures higher than 523 K, the alumina 402 403 materials are very active and reach the equilibrium conversion at ca. 613 K (Al₂O₃-NP) and 648 404 K (ANFs). At 673 K, ca. 38% of conversion is reached for HMOR, while for Al₂O₃-NP and ANFs, the conversion is ca. 90%. Note that the measured conversion corresponds to the 405 equilibrium conversion. The low conversion of HMOR can be related to the low amount of acid 406 407 sites over the explored temperature range shown in Figure 5 and Figure 6a).

(00)

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM.

A comparison between Al₂O₃-NP and ANFs is also assessed. Al₂O₃-NP is more active that the contract of 408 ANFs, probably due to the higher amount of acid sites per weight of catalysts. Interestingly, the 409 hybrid ANF-HMOR is more active than the Al₂O₃-NP and ANFs. This includes the light-off 410 curves of ANF-HMOR and Al₂O₃-HMOR-NP, which are very similar. Such similarities include 411 the methanol conversion temperature, which starts at 473 K and reaches the equilibrium 412 413 conversion at ca. 598 K. However, variations in DME signal intensity are observed in Figure 6b) for ANF-HMOR and Al₂O₃-HMOR-NP. In this case, the results indicate that ANF-HMOR 414 is more selective (Table 3) to DME than the other acid catalysts. 415

It is then important to compare conversion (Figure 6a)) and selectivity (Table 3) at 573K for 416 ANF, ANF-HMOR, Al₂O₃-NP, Al₂O₃-HMOR-NP, and HMOR. ANF-HMOR remains the 417 418 highest in Figure 6a) and Table 3, followed by Al₂O₃-HMOR-NP, ANFs Al₂O₃-HMOR-NP, Al₂O₃-NP, and HMOR. The temperature at 50% conversion (T_{50}) and DME selectivity are also 419 420 shown in the same table. Again, ANF-HMOR remains with the lowest T₅₀, highest conversion at 573 K, and DME selectivity, followed by less selective acid catalysts such as Al₂O₃-HMOR-421 NP, ANFs, and Al₂O₃-NP. Interestingly, despite its lower conversion (Figure 6a)), the ANFs 422 are more selective to DME than the Al₂O₃-NP (Table 3), most probably due to the open 423 structure network and the high surface area among the acid catalyst in Table 1. Furthermore, 424 the apparent activation energy calculated from the rate of DME production vs. 1/T is shown in 425 Table 3 to compare the catalyst performance further. The activation energy for the ANFs, with 426 427 (99 kJ/mol) and without (96 kJ/mol) HMOR present slightly lower values than the Al₂O₃-NP (108 and 110 kJ/mol). Our results show similar values to other catalysts in the literature. This 428 entails conversion, selectivity, and activation energy.^{69,81,106} 429

Figure 6. a) Methanol conversion during the light off curves. b) DME signal intensity during 431 432 the light-off curves.

433

4

under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM.

24	Table 2 Mathenal conversion	(0/) and DME colocitivity	,
34	Table 5. With anot conversion	(70) and DIVIE selectivity	Ý

Sample	Methanol conversion (%) at 573 K*	DME Selectivity (relative intensity) at 573 K*	Conversion at T ₅₀ (K)*	DME Selectivity (relative intensity) at T ₅₀ (K)*	Apparent activation Energ _v (kJ/mol)
ANFs	46	1	573	0.9	96 ± 1
FANF-HMOR	87	1	534	1	99 ± 3
l_2O_3 -NP	72	0.9	553	0.8	110 ± 1
l ₂ O ₃ -HMOR-NP	80	0.9	535	0.8	108 ± 4
MOR	10	0.9	>673	-	84 ± 4
*The results are derived from the light-off curve, where the experimental error is lower than 15%.					
425					

⁴³⁵

We then compare the acidity (Figure 5 and Table 2) with the catalytic performance (Figure 6 436 437 and Table 3) to generate insights into the ANF-HMOR synergy. It is generally accepted that the catalyst composition, surface area, porosity (i.e., pore size and its distribution), and surface 438 acidity affect the performance of the methanol dehydration reaction to DME.⁷⁰ In this reaction, 439 440 the catalytic activity depends on the surface acidic properties, such as the total number of acidic sites and their strength. Figure S6 shows the number of acid sites (μ mol/g) and the T₅₀ (K) as 441

a function of the surface area (m^2/g) . Here, it is observed that the acid sites do not depend on 442

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM

the surface area, and it also does not directly influence the catalyst activity. Earlier reports v@v10%cle Online
showed that the catalytic activity could be correlated with the number of acidic sites; however,
this behavior has not been observed but provides insight into other factors affecting activity.⁷⁵

446 From the mechanistic point, methanol dehydration is considered a bimolecular reaction between two intermediates adsorbed on adjacent surface sites and requires the proximity of two 447 acid sites with adequate acidity.⁸¹ Thus, increasing the acid sites density leads to improved 448 catalyst performance. This becomes evident in Figure 7, which shows that the conversion 449 increases with the acid sites density (µmol/m²). The synergy between LAS and BAS produced 450 by interfacial interaction also enhances the methanol dehydration rate.¹⁰⁸ Therefore, the 451 addition of HMOR in the ANF and Al₂O₃-NP modifies both the acid site density and the acid 452 types by incorporating BAS, thus improving the catalyst performance. 453

454

Figure 7. Conversion at 573 K as a function of the acid sites density (μmol/m²) at 303 K for
the unstructured catalysts (HMOR, Al₂O₃-NP, and Al₂O₃-HMOR-NP) and nanofibers (ANF,
and ANF-HMOR).

Catalysis Science & Technology Accepted Manuscrip

458	In addition to the nature and strength of the acid sites, the textural properties, such as the surface on line DOI: 10.1039/DZCY00143H
459	area, porosity, and average pore diameter, can affect the catalytic performance in dehydration
460	reactions. ^{69,81} The BET isotherms (Figure 3b) suggest the presence of aggregated slit-shaped
461	pores, which may originate in the interparticle voids in the Al ₂ O ₃ -NP and Al ₂ O ₃ -HMOR-NP.
462	Additionally, they present a wide pore size distribution. On the contrary, the pore distribution
463	plots revealed a wide distribution of pore bodies, with a majority distribution of pore widths
464	around 6 nm for ANFs and hybrid ANFs with NaMOR and HMOR. Furthermore, compared to
465	the NP that forms agglomerates and lacks structured macroporosity (Figure S5), the nanofibers
466	present a lower diffusion length (d=240-320 nm). This is expected due to the non-woven
467	nanofiber structure that contains macropore mesh. ⁴³ These differences in the average pore size,
468	pore size distribution, and diffusion length may explain the variations in selectivity. In the
469	Al ₂ O ₃ -NP and Al ₂ O ₃ -HMOR-NP, the products could have a higher retention time leading to
470	by-products, such as CO and hydrocarbons, and thus decreasing the DME selectivity. Our
471	results suggest that hierarchical structures like fibers and HMOR can enhance chemical reaction
472	selectivity synergistically.

Based on the catalytic tests used to highlight the hybrid nanofibers' functionality, we can conclude that a higher conversion of methanol to DME is achieved when samples contain high acid sites densities and both types of acid sites (LAS and BAS). The presence of both types of acid sites provides synergy effects that positively influence the activity towards the methanol dehydration to DME. Additionally, the fiber morphology favors the DME selectivity. Further

- 478 studies on ANF-HMOR materials could optimize the amount of BAS and LAS to maximize Contine Contine
- 479 conversion and selectivity under dehydration reactions conditions.

480 Conclusions

View Article Online DOI: 10.1039/D2CY00143H

Hybrid ANFs with high acidity has been synthesized using electrospinning. Acid sites tunability is possible in these nanofibers using MOR nanocrystals. The nanofibers have shown multilevel pore combinations, such as mesopores and macropores. IR-Py demonstrates the nature type, and desorption strength of the acid sites in the ANF-HMOR, which prevail between 423 and 673 K. The methanol dehydration reactions showed the advantage of the ANF-HMOR synergistically contributing to increase methanol conversion and DME selectivity.

The authors thank Jimmy A.Faria (Catalytic Processes and Materials (CPM), University of 488 Twente) and Mark Smithers (MESA+ Institute, University of Twente) for their support. The 489 490 research leading to the results in this report has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program 491 492 (Grant agreement No. 742004). The authors thank the financial support from the Consejo 493 Nacional Investigaciones Científicas (CONICET) PIP-2021de Técnicas y 11220200100731CO. The authors also thank the Mexican Council for Science and Technology 494 (CONACyT) for funding R.N.Cruz-Herbert postgraduate studies at UANL (932067). 495

Satalysis Science & Technology Accepted Manuscript

View Article Online DOI: 10.1039/D2CY00143H

	496	Refe	View Arti DOI: 10.1039/D2C
	497	1	S. Kiatphuengporn, A. Junkaew, C. Luadthong, S. Thongratkaew, C. Yimsukanan, S.
	498		Songtawee, T. Butburee, P. Khemthong, S. Namuangruk, M. Kunaseth and K.
	499		Faungnawakij, Green Chem., 2020, 22, 8572-8583.
.ee.	500	2	X. Xu, H. Zhang, Y. Tong, Y. Sun, X. Fang, J. Xu and X. Wang, Appl. Surf. Sci., 2021,
PM. rted Licen	501		550 , 149316.
22 8:09:03 1 3.0 Unpo	502	3	L. C. Buelens, V. V. Galvita, H. Poelman, C. Detavernier and G. B. Marin, Science
n 5/17/202 Attribution	503		<i>(80).</i> , 2016, 354 , 449–452.
nloaded oi ommons A	504	4	D. Li, Y. Li, X. Liu, Y. Guo, C. W. Pao, J. L. Chen, Y. Hu and Y. Wang, ACS Catal.,
022. Dow Jreative C	505		2019, 9 , 9671–9682.
11 May 2 under a C	506	5	C. Italiano, J. Llorca, L. Pino, M. Ferraro, V. Antonucci and A. Vita, Appl. Catal. B
olished on s licensed	507		<i>Environ.</i> , 2020, 264 , 118494.
rticle. Pub is article i	508	6	H. Jeong, O. Kwon, B. S. Kim, J. Bae, S. Shin, H. E. Kim, J. Kim and H. Lee, Nat.
Access A	509		Catal., 2020, 3 , 368–375.
Open	510	7	J. Ihli, R. R. Jacob, M. Holler, M. Guizar-Sicairos, A. Diaz, J. C. Da Silva, D. Ferreira
(00)	511		Sanchez, F. Krumeich, D. Grolimund, M. Taddei, W. C. Cheng, Y. Shu, A. Menzel and
	512		J. A. Van Bokhoven, Nat. Commun., 2017, 8, 1–10.
	513	8	J. L. Williams, Catal. Today, 2001, 69, 3–9.
	514	9	I. Levin and D. Brandon, J. Am. Ceram. Soc., 1998, 81, 1995–2012.
	515	10	G. Busca, <i>Catal. Today</i> , 2014, 226 , 2–13.

J. Ruiz and C. Jimenez-Sanchidrian, Curr. Org. Chem., 2007, 11, 1113-1125. 517 12

B. Kasprzyk-hordern, 2004, 110, 19-48.

11

516

30

λa (cc)

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM.

518	13	Z. Wang, T. Li, Y. Jiang, O. Lafon, Z. Liu, J. Trébosc, A. Baiker, J. P. Amoureux dindarticle Online
519		J. Huang, Nat. Commun., 2020, 11, 1–9.
520	14	K. Motokura, M. Tada and Y. Iwasawa, J. Am. Chem. Soc., 2007, 129, 9540–9541.
521	15	B. Dhokale, A. Susarrey-Arce, A. Pekkari, A. Runemark, K. Moth-Poulsen, C.
522		Langhammer, H. Härelind, M. Busch, M. Vandichel and H. Sundén, ChemCatChem,
523		2020, 12 , 6344–6355.
524	16	Z. Zhang, R. W. Hicks, T. R. Pauly and T. J. Pinnavaia, J. Am. Chem. Soc., 2002, 124,
525		1592–1593.
526	17	P. Euzen, P. Raybaud, X. Krokidis, H. Toulhoat, JL. Le Loarer, JP. Jolivet and C.
527		Froidefond, Handb. Porous Solids.
528	18	C. Morterra and G. Magnacca, Catal. Today, 1996, 27, 497–532.
529	19	J. M. McHale, A. Auroux, A. J. Perrotta and A. Navrotsky, Science (80)., 1997, 277,
530		788–789.
531	20	M. D. Argyle, K. Chen, A. T. Bell and E. Iglesia, J. Catal., 2002, 208, 139–149.
532	21	X. Bokhimi, J. Sánchez-Valente and F. Pedraza, J. Solid State Chem., 2002, 166, 182-
533		190.
534	22	G. Li, L. Hu and J. M. Hill, Appl. Catal. A Gen., 2006, 301, 16-24.
535	23	C. Márquez-Alvarez, N. Žilková, J. Pérez-Pariente and J. Čejka, Catal. Rev Sci. Eng.,
536		2008, 50 , 222–286.
537	24	F. Rascón, R. Wischert and C. Copéret, Chem. Sci., 2011, 2, 1449-1456.
538	25	C. Parra-Cabrera, C. Achille, S. Kuhn and R. Ameloot, Chem. Soc. Rev., 2018, 47,
539		209–230.

S. Danaci, L. Protasova, V. Middelkoop, N. Ray, M. Jouve, A. Bengaouer and P View Article Online DOI: 10.1039/D2CY00143H 540 26 Marty, React. Chem. Eng., 2019, 4, 1318-1330. 541 A. Mahapatra, B. G. Mishra and G. Hota, Ceram. Int., 2011, 37, 2329–2333. 542 27 C. Weidmann, K. Brezesinski, C. Suchomski, K. Tropp, N. Grosser, J. Haetge, B. M. 543 28 Smarsly and T. Brezesinski, Chem. Mater., 2012, 24, 486-494. 544 545 29 X. Yang, C. Shao and Y. Liu, J. Mater. Sci., 2007, 42, 8470-8472. A. F. Lotus, R. K. Feaver, L. A. Britton, E. T. Bender, D. A. Perhay, N. Stojilovic, R. 30 546 D. Ramsier and G. G. Chase, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 547 2010, 167, 55-59. 548 A. F. Lotus, Y. C. Kang, J. I. Walker, R. D. Ramsier and G. G. Chase, 2010, 166, 61-31 549 66. 550 A. M. Azad, Mater. Sci. Eng. A, 2006, 435-436, 468-473. 551 32 33 W. Fu, Y. Dai, J. P. H. Li, Z. Liu, Y. Yang, Y. Sun, Y. Huang, R. Ma, L. Zhang and Y. 552 Sun, ACS Appl. Mater. Interfaces, 2017, 9, 21258–21266. 553 34 X. Meng, W. Xu, Z. Li, J. Yang, J. Zhao, X. Zou, Y. Sun and Y. Dai, Adv. Fiber 554 Mater., 2020, 2, 93-104. 555 H. Dai, J. Gong, H. Kim and D. Lee, Nanotechnology, 2002, 13, 674-677. 556 35 A. Stanishevsky, W. A. Brayer, P. Pokorny, T. Kalous and D. Lukáš, Ceram. Int., 557 36 2016, 42, 17154–17161. 558 A. H. Hekmati, A. Rashidi, R. Ghazisaeidi and J. Y. Drean, Text. Res. J., 2013, 83, 37 559 1452-1466. 560

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM

561 38 R. Jaeger, H. Schönherr and G. J. Vancso, *Macromolecules*, 1996, **29**, 7634–7636.

32

562

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Bγ (cc)

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM.

39

J. Doshi and D. H. Reneker, J. Electrostat., 1995, 35 , 151–160. View Article Online DOI: 10.1039/D2CY00143H	
M. Tebyetekerwa and S. Ramakrishna, Matter, 2020, 2, 279–283.	ot
S. Cavaliere, S. Subianto, I. Savych, D. J. Jones and J. Rozière, <i>Energy Environ. Sci.</i> , 2011, 4, 4761–4785.	uscri
C. Eyovge, C. S. Deenen, F. Ruiz-Zepeda, S. Bartling, Y. Smirnov, M. Morales-Masis,	lan
A. Susarrey-Arce and H. Gardeniers, ACS Appl. Nano Mater., 2021, 4, 8600-8610.	
M. A. Rodriguez-Olguin, H. Atia, M. Bosco, A. Aguirre, R. Eckelt, E. D. Asuquo, M.	otec
Vandichel, J. G. E. Gardeniers and A. Susarrey-Arce, J. Catal., 2022, 405, 520–533.	Cep
P. K. Panda, Trans. Indian Ceram. Soc., 2007, 66, 65–76.	Act
X. Tang and Y. Yu, Ceram. Int., 2015, 41, 9232–9238.	<u> </u>
J. Chandradass and M. Balasubramanian, J. Mater. Process. Technol., 2006, 173 , 275–280.	hnolo
R. Nass and H. Schmidt, J. Non. Cryst. Solids, 1990, 121, 329-333.	Tec
L. Ji, J. Lin, K. L. Tan and H. C. Zeng, Chem. Mater., 2000, 12, 931-939.	ంర
T. F. Baumann, A. E. Gash, S. C. Chinn, A. M. Sawvel, R. S. Maxwell and J. H.	ICe
Satcher, Chem. Mater., 2005, 17, 395-401.	ien
L. Zhang, J. C. C. Chan, H. Eckert, G. Helsch, L. P. Hoyer and G. H. Frischat, Chem.	SC
Mater., 2003, 15, 2702–2710.	S.
S. Rezgui and B. C. Gates, Chem. Mater., 2002, 6, 2386–2389.	aly
X. Y. Yang, G. Tian, L. H. Chen, Y. Li, J. C. Rooke, Y. X. Wei, Z. M. Liu, Z. Deng,	Jat
C Van Tondoloo and P. I. Su. Cham. A Fun I 2011 17 14007 14005	U

563	40	M. Tebyetekerwa and S. Ramakrishna, Matter, 2020, 2, 279–283.
564	41	S. Cavaliere, S. Subianto, I. Savych, D. J. Jones and J. Rozière, Energy Environ. Sci.,
565		2011, 4, 4761–4785.
566	42	C. Eyovge, C. S. Deenen, F. Ruiz-Zepeda, S. Bartling, Y. Smirnov, M. Morales-Masis,
567		A. Susarrey-Arce and H. Gardeniers, ACS Appl. Nano Mater., 2021, 4, 8600-8610.
568	43	M. A. Rodriguez-Olguin, H. Atia, M. Bosco, A. Aguirre, R. Eckelt, E. D. Asuquo, M.
569		Vandichel, J. G. E. Gardeniers and A. Susarrey-Arce, J. Catal., 2022, 405, 520–533.
570	44	P. K. Panda, Trans. Indian Ceram. Soc., 2007, 66, 65–76.
571	45	X. Tang and Y. Yu, Ceram. Int., 2015, 41, 9232–9238.
572	46	J. Chandradass and M. Balasubramanian, J. Mater. Process. Technol., 2006, 173, 275-
573		280.
574	47	R. Nass and H. Schmidt, J. Non. Cryst. Solids, 1990, 121, 329-333.
575	48	L. Ji, J. Lin, K. L. Tan and H. C. Zeng, Chem. Mater., 2000, 12, 931-939.
576	49	T. F. Baumann, A. E. Gash, S. C. Chinn, A. M. Sawvel, R. S. Maxwell and J. H.
577		Satcher, Chem. Mater., 2005, 17, 395-401.
578	50	L. Zhang, J. C. C. Chan, H. Eckert, G. Helsch, L. P. Hoyer and G. H. Frischat, Chem.
579		Mater., 2003, 15, 2702–2710.
580	51	S. Rezgui and B. C. Gates, Chem. Mater., 2002, 6, 2386–2389.
581	52	X. Y. Yang, G. Tian, L. H. Chen, Y. Li, J. C. Rooke, Y. X. Wei, Z. M. Liu, Z. Deng,

S. Mitchell, A. B. Pinar, J. Kenvin, P. Crivelli, J. Kärger and J. Pérez-Ramírez, Natrice Online Difference of the Article Online Di 583 53 Commun. 2015 61, 2015, 6, 1-14. 584 A. Susarrev-Arce, M. A. Hernández-Espinosa, F. Rojas-González, C. Reed, V. 585 54 Petranovskii and A. Licea, Part. Part. Syst. Charact., 2010, 27, 100-111. 586 T. Li, J. Ihli, Z. Ma, F. Krumeich and J. A. Van Bokhoven, J. Phys. Chem. C, 2019, 55 587 123, 8793-8801. 588 J. Di, H. Chen, X. Wang, Y. Zhao, L. Jiang, J. Yu and R. Xu, Chem. Mater., 2008, 20, 589 56 3543-3545. 590 S. F. Anis, A. Khalil, Saepurahman, G. Singaravel and R. Hashaikeh, Microporous 591 57 Mesoporous Mater., 2016, 236, 176-192. 592 S. F. Anis and R. Hashaikeh, Microporous Mesoporous Mater., 2016, 233, 78-86. 593 58 S. F. Anis, G. Singaravel and R. Hashaikeh, RSC Adv., 2018, 8, 16703–16715. 59 594 J. Liu, G. Jiang, Y. Liu, J. Di, Y. Wang, Z. Zhao, Q. Sun, C. Xu, J. Gao, A. Duan, J. 60 595 Liu, Y. Wei, Y. Zhao and L. Jiang, Sci. Reports 2014 41, 2014, 4, 1-6. 596 61 S. Ivanova, B. Louis, M. J. Ledoux and C. Pham-Huu, J. Am. Chem. Soc., 2007, 129, 597 3383-3391. 598 599 62 S. Gao, X. Wang and W. Chu, *Microporous Mesoporous Mater.*, 2012, 159, 105–110. F. Ocampo, H. S. Yun, M. M. Pereira, J. P. Tessonnier and B. Louis, Cryst. Growth 600 63 Des., 2009, 9, 3721–3729. 601 P. Losch, M. Boltz, K. Soukup, I. H. Song, H. S. Yun and B. Louis, Microporous 602 64 Mesoporous Mater., 2014, 188, 99-107. 603 65 C. Pham-Huu, G. Winé, J. P. Tessonnier, M. J. Ledoux, S. Rigolet and C. Marichal, 604

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM.

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM.

(cc) BY

	605		<i>Carbon N. Y.</i> , 2004, 42 , 1941–1946.	View Article Online DOI: 10.1039/D2CY00143H
	606	66	X. Ke, X. Zhang, H. Liu, S. Xue and H. Zhu, Chem. Commun., 2013, 49, 9	9866–9868.
	607	67	I. Hussain, A. A. Jalil, N. S. Hassan, H. U. Hambali and N. W. C. Jusoh, G	Chem. Eng.
	608		<i>Sci.</i> , 2020, 228 , 115978.	
icence.	609	68	Y. Tao, H. Kanoh, L. Abrams and K. Kaneko, Chem. Rev., 2006, 106, 896	-910.
nported Lic	610	69	Hamed Bateni and Chad Able, Catal. Ind., 2019, 11, 7-33.	
oution 3.0 l	611	70	J. Sun, G. Yang, Y. Yoneyama and N. Tsubaki, ACS Catal., 2014, 4, 3346	-3356.
mons Attril	612	71	S. R. Blaszkowski and R. A. Van Santen, J. Am. Chem. Soc., 1996, 118, 5	152–5153.
licensed under a Creative Comm	613	72	J. J. Spivey, Chem. Eng. Commun., 1991, 110, 123-142.	
	614	73	M. Ravi, V. L. Sushkevich and J. A. van Bokhoven, Chem. Sci., 2021, 12,	4094–4103.
	615	74	Z. Cheng, S. Huang, Y. Li, K. Cai, Y. Wang, M. Wang, J. Lv and X. Ma,	ACS Catal.,
article i	616		2021, 11, 5647–5657.	
This	617	75	I. Takahara, M. Saito, M. Inaba and K. Murata, Catal. Lett. 2005 1053, 20	05, 105 ,
β	618		249–252.	
(cc)	619	76	F. Yaripour, F. Baghaei, I. Schmidt and J. Perregaard, Catal. Commun., 20	005, 6 , 147–
	620		152.	
	621	77	M. Ghavipour and R. M. Behbahani, J. Ind. Eng. Chem., 2014, 20, 1942-	951.
	622	78	D. Liu, C. Yao, J. Zhang, D. Fang and D. Chen, Fuel, 2011, 90, 1738–174	2.
	623	79	A. I. Osman, J. K. Abu-Dahrieh, D. W. Rooney, S. A. Halawy, M. A. Mol	named and A.
	624		Abdelkader, Appl. Catal. B Environ., 2012, 127, 307-315.	
	625	80	K. C. Tokay, T. Dogu and G. Dogu, Chem. Eng. J., 2012, 184, 278–285.	

35

626	81	S. S. Akarmazyan, P. Panagiotopoulou, A. Kambolis, C. Papadopoulou and $D_{DOI: 10:1039/D2CY00143H}$
627		Kondarides, Appl. Catal. B Environ., 2014, 145, 136–148.
628	82	J. F. DeWilde, H. Chiang, D. A. Hickman, C. R. Ho and A. Bhan, ACS Catal., 2013, 3,
629		798–807.
630	83	M. A. Christiansen, G. Mpourmpakis and D. G. Vlachos, ACS Catal., 2013, 3, 1965-
631		1975.
632	84	S. R. Matkovic, M. Bosco, S. E. Collins and L. E. Briand, Appl. Surf. Sci., 2019, 495,
633		143565.
634	85	J. Aguado, D. P. Serrano, J. M. Escola and A. Peral, J. Anal. Appl. Pyrolysis, 2009, 85,
635		352–358.
636	86	H. M. Lankapati, D. R. Lathiya, L. Choudhary, A. K. Dalai and K. C. Maheria,
637		ChemistrySelect, 2020, 5, 1193–1198.
638	87	P. Intarapong, S. Iangthanarat, P. Phanthong, A. Luengnaruemitchai and S. Jai-In, J.
639		Energy Chem., 2013, 22 , 690–700.
640	88	R. Cuevas-garcía, J. G. Téllez-romero, J. Ramírez, P. Sarabia-bañuelos and I. Puente-
641		lee, Catal. Today, 2021, 360 , 63–71.
642	89	M. Dyballa, U. Obenaus, M. Blum and W. Dai, Catal. Sci. Technol., 2018, 8, 4440-
643		4449.
644	90	M. Dyballa, D. K. Pappas, E. Borfecchia, P. Beato, U. Olsbye, K. P. Lillerud, B. Arstad
645		and S. Svelle, Microporous Mesoporous Mater., 2018, 265, 112–122.
646	91	K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol
647		and T. Siemieniewska, Pure Appl. Chem., 1985, 57, 603-619.

(cc) BY

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM.

(cc) BY

Open Access Article. Published on 11 May 2022. Downloaded on 5/17/2022 8:09:03 PM.

	648	92	F. Hosseinzadeh and H. Sarpoolaky, J. Inorg. Organomet. Polym. Mater., 2019 29/iew Article Online DOI: 10.1039/D2CY00143H
	649		1956–1971.
	650	93	V. Antochshuk, M. Kruk and M. Jaroniec, J. Phys. Chem. B, 2003, 107, 11900–11906.
	651	94	K. M. S. Khalil, J. Colloid Interface Sci., 2007, 307, 172–180.
	652	95	P. Zhu, P. Tian, Y. Liu, H. Pang, W. Gong, J. Ye and G. Ning, Microporous
	653		Mesoporous Mater., 2020, 292, 109752.
	654	96	L. Qu, C. He, Y. Yang, Y. He and Z. Liu, Mater. Lett., 2005, 59, 4034–4037.
	655	97	J. Aguado, J. M. Escola, M. C. Castro and B. Paredes, Microporous Mesoporous
	656		Mater., 2005, 83, 181–192.
	657	98	E. P. Parry, J. Catal., 1963, 2, 371–379.
	658	99	A. Piovano, E. Morra, M. Chiesa and E. Groppo, ACS Catal., 2017, 7, 4915–4921.
	659	100	X. Liu, J. Phys. Chem. C, 2008, 112, 5066-5073.
	660	101	C. A. EMEIS, ChemInform, 2010, 24, no-no.
	661	102	M. Tamura, K. I. Shimizu and A. Satsuma, Appl. Catal. A Gen., 2012, 433-434, 135-
	662		145.
	663	103	S. Khabtou, T. Chevreau and J. C. Lavalley, Microporous Mater., 1994, 3, 133-148.
	664	104	R. J. Mikovsky and J. F. Marshall, J. Catal., 1976, 44, 170-173.
	665	105	R. Van Borm, A. Aerts, M. F. Reyniers, J. A. Martens and G. B. Marin, Ind. Eng.
	666		Chem. Res., 2010, 49, 6815–6823.

667 106 M. Xu, J. H. Lunsford, D. W. Goodman and A. Bhattacharyya, *Appl. Catal. A Gen.*,
668 1997, 149, 289–301.

- S. M. Kim, Y. J. Lee, J. W. Bae, H. S. Potdar and K. W. Jun, *Appl. Catal. A* Gen View Article Online
 2008, 348, 113–120.
- 108 L. Zeng, Y. Wang, J. Mou, F. Liu, C. Yang, T. Zhao, X. Wang and J. Cao, Int. J.
- 672 *Hydrogen Energy*, 2020, **45**, 16500–16508.

673