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Understanding an electrode–electrolyte interface (EEI) behavior is a valuable tool in several

areas of science. There are models based on discrete fractal structures, which explain the

measurements of linear and non-linear impedance at fixed frequencies, or at determined

ranges of high and low current densities. A level by level discrete calculation is needed to

evaluate these models, or the use of black-box models, which affect the good understand-

ing of the phenomenon. A continuous model based on a differential equation of an EEI is

presented in this paper. It includes an electrical circuit similar to a long transmission line.

It has been deduced from the discrete Liu model.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Understanding an electrode–electrolyte interface (EEI)

behavior is a valuable tool in several areas of science. For

instance, when measuring pH or bacterial concentration

[1–3], or when recording electrocardiogram (ECG), elec-

troencephalogram (EEG) or electromyogram (EMG) [3]. Be-

sides, it is essential to understand how it interferes with

measurements when the interface is operating in the non-

linear zone, such as the non-linear dielectric spectroscopy

of biological suspensions [2].

In all cases, it is necessary to deeply understand the

electrode behavior, mainly when it is in contact with a bi-

ological tissue or cells in suspension.

Physically, the electric current encounters Ohmic resis-

tances in both media (metal and electrolyte), and a capac-

itance through the interface.

On the other hand, polished surfaces usually show

scraping lines under magnification. These grooves have

been modeled as distributed RC elements [4,5].
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The cross section of the interface model is shown in

Fig. 1a, where the electrolyte is depicted in black. The

grooves in the electrode can be seen as projections on the

electrolyte side. Each groove has a self-similar structure,

that is, it is divided into two branches (N = 2) and these

are similar to the original groove (hence the name of self-

similar) when magnified by a factor a, with a > N ≥ 2 [13].

The reader would recognize this model as the Cantor-

bar fractal structure.

The equivalent electric circuit is shown in Fig. 1b rep-

resented in 3D. In it, the electrolytic resistance (R) is in-

creased by a factor a in each subdivision, since at this ratio

the cross section is reduced. Zp represents the impedance

of the EEI (of the two side faces of the branches) and it is

modeled as the double layer capacity Cdl in parallel with

the charge transfer resistance Rct. Zp is the same at each

fractal level. The common ground of the circuit is the elec-

trode.

This model includes two electrochemical parameters

(Cdl and Rct) incorporated in the geometric structure of the

electrode. The charge transfer resistance Rct has been in-

corporated to take into account redox processes.

Since the circuit components of Fig. 1 have the same

value, it can be assumed that there are equipotential points

http://dx.doi.org/10.1016/j.chaos.2016.01.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2016.01.003&domain=pdf
mailto:cfelice@herrera.unt.edu.ar
http://dx.doi.org/10.1016/j.chaos.2016.01.003


82 C.J. Felice, G.A. Ruiz / Chaos, Solitons and Fractals 84 (2016) 81–87

Fig. 1. (a) Cantor-bar fractal model of a rough-EEI, showing two grooves each with four fractal levels. The electrode is shown in white while the electrolyte

in black. (b) Equivalent electric circuit for the fractal net of the rough-EEI in a three-dimensional way. R: electrolytic resistance, a: scale factor, Rct: charge

transfer resistance and the Cdl double layer capacity. A and B are equipotential points.

Fig. 2. Simplified fractal net showing the first four levels. R, Zp and a

idem Fig. 1, η0,1,2,3 overpotential at different fractal levels (n = 0 corre-

spond to a flat electrode, n = 1 to first fractal level, and so on).

Fig. 3. Generalized discrete model of Fig. 2 considering N bifurcations by

level and η(n) = ηn; n = 0,1,2….
at every level [6], i.e., A corresponds to the first level, B

to the second, and so on. Due to this equipotentiality, the

circuit can be simplified as shown in Fig. 2.

It is possible to generalize the discrete model of Fig. 2,

if N branches or bifurcations are considered by level for

each level, instead of two (see Fig. 3).

Thus, a low value of N indicates a high roughness sur-

face, because the grooves need more fractal levels to reach

the molecular size. In the case where it is desired to cal-

culate the voltage in every stage, the model has to be de-

veloped up to the desired stage. In the reviewed literature,

the number of fractal levels of a surface has been modeled

by a discrete variable [4,5,7–9].

In this paper we present a non homogeneous second

order differential equation with constant coefficients to de-

scribe the behavior of an electrode–electrolyte interface. It

has been obtained by replacing a discrete fractal model

[4,5], by a quadrupole based model similar to a long trans-
mission line. An analytic solution for a simplified version

of the differential equation is presented.

The proposed continuous model predicts the potential’s

changes depending on the distance to the electrode arising

from the roughness of the material, but does not report on

what happens inside the double layer.

2. The model

It can start from the model of an EEI described by Ruiz

et al. [4,5] and shown in Fig. 3. On it, the discrete variable

n indicates the fractal level considered (n = 0 correspond

to a flat electrode, n = 1 to first fractal level, and so on),

a is the value that divides the channel width of a level to

move on to the next one, and N is the number of branches

or bifurcations considered by level.

The value of the parallel impedance for each fractal

level (n = 0,1,2, etc.) is:

Zp = − jX Rct

Rct − jX
(1)

where X = 1
2π f Cdl

: reactance of the double layer capaci-

tance, f: frequency, Cdl: double layer capacitance, and Rct:

charge transfer resistance. Rct is evaluated as the inverse

of the derivative of the current density through it respect

overpotential falling upon it. The relationship between the

current density and the overpotential is known as the

Butler–Volmer equation. Zp is a function of the applied

overpotential because Rct depends on the applied overpo-

tential.

The components of the circuit in Fig. 3 have discrete

values which depend on the “n” step number.

In order to obtain a continuous circuit, we assume that

each level is a stage of a distributed parameter model, just

like a long transmission line, and the discrete variable “n”

is replaced by the continuous variable “x”.

The x relative variable indicates the distance from

the double layer charge, without including it, to infin-

ity which in practice corresponds to a point within the

solution but away from the electrode. The characteristics

of the new continuous model shown in Fig. 4 are:where

Re(x) = axR
Nx : series electrolytic resistance, Zpi(x) = Zp

Nx : par-

allel impedance at each fractal level, Z0: net impedance at

x = 0, Z(x): partial right impedance for each fractal level,
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Fig. 4. Generalized continuous model of Fig. 3. Z0: total impedance, Z(x):

partial right impedance for each fractal level, η0: overpotential applied to

the fractal net, and η(x): overpotential in each fractal level.

Fig. 5. |η(x)| as a function of x obtained for different “a” values, where

R = 100 �, Rct = 10,000 �, N = 2, Cdl =3.10−6 F, f = 0, and V0 = 1 V.

Fig. 6. |η(x)| as a function of x obtained for different “Rct” values, where

R = 100 �, N = 2, a = 5, Cdl =3.10−6 F, f = 0, and V0 = 1 V.
η0 and η(x): overpotential applied to the net and at each

fractal level respectively.

In the circuit of Fig. 4, the relationship between the

overpotential η(x) and the impedance Z(x) at each level is:

η(x) = η0
Z(x)

Z0

(2)

In order to obtain η(x), a differential equation of circuit

of Fig. 4 will be deduced. Consider ilong current as the lon-

gitudinal variation of the voltage divided in the longitudi-

nal resistance,

ilong = 1

axR/Nx

dη(x)

dx
(3)

The current which circulates in every stage through

Zpi(x) can also be interpreted as an ilong longitudinal varia-

tion, as follows:

dilong

dx
= η(x)

Zp/NX
(4)

Zp includes Cdl, and its value depends on the model as-

sumed for Cdl. Cdl is assumed constant in this paper.

A differential equation of the interface can be obtained

with all the components of the interface defined. From

Eqs. (3) and (4) and making k = N/a

d

dx

(
kx

R

dη(x)

dx

)
= η(x)Nx

Zp(η(x))
(5)

Deriving the term between parentheses and simplifying,

it find the final expression for the differential equation:

d2η(x)

dx2
+ In(k)

dη(x)

dx
= η(x)axR

Zp(η(x))
(6)

where ln(k) gives the natural logarithm of k.

3. Model evaluation

Eq. (6) is a non homogeneous second order differen-

tial equation with constant coefficients. In order to eval-

uate the model and due to the complexity of the equation,

it will be analyzed in a simplified version.

Overpotentials lower than 10 mV are assumed, where

Rct and Cdl are constant at any level and they do not de-

pend on the applied voltage. Differential equation (7) is

obtained from these simplifications.

d2η(x)

dx2
+ ln(k)

dη(x)

dx
= R

Zp
axη(x) (7)
Eq. (8) is the solution to the differential equation (7).

Eq. (8) is based on the modified Bessel function of the sec-

ond kind with the boundary condition given by η(0) = V0.

η(x) =
vok

x

2 BesselK

(
ln[k]

ln[a]
,

2
√

axR

ln[a]
√

Zp

)

BesselK

(
ln[k]

ln[a]
,

2
√

R

ln[a]
√

Zp

) (8)

Fig. 5 shows the magnitude of η(x) for different val-

ues of a parameter, where R = 100 �, Rct = 10,000 �, N = 2,

Cdl =3.10−6 F, f = 0, and V0 = 1 V. Fig. 6 shows the magni-

tude of η(x) for different values of “Rct” parameter, using

R = 100 �, N = 2, a = 5, Cdl =3.10−6 F, f = 0, and V0 = 1 V.

Fig. 7 shows the magnitude of η(x) for different values

of “V0” parameter, using R = 100 �, Rct = 10,000 �, N = 2,

a = 5, Cdl =3.10−6 F, and f = 0.Fig. 8 shows the magnitude of

η(x) for different values of “f” parameter, using R = 100 �,

N = 2, a = 5, Cdl = 3.10−6 F, and Rct = 10,000 �.
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Fig. 7. |η(x)| as a function of x obtained for different “V0” values, where

R = 100 �, Rct = 10,000 �, N = 2, a = 5, Cdl =3.10−6 F, and f = 0.

Fig. 8. |η(x)| as a function of x obtained for different “f” values, where

R = 100 �, N = 2, a = 5, Cdl = 3.10−6 F, and Rct = 10,000 �.

Fig. 9. Phase angle of η(x) as a function of x obtained for two different

“f” values, using R = 100 �, N = 2, a = 5, Cdl = 3.10−6 F, and Rct = 10,000 �.
Fig. 9 shows the phase angle of η(x) for two different

“f” values, using R = 100 �, N = 2, a = 5, Cdl = 3.10−6 F, and

Rct = 10,000 �.

4. Discussion

In this paper, an electrode–electrolyte interface has

been modeled with a continuous fractal structure based

on quadrupoles. A transformation of an “n” step number

discrete variable in a continuous variable x has been pro-

posed.

In order to know how to interpret the physical mean-

ing of a fractal, when a continuous variable is used, the

same reasoning as in long transmission line has been ap-

plied. It must consider the fractal as a continuous series of

quadrupoles, where each is a combination of electrolytic

resistance and parallel impedance of each level.

In Fig. 5 it can be seen that the parametric curves have

more slope as "a" grows. This effect is due to an increase in

electrolytic resistance of the branches. Likewise, the raising

slopes of parametric curves of Fig. 6, when Rct decrease,

are due to the decrease of Zpi impedance. Both effects in-
crease the rate of fall of potential along the transmission

line.

The rapid decreasing of potential in Figs. 5 and 6, af-

ter a small number of stages (x < 6), is very important, be-

cause in any real system there can only be a finite number

of fractal levels. This observation is similar to that reported

by other authors [8,9]. In Fig. 7 the different curves corre-

spond to the different overpotentials applied, as marked in

the figure. At a sufficiently long distance from the surface,

the potential tends to 0 independently of the overpotential

applied.

The proposed continuous model predicts the potential

variation with the distance to electrode due to the ma-

terial’s roughness—i.e.: geometrical and morphological of

surface’s structure—; but it cannot predict the potential

variation inside the double layer itself. Furthermore, in

this work we do not calculate total interface impedance.

Only potential drop at interface roughness is consid-

ered, unlike Dr. McAdams et al.’s review [14] where total

electrode–electrolyte impedance is modeled through Ran-

dles, McAdams, Constant Phase Angle, Levie, Liu, Nyikos

and Pajkossy models among others.

Nevertheless, we might say that the use of an analyt-

ical solution of differential equation, as a fractal contin-

uum model, instead of infinite continued fractions, rep-

resents an improvement against Dr. McAdams impedance

models review. But we emphasize, that we do not model

impedance, only Ohmic potential drops in the roughness

of the electrode.

A comparison between our simulations and experimen-

tal results would be the curves presented in the work of

Woo et al. [10] and Yoon et al. [11]. In these works, the

curves are qualitatively similar to ours, but show differ-

ent phenomena. According to the authors, despite work-

ing with large external overpotential applied—among 0 and

400 mV—involving Ohmic potential drops in the rough-

ness of the electrode, these are not important because the

roughness is at least ten times less than the thickness of

the double layer.

Therefore in these works, the potential curves versus

distance reflect the potential drop on the double layer.

Woo used as working electrode "a flame-annealed Au

(111) film deposited on glass" whose roughness is on the
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Fig. 10. Left: Schematic of flat surface with Rq = 1 nm, and his potential vs. distance curve. Right: Schematic of rough surface with Rq >> 1 nm, and his

distorted potential vs. distance curve.

Fig. 11. Equipotential lines in a fractal electrode by using Quick Field sim-

ulation. Each line = 0.05 V; left electrode = 1 V, right electrode = 0 V.
order of nm. Electrolytic solutions containing different con-

centrations of NaBF4 were used. The reason of this elec-

tion is that these solutions show no appreciable specific

adsorption on gold surfaces.

This means that Coulomb forces prevail over the short

range forces. While Yoon also used an "Au (111) film de-

posited on glass" as working electrode, his electrolytic so-

lutions contained different concentrations of NaClO4. As in

Woo’s experiments, the choice of electrolytic solutions is

based on the fact that the ions Na+ and ClO4
− have negli-

gible specific adsorption on gold surfaces.

In both cases the experiment consisted of slowly

advancing a probe—electrochemically etched gold wire,

coated with an insulator material except its apex—to the

working electrode until making contact with the surface of

WE.

Also in both cases, it could be considered that the

equivalent electric model is a R–Cdl series, since it is as-

sumed that there is no specific adsorption of electrolytes,

or electrochemically active species participating in charge

transfer.

Measurements show that potential drops, depend heav-

ily on the concentration of the electrolyte solution. For

concentrations of 1 mM of both NaClO4 and NaBF4, no-

effects on the double layer were observed, for distances

greater than 20 nm.

Curves qualitatively similar to the present work are

shown by Hurth et al. [12]. It is possible that these curves

representing the combined effects of roughness and double

layer, because the size of the double layer is of the same

order of roughness.

Hurth’s experiments consisted of slowly advancing a

nanometric probe made of PtIr wire (φ ≈ 400 nm) to a Pt

foil of 0.2 cm2 (≈ 4.5×4.5 mm). As electrolyte, he used KCl.

The variations shown of V(x) as a function of electrode dis-

tance extend to 60 nm. Hurt´s experiment showed an ab-

normality: V(x) did not show changes when different ex-

ternal overpotentials were applied in a solution of 10 μM

KCl, with a double layer thickness greater than 60 nm.

Regarding to roughness effect on measurements, first

we have to highlight that Hurth’s Pt foil has a local root
mean square average of the roughness profile ordinates

Rq = 1.35 nm. Although Hurth’s study does not mention

it, we can assume that this value is valid for surfaces of

around 10 μm2 if we consider Blackstock et al. work [15],

where a 1 Å roughness is valid for 1 μm2 surface. The area

of Hurth’s Pt foil is 20 mm2, which is 1,000,000 times big-

ger than the assumed area. To understand why surround-

ing surfaces could disturb local potential measurements,

first we have to analyze Hurth’s assay.

When a test probe gets closer to this surface, it

moves through equipotential surfaces, to which surround-

ing structures also contribute. Following Fig. 10 shows a

side view schematic, where equipotential surfaces are vi-

sualized as equipotential lines. Figure on the left shows a

1 μm2 surface with Rq = 1 nm but assuming that whole Pt

foil has the same Rq value. Figure on the right shows a lo-

cal 1 μm2 surface with Rq = 1 nm, but as in this case sur-

rounding bigger structures are considered, Rq could be 10–

100 times greater.
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Fig. 12. Potential vs. distance curves at points A and B of Fig. 11.
When net charge transference exists at electrodes in-

terface, Ohmic drop is overlapped with the potential mea-

sured by the PtIr probe at the double layer, so that a dis-

tortion of this value is produced.

In order to increase the support of our arguments, we

evaluated through Quick Field a simulation of the proposed

schematic at Fig. 11, considering only Ohmic drops. Follow-

ing Fig. 11 shows a rough electrode at 1 V, with a 0 V refer-

ence on the right side. The medium is saline solution with

relative permittivity ε = 77. A double layer is not consid-

ered.

Red circles indicate regions where the probe performs

measurements. At point A, the measured potential is not

affected by roughness whereas at point B the measured

potential depends on surrounding roughness although the

contact point probe-electrode is plain. At Fig. 12 it is ob-

served the potential drops at points A and B.

Furthermore, it must be highlighted the similarities be-

tween our Fig. 7 and Woo’s Fig. 2, but in our case with

potential drops only due to Ohmic drops. This also sup-

ports the idea of potential measurements reflecting Ohmic

drops, instead of a double layer. The same situation could

happen in Woo’s experiment [10], if the potential curves

are normalized for different bias voltages. Woo´s normal-

ized potential curves show no dependence on bias voltage,

for voltage values ranging from −200 to +400 mV. It could

be explained, if measurements reflect only Ohmic drops

inside the fractal, like in our circuit of Fig. 4. This circuit

turns on purely resistive, when large overpotentials (−200

to +400 mV) are applied, so that Rct << X and consequently

the double layer reactance is short-circuited. Because this

circuit is purely resistive, the normalized potential curves

are similar to each other, and reflect only Ohmic drops.

5. Conclusion

We have presented a new theoretical tool to analyze

the potential drop inside a rough electrode–electrolyte in-

terface. Our main contribution is to use a new model based

in a continuous fractal. This model is represented by a
non-homogeneous second order differential equation with

constant coefficients. The continuous fractal is proposed as

an improvement of discrete level fractal models. The the-

ory developed here, could be employed in the design of

biosensors, fuel cells, microelectrodes, solar cells, batteries

and other possible applications.
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